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Abstract. A detailed analysis of the dynamics and linear stability of a steady

one-dimensional detonation wave propagating in a binary reactive system with an

Arrhenius chemical kinetics of type A+A ⇋ B +B is carried out. Starting from the

frame of the kinetic theory, the binary reactive mixture is modelled at the mesoscopic

scale by the reactive Boltzmann equation (BE), assuming hard sphere cross sections for

elastic collisions and step cross sections with activation energy for reactive interactions.

The corresponding hydrodynamic limit is based on a second-order non-equilibrium

solution of the BE obtained in a previous paper, using the Chapman-Enskog method

in a chemical regime for which the reactive interactions are less frequent than the

elastic collisions. The resulting hydrodynamic governing equations are the reactive

Euler equations, including a rate law which exhibits an explicit dependence on the

reaction heat and forward activation energy of the chemical reaction. These equations

are used to describe the spatial structure of the steady detonation wave solution and

investigate how this structure varies with the reaction heat. The response of the

steady solution to one-dimensional disturbances is studied using a normal mode linear

approach which leads to an initial value problem for the state variable disturbances

in the reaction zone. The stability problem is treated numerically, using an iterative

shooting technique to determine the unstable modes. The analysis here developed

emphasizes the influence of the chemical reaction heat and activation energy on the

linear stability spectra.
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1. Introduction

Kinetic approaches to chemically reactive fluids and direct simulations of Monte Carlo

method have been widely used in literature, with the aim of studying fluid dynamical

applications in which the chemical reaction plays a crucial role [1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12]. Starting from a kinetic approach, a consistent macroscopic picture can be

obtained in terms of the corrected balance equations that include the non-equilibrium

effects due to the chemical reaction. In particular, in view of practical applications

dealing with reactive fluids, the kinetic approach can help to understand and describe

the chemical reaction that plays a crucial role in the process. On the other hand, the

propagation of detonation waves in gases is a problem of great practical importance, due

to the related engineering applications, such as propulsion devices, power generation,

safety and military issues, explosive welding, hazard prevention and hard rock mining,

among others.

Motivated by this background, the main purpose of the present paper is to

study the propagation and linear stability of steady detonation waves, analyzing the

macroscopic reactive balance laws derived from a simple kinetic modelling of a binary

reactive mixture. Starting from the Boltzmann equation for the gaseous mixture with

bimolecular chemical reaction of symmetric type, a closure procedure of the balance

laws is performed in a chemical regime for which the reactive interactions are less

frequent than the elastic collisions. The resulting hydrodynamic equations include some

non-equilibrium corrections, namely those of the reaction rate due to the heat of the

chemical reaction. The approach permits to perform an interesting analysis of the

stability problem with emphasis on the influence of the reaction heat on the stability

spectrum.

There exists a rather vast bibliography on the detonation subject, covering either

mathematical and physical modelling approaches or numerical and experimental studies.

The interested reader is addressed to the papers [9, 12, 13, 14, 15, 16, 17, 18, 19, 20],

for example, and to the books [21, 22, 23, 24] for an exhaustive account of the

literature on this subject. Concerning the investigation of the detonation problem

within kinetic theory, the existing literature covers essentially the kinetic modelling

of the one-dimensional steady propagating wave, and give some contributions at the

level of analytical predictions and numerical simulations [4, 9, 12, 19].

Most widely used detonation models include the Chapman-Jouguet and the

Zeldovich, von Neumann and Doering (ZND) idealized theories [21, 22], the Wood-

Kirkwood non-ideal theory [25, 26, 27] as well as the detonation shock dynamics

asymptotic theory [28]. In particular, the ZND theory gives a good and accepted

description of the dynamics of a steady one-dimensional planar detonation wave in

a gaseous explosive mixture, with a single-step Arrhenius rate law for an exothermic

chemical reaction. The structure of the detonation wave consists of an inert shock

followed by a finite reaction zone where the chemical process takes place. The flow is

one-dimensional and steady in the shock attached frame. The mathematical analog is
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the hyperbolic set of the reactive Euler equations and the related Rankine-Hugoniot

conditions.

Complexities in the reactive system, such as an endothermic chemical reaction, a

mole change reaction, two chemical reactions with one being reversible, transport effects

or another dissipative process, can produce the so-called pathological-type detonation

[22]. Typically, the system involves two consecutive chemical reactions with the first

one being exothermic and the second one endothermic. There exist some examples

of pathological detonations in astrophysics, related to nuclear detonation waves in the

stellar material of white dwarf stars [29, 30].

Experimental and computational studies show that the detonation tends to be

structurally unstable and that the instabilities propagate in a quasi-periodic oscillating

manner [21, 23]. The reaction zone behind the shock is extremely sensitive to small rear

boundary perturbations and, as a result, the detonation wave presents, in general, an

unstable configuration.

The dynamics of such propagating instabilities can provide useful information about

the unsteady structure and elucidate about the detonation mechanism. The usual first

step is a hydrodynamic stability analysis of the steady detonation solution. Assuming

that the perturbations are small, a linearized theory is used to describe their evolution

and determine the instability modes. The results of this linear analysis are relevant for

detonation waves in channels or square tubes and give important information about the

growth rate of the instabilities and the influence of the detonation parameters in the

instability behaviour [13, 31].

An extensive and valuable study of the linear stability problem was developed

by Erpenbeck using a Laplace transform approach and a numerical technique based

on the Nyquist-winding theorem to determine the number of unstable solutions

[32, 33]. The works by Abouseif and Toong [13, 14], Buckmaster, Ludford and

Neves [34, 35] and Majda an Rosales [36] gave important analytical and numerical

contributions for the physical interpretations of the instability behaviour. A further

relevant contribution to the linear detonation stability was given by Lee and Stewart

in paper [37], using a normal mode approach and a numerical shooting technique to

find the unstable modes. An extensive literature based on similar approaches and

using rather sophisticated numerical techniques, include, among others, the papers

[17, 18, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47] for ZND detonation, and [17, 29, 30, 48]

for pathologic-type detonations. Modern computer facilities allowed to produce several

experimental and computational studies, as for example those of papers [15, 16, 49, 50].

Although a linear stability analysis can describe some relevant physical effects of

the perturbations [13], it requires that the steady character of the detonation wave be

only slightly perturbed and therefore its validity is restricted to the initial stage of very

small amplitude oscillations. A non-linear stability analysis is needed for detonation

waves whose structure is very far from that of the steady wave. A typical case is the

curved detonation wave propagating through an unconfined material, for which more

real effects of multi-dimensional instabilities are observed, such as bifurcations to multi-
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mode and irregular oscillations, and “diamon” or “fish scale” patterns are produced

[23, 31, 51].

Concerning the detonation stability analysis in the context of the kinetic theory for

chemically reacting gases, the hydrodynamic linear stability of steady detonation waves

has been investigated for the first time in paper [10]. The emphasis of paper [10] is

on the mathematical formulation and solutions to the stability problem in the kinetic

frame, for a quaternary gas mixture with a reversible bimolecular chemical reaction.

Some numerical results and visualizations are shown regarding the time evolution of

the eigenfunctions for both instability and stability pictures as well as at conditions

of neutral stability. However, the considered kinetic modelling does not include the

effects of the reaction heat neither those of the activation energy, so that the stability

picture remains incomplete. Starting from the kinetic formulation proposed in [10],

the steady detonation solution characterized in paper [19] is revisited here, with the

aim of investigating its linear stability. The main objective is to develop a detailed

hydrodynamic stability analysis, and investigate the influence of the reaction heat and

activation energy on the stability behaviour. A first contribution in this direction was

presented in paper [20], where some numerical simulations have been shown about the

structure of the detonation wave and its linear stability. This preliminary stability

analysis is expanded and detailed in the present paper, exploiting the non-equilibrium

effects due to the heat of the chemical reaction. Both the mathematical formulation

of the stability problem and the numerical method of solution are explained in detail.

Some numerical simulations are performed and the results are presented and discussed.

The paper is organized as follows. The governing equations of the reactive flow are

presented in section 2, where the relevant chemical kinetics properties are summarized

and the macroscopic analog for the detonation problem and related stability analysis

is explained. In section 3, the steady state one-dimensional solutions are obtained

and interpreted. The normal mode stability analysis is treated in section 4, where the

stability problem for the eigenfunctions and growth rate perturbation is deduced, and

then the numerical technique used in the simulations is described. In section 5, some

representative computational results for the stability behaviour in the parameter space

are given and discussed. Finally, the conclusions and some closing remarks, together

with some ideas for future work, are presented in section 6.

2. Governing equations of the reactive flow

The detonating gaseous mixture considered in this paper is an idealized system described

by the reactive Boltzmann equation proposed in [6] for a binary gaseous mixture

undergoing a single reversible chemical reaction of symmetric type. The model reactive

system is based on some simplifying assumptions and the theoretical treatment of the

nonequilibrium effects is focused both on the deviations caused by the chemical reaction

and on the influence of the reaction heat. The mathematical and chemical features of

the kinetic modelling are briefly summarized in the present section, in view of describing
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steady detonation wave solutions and studying their linear stability.

2.1. Chemical kinetics framework

Consider a binary gaseous mixture whose constituents, A and B, have equal molecular

mass m and binding energies EA and EB. Vibrational and rotational molecular degrees

of freedom are not taken into account. The gas particles can undergo binary elastic

collisions as well as collisions with chemical reaction according to the single reversible

symmetric law A + A ⇋ B + B. At the mesoscopic scale, the thermodynamical

behaviour of the mixture is modelled by the following system of Boltzmann equations

for the constituent distribution functions fα(x, cα, t), with x, cα ∈ R3 and t ∈ R+,

∂fα
∂t

+
3∑

i=1

c
α
i

∂fα
∂xi

= QE
α +QR

α , α = A,B, (1)

where QE
α and QR

α are the elastic and reactive collision terms, respectively, given by

QE
α =

B∑

β=A

∫ (
f ′

αf
′

β − fαfβ
)
d
2(gβα · kβα) dkβαdcβ, (2)

QR
α =

∫ [
fβf

′

β − fαf
′

α

]
σ⋆
α (gα · kα) dkαdc

′

α. (3)

In expression (2), the primes denote post collisional distribution functions, d the elastic

particle diameter, gβα the relative velocity between the α and β particles, kβα the unit

collision vector and dkβα the element of solid angle for elastic collisions. In expression

(3), the primes are used to distinguish two identical particles that participate in the

reactive event, kα is the unit collision vector, dkα the element of solid angle for reactive

collisions, and the term σ⋆
α is the differential reactive step cross section,

σ⋆
α = d

2

r for γα > ε⋆α and σ⋆
α = 0 for γα < ε⋆α, (4)

where dr is reactive diameter (dr = sd, with s being the steric factor), γα the relative

translational energy, and ε⋆α the forward (α = A) and backward (α = B) activation

energy. Parameters γα and ε⋆α are expressed in units of the mixture thermal energy, kT ,

with k being the Boltzmann constant and T the temperature of the mixture,

γα =
mg2α
4kT

, ε⋆A =
εA
kT

, ε⋆B = ε⋆A −Q⋆
R, Q⋆

R =
QR

kT
, (5)

where QR = 2 (EB − EA) is the reaction heat, which is identified as the difference

between the total kinetic energies of the reactants and products, QR = 1

4
m (g2A − g2B).

As stated in paper [6], the collision terms (2) and (3) are consistent with

conservation laws of mass, momentum and total energy as well as with the entropy

inequality. They assure the correct chemical exchanges and reproduce the expected form

of the mass action law. Equations (1-3) describe the mesoscopic state of the reactive

mixture and their solution, fα, accommodates the non-equilibrium effects considered in

the present modelling, in particular those due to the presence of the chemical reaction

and those caused by elastic interactions and free streaming.
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2.2. Macroscopic analog

At the macroscopic scale, the thermodynamical state of the mixture is specified by the

number densities nα of the constituents, and by the mean velocity vi and temperature

T of the mixture,

nα =

∫
fαdcα, vi =

1

n

B∑

α=A

∫
c
α
i fαdcα, T =

m

3kn

B∑

α=A

∫
(cα − v)2fαdcα, (6)

whose time-space evolution is defined by the governing balance equations

∂nα

∂t
+

3∑

i=1

∂nα

∂xi
(nαvi + nαu

α
i ) = τα, (7)

∂

∂t
(̺vi) +

3∑

j=1

∂

∂xi
(pij + ̺vivj) = 0, (8)

∂

∂t

(3
2
nkT +

B∑

α=A

nαEα +
1

2
̺v2

)
+

3∑

i=1

∂

∂xi

{
qi + pijvj

+
(3
2
nkT +

B∑

α=A

nαEα +
1

2
̺v2

)
vi

}
= 0. (9)

Above, uαi is the diffusion velocity of the α-constituent, and ρ, pij, qi are the mass

density, pressure tensor and heat flux of the mixture. Moreover, the production term

τα on the r.h.s. of equation (7) represents the reaction rate of the constituent α and

equation (7) represents itself the rate law of the considered reactive system. As it is well

known, equations (7-9) become closed when a suitable hydrodynamic closure procedure

is applied, in agreement with an appropriate chemical regime, and the constitutive

equations for uαi , pij , qi and τα are derived.

Typically, when studying the propagation of steady detonation waves starting from

a kinetic frame, an Eulerian regime with fast chemical reaction is assumed. This has

been considered in papers [4] and [10], for example, where the assumed chemical regime

is defined by the Maxwellian distributions of mechanical equilibrium and the elastic and

reactive time scales are of the same order. The only non-equilibrium effect described in

this regime is the relaxation of the mixture towards a chemical and thermal equilibrium

state. The steady detonation solutions of the above cited papers reproduce the typical

behaviour of the wave in the vicinity of the final equilibrium state. Conversely, in the

more recent paper [19] by the same authors of the present work, another chemical regime

has been considered in order to describe the complete reactive process, starting from its

early stage and going towards the equilibrium final state.

In view of the steady detonation problem and linear stability analysis of the next

sections, the hydrodynamic closure procedure proposed and explained in paper [6] for

the present kinetic modelling is here adopted. The details of the closure procedure, based

on the asymptotic method of Chapman-Enskog and a second order Sonine expansion

of the distribution functions, are here omitted for sake of brevity. They are given
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in paper [6] and revisited in the book [8]. Accordingly, a chemical regime of slow

reactive process is here considered, for which the elastic collisions are more frequent

than reactive interactions and elastic time scale is smaller than the reactive one. In

this case, the elastic collisions drive the distribution functions towards local quasi-

equilibrium Maxwellians, whereas the reactive interactions tend to disturb the local

quasi-equilibrium distributions. After an appropriate scalling of the kinetic equations

(1) consistent with the adopted chemical regime, and solving the integral equations for

the expansion corrections, the second-order non-equilibrium distribution functions have

been explicitly obtained in paper [6], as a perturbation of the Maxwellian distributions

fM
α , in the following form

f̃α = fM
α

[
1 + ω

(
15

8
− 5m(cα − v)2

4kT
+
m2(cα − v)4

8k2T 2

)]
, (10)

with the deviation factor ω given by

ω = x2A

(
d

dr

)2 Q⋆
R

8

(
Q⋆

R +Q⋆
Rε

⋆
A − ε⋆ + 2ε⋆2A − 1

)
e−ε⋆

A , (11)

where xA=nA/n is the concentration of the A-constituent. The above non-equilibrium

distributions f̃α of expression (10) exhibit an appreciable influence of the reaction heat

Q⋆
R and forward activation energy ε⋆A, so that the departure from the equilibrium state

can be evaluated in terms of these chemical kinetic parameters, in particular for both

exothermic (Q∗

R < 0) and endothermic (Q∗

R > 0) chemical reactions.

The hydrodynamic closure of equations (7-9) is achieved when the non-equilibrium

distributions f̃α given by expressions (10-11) are used to evaluate the reaction rate τα,

constituent diffusion velocities uαi , mixture pressure tensor pij and heat flux qi, and

the corresponding constitutive equations are derived. The reactive governing equations,

resulting from this hydrodynamic closure of equations (7-9), define the macroscopic

mathematical analog for the considered reactive mixture with a single reversible chemical

reaction. The constitutive laws obtained with the non-equilibrium distributions (10-11)

for the constituent diffusion velocities, mixture heat flux and pressure tensor correspond

to a non-diffusive, non-heat conducting and non-viscous reactive mixture, namely

uαi = 0, qi = 0, pij = pδij , i, j = 1, 2, 3, α = A,B, (12)

where p is the mixture pressure, with p = nkT , and δij represents the Kronecker delta.

Moreover, the reaction rate τα is explicitly given by

τB = −τA, τA = −4n2

Ad
2

r

√
πkT

m
e−ε⋆

A

[
1 + ε⋆A +

x2A
128

(
d

dr

)2
Q⋆

R

×
(
1 +Q⋆

R +Q⋆
Rε

⋆
A + ε⋆A − 2ε⋆2A

) (
4ε⋆3A − 8ε⋆2A − ε⋆A − 1

)
e−ε⋆

A

]
. (13)

This form of the reaction rate reproduces an Arrhenius-type chemical kinetics and

exhibits the contribution of both the reaction heat Q∗

R and activation energy ε⋆A. It

will be crucial for the study developed in sections 3 and 4 about the steady detonation

and linear stability. The closed set of the governing balance equations are obtained
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from equations (7-9) and constitutive laws (12-13). In the particular case of one-space-

dimensional evolution (x-direction), they can be written in the form

∂nα

∂t
+

∂

∂x
(nαv) = τα , α = A,B, (14)

∂v

∂t
+

1

̺

∂p

∂x
+ v

∂v

∂x
= 0, (15)

∂p

∂t
+ v

∂p

∂x
+

5

3
p
∂v

∂x
+

2

3

B∑

α=A

Eατα = 0, (16)

where v represents now the x-component of the mixture velocity. The above set of

governing equations can be written in a more conservative form, substituting the two

evolution equations (14) by the equivalent set

∂nA

∂t
+

∂

∂x
(nAv) = τA , (17)

∂

∂t
(nA + nB) +

∂

∂x

[
(nA + nB)v

]
= 0, (18)

where equation (18) is a conservation equation for the total number density nA + nB.

The governing equations are the reactive Euler equations corrected with the effects

of the reaction heat, which result to be appropriate for the applications of the next

subsections. They have been obtained with the chemical kinetic approach described

in this section. In particular, the detailed form of the reaction rate τα, expressed in

equation (13), retains the kinetic origin of the considered modelling.

3. Steady detonation wave solutions

In this section, the basic understanding of the detonation phenomena is presented

and the main aspects of the steady detonation dynamics are recalled, with the aim

of investigating the linear stability of the steady wave solution. A first and preliminary

attempt of the present study, regarding the structure of the steady detonation wave,

has been presented by the authors in paper [19].

The explosive mixture consists in the binary reactive system of section 2, involving

a reversible chemical reaction of symmetric type, which can be either of exothermic or

endothermic type. The study is performed for both cases of ZND and pathological-

type detonation waves [21, 22]. The former corresponds to a detonation wave which

propagates with velocity greater or equal to the Chapman-Jouguet velocity and is

sustained by the energy release of an exothermic chemical reaction. Thus, once initiated,

the ZND detonation does not need any external support to sustain its further evolution.

The latter pathological-type detonation wave propagates with velocity greater than

the Chapman-Jouguet speed and occurs when an endothermic chemical reaction takes

place or other dissipative effects are present in the final stage of the chemical process.

Typically the system involves two consecutive irreversible chemical reactions with the

first one being exothermic and the second one endothermic [29, 30]. However, other

complexities in the reactive system, in particular more than one reversible reaction,
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can produce a pathological detonation, as explained in references [22] and [30], for

example. In the present analysis, the model reactive system involves one chemical

reaction only, which can be either of exothermic or endothermic type. Therefore, the

proposed modelling can reproduce the complete configuration of the ZND solution as

well as the final endothermic stage of the pathological-type detonation solution.

3.1. Mathematical formulation of the steady detonation problem

The reactive governing equations referred to the one-space-dimension and written in

the more conservative form (15-18) are used in this section to model a detonating

binary mixture undergoing the reversible chemical reaction A + A ⇋ B + B. It is well

known that such type of hyperbolic equations admit steady traveling detonation wave

solutions which describe a combustion regime in which a strong planar shock wave ignites

the mixture and the burning keeps the shock advancing and proceeding to equilibrium

behind the shock. The ZND idealized model of the detonation wave gives a good and

accepted description of such detonation wave solutions. From the mathematical point

of view, the ZND model is based on the reactive Euler equations that are simple in

form and capable of describing the relevant chemical kinetics of the detonation wave.

The configuration of the ZND wave consists of a leading, planar, non-reactive shock

wave propagating with constant velocity, followed by a finite reaction zone where the

chemical reaction takes place. See figure 1. The shock wave is assumed to propagate in

Figure 1. ZND configuration of a steady detonation wave profile for the mixture

pressure.

the x-direction, from left to right, with velocity D. In the steady frame attached to the

shock wave, the reaction zone remains from x0 to xF , where x0 represents the location of

the shock front. The state just behind the shock, located at x=x0, is the Von Neumann

state N , where the chemical reaction is triggered, and the one located at x = xF , at the

end of the reaction zone, is the final state F , where the chemical reaction reaches the

equilibrium. Ahead of the shock front, that is for x > x0, the quiescent mixture is at

rest in its initial state I, where the rate of the chemical reaction is negligible. Inside the

reaction zone, for xF < x < x0, the mixture evolves through their intermediate states

R of partial reaction until reaching the final state. Since the entire wave configuration
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is steady in the shock attached frame, a new reference frame moving with the shock is

considered and the normalized steady variable xs is introduced (see figure 1)

xs =
x−Dt

Dtc
, tc =

1

4n+d
2

√
m

πkT+
, (19)

where the superscript + refers to the initial state I and tc is a characteristic time.

For sake of simplicity, the normalized steady variable xs will be still denoted with the

plane symbol x. Governing equations (15-18) are then transformed to the steady frame

attached to the shock wave through the transformation (19). Writing x in place of xs,

they assume the form

d

dx

[
(v −D)nA

]
= DtcτA, (20)

d

dx

[
(v −D) (nA + nB)

]
= 0, (21)

d

dx

[
(v −D) ̺v + nkT

]
= 0, (22)

d

dx

[
(v −D)

(
3

2
nkT +

̺v2

2
+ EAnA + EBnB

)
+ nkTv

]
= 0, (23)

where τA is given by expression (13).

3.2. One-dimensional steady states

The spatial structure of the ZND detonation wave is determined by means of the

Rankine-Hugoniot conditions, connecting the fluxes of the macroscopic quantities

preserved across the shock front, together with the rate law, describing the advancement

of the chemical process in the reaction zone. Accordingly, the conservative ODEs (21-23)

are integrated across the shock front, between the quiescient initial state (n+

A, n
+

B, 0, T
+)

and an arbitrary state (nA(x), nB(x), v(x), T (x)), x ∈ [xF , x0], within the reaction zone,

leading to the Rankine-Hugoniot conditions, namely

nB (nA) =

(
n+

B + n+

A

)
D

D − v
− nA , (24)

T (nA) =
(D − v) (̺+Dv + n+kT+)

n+kD
, (25)

v (nA) =
2Q∗

RnA+3̺+D2−5n+kT+

8̺+D
(26)

+

√
(2Q∗

RnA+3̺+D2−5n+kT+)2−32̺+Q∗

RD
2
(
nA−n+

A

)

8̺+D
.

The rate law results from equation (20) in the form

dnA

dx
=

DtcτA

v −D + nA
dv
dnA

, (27)

and gives the x-evolution of the constituent number density nA in the reaction zone,

specifying the chemical composition of the explosive mixture. Equations (24-27), with
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D and Q∗

R as parameters, characterize any arbitrary state within the reaction zone in

dependence of the initial state. When a negative value of Q∗

R is considered, the chemical

reaction is exothermic and the structure of the resulting wave solution reproduces the

ZND configuration. Conversely, when a positive value of Q∗

R is considered, the chemical

reaction is endothermic and the structure of the resulting wave solution replicates the

configuration of the last stage of the pathological-type detonation. The methodology

for solving the above equations (24-27) comprises the following two steps.

Step 1. The von Neumann state N , just ahead the shock, is characterized by equations

(24-26) together with a further jump condition of Rankine-Hugoniot type, which

is consistent with the still unreacted character of the von Neumann state. This

RK-condition is obtained by integrating across the shock the further conservative

ODE resulting from the rate equation (27) with τA settled equal to zero.

Step 2. All intermediate states inside the reaction zone (xF < x < x0), as well as the

final state at the end of the reaction zone (x = xF ), are obtained by integrating

the rate equation (27) with initial condition at the von Neumann state, and then

solving the algebraic equations (24-26) for the considered state. In particular,

the equilibrium final state is obtained when the above referred integration gives a

vanishing value for the reaction rate τA.

This problem is numerically solved for both types of exothermic and endothermic

chemical reaction, and some simulations are performed for one elementary reaction of

the chain branching of a theoretical detonating mixture. The detonation velocity D and

the kinetic and thermodynamical reference input parameters are assumed as follows

D=1700ms−1, n+

A = 0.35mol/l, n+

B = 0mol/l,

m = 0.01Kg/mol, T+ = 298.15K, EA = 2400K, ε⋆A = 6. (28)

-100 -80 -60 -40 -20 0
x

6000

6500

7000

7500

8000

p

QøR=-2

QøR=-1
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Figure 2. Steady detonation profile for the mixture pressure p. Left: exothermic

chemical reaction with Q⋆
R

= −1 (solid line) and Q⋆
R

= −2 (dashed line). Right:

endothermic chemical reaction with Q⋆
R
= 1 (solid line) and Q⋆

R
= 2 (dashed line).
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Figure 3. Steady detonation profile for the mixture number density n. Left:

exothermic chemical reaction with Q⋆
R
= −1 (solid line) and Q⋆

R
= −2 (dashed line).

Right: endothermic chemical reaction with Q⋆
R

= 1 (solid line) and Q⋆
R

= 2 (dashed

line).
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Figure 4. Steady detonation profile for the mixture mean velocity v. Left: exothermic

chemical reaction with Q⋆
R

= −1 (solid line) and Q⋆
R

= −2 (dashed line). Right:

endothermic chemical reaction with Q⋆
R
= 1 (solid line) and Q⋆

R
= 2 (dashed line).
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Figure 5. Steady detonation profile for the mixture temperature T . Left: exothermic

chemical reaction with Q⋆
R

= −1 (solid line) and Q⋆
R

= −2 (dashed line). Right:

endothermic chemical reaction with Q⋆
R
= 1 (solid line) and Q⋆

R
= 2 (dashed line).

Figures 2, 3, 4 and 5 show some representative steady detonation profiles for the mixture

pressure p, number density n, mean velocity v and temperature T , respectively, in

dependence of the algebraic distance behind the shock wave. The left frames of figures

2, 3, 4 and 5 refer to two exothermic chemical reactions with reaction heat Q∗

R = −2 and
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Q∗

R = −1. The right frames refer to two endothermic chemical reactions with reaction

heat Q∗

R = 1 and Q∗

R = 2. The p, n and v profiles of figures 2, 3 and 4 show that the

steady detonation solution is a reactive rarefaction wave for an exothermic reaction (left

frames) and a reactive compression wave for an endothermic reaction (right frames).

On the other hand, one can observe in figure 5 that the temperature increases for an

exothermic chemical reaction (left frame) and decreases for an endothermic reaction

(right frame), as expected. The left frames reproduce the typical configuration of an

ZND steady detonation wave arising in a real explosive system with one exothermic

chemical reaction [21, 22]. On the other hand, the right frames replicate the essential

features of the dynamics of the endothermic stage of a typical chain-branching reactive

system with pathological detonation, more specifically for what concerns the branch

between the so called pathological point and the strong final state [21, 22, 29, 30]. The

representation of the wave structure is supplemented with the variation of the reaction

zone thickness with the reaction heat Q∗

R, reported on table 1. One can extract from this

table that the extent of the reaction zone decreases when the reaction heat Q∗

R increases.

This is an expected feature, in agreement with other numerical and experimental works,

see paper [41], for example, for what concerns exothermic reactions.

Table 1. Variation of the reaction zone thickness with the reaction heat Q∗

R
, in the

range −2 ≤ Q∗

R
≤ 2. Left: exothermic chemical reaction (ZND detonation). Right:

endothermic chemical reaction (final stage of the pathological-type detonation).

Q∗

R
reaction zone thickness

−2 4584.52

−1.75 4459.53

−1.5 4354.21

−1.25 4261.35

−1 4177.18

−0.5 4026.60

Q∗

R
reaction zone thickness

0 3891.85

0.25 3828.57

0.5 3767.36

1 3649.74

1.5 3536.66

2 3426.36

4. One-dimensional linear stability analysis

It is well known from theoretical studies as well as from experimental investigations and

numerical simulations, that the ZND detonation wave with an extended reaction zone

can be dynamically unstable to small perturbations and exhibit a significant unsteady

structure, especially in gaseous mixtures [13, 21, 22, 29, 32, 37, 38, 43, 48, 49, 50]. This

means that the steady solution can degenerate into an oscillatory solution in the long-

time limit. Typically, it results to be very difficult to determine, analytically or even

numerically, such oscillatory solution, because it exhibits complex three-dimensional

non-linear perturbations.

The standard preliminary step of a formal treatment is a hydrodynamical stability

analysis of the steady detonation solution. This consists in assuming that a small
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rear boundary perturbation is instantaneously assigned and induces a deviation on

the shock wave position, giving rise to small perturbations on the state variables,

which propagate in the reaction zone. The steady configuration of the detonation

wave solution is then affected and the evolution of the state variables perturbations

in the reaction zone determines the stability of the steady detonation solution. In fact,

when any perturbation grows with time, the steady solution becomes hydrodynamically

unstable, and if all perturbations decay in time, the steady solution becomes stable.

The stability analysis provides important information about the instability modes,

growth rate perturbations, neutral stability boundaries and other features of the stability

behaviour in the parameter space.

From the mathematical point of view, the hydrodynamical stability problem

requires the transformation to the perturbed shock attached frame, and then the

linearization of the governing equations and Rankine-Hugoniot shock conditions around

the steady detonation solution. This will be done in the next subsection, adopting the

normal mode approach proposed by Lee and Stewart in paper [37] and then followed by

several authors, see for example paper [18] and the references therein cited.

4.1. Formulation of the linear stability problem

The hydrodynamical stability of the steady detonation solution characterized in terms

of the Rankine-Hugoniot conditions (24-26) and rate law (27), as described in section

3, is investigated here adopting a normal mode approach to determine one-dimensional

instability modes. The linear stability problem is formulated as an initial-boundary

value problem in terms of the stability differential equations, with initial conditions at

the von Neumann state and an additional closure boundary condition at the final state.

Stability equations. The one-dimensional closed governing equations (14-16) are transfor-

med first to the perturbed wave coordinate x, which measures the distance from the

perturbed shock, namely

x = xℓ − ψ(t), with ψ(t) = Dt + ψ̃(t), (29)

where xℓ is the laboratory frame coordinate, D the constant velocity of the unperturbed

shock, ψ̃(t) the displacement of the shock wave from the unperturbed position due to

a small perurbation, and ψ(t) the location of the perturbed wave. In the new shock

attached coordinate system, the instantaneous position of the perturbed shock wave is

x = 0 and its velocity is D(t) = D + ψ̃ ′(t). Further, a normal mode expansion with

exponential time dependent perturbations is assumed for the steady state variables,

z(x, t) = z∗(x) + eat z(x), ψ(t) = ψ eat, a, ψ ∈ C, (30)

where z = [nA nB v p]T is the state vector, z∗(x) indicates the one-dimensional

steady solution, z(x) is the vector of complex eigenfunctions representing the unknown

spatially disturbances, ψ is a complex disturbance amplitude parameter and a is the

complex eigenvalue, with Re a and Ima being the disturbance growth rate and frequency,
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respectively. Since the assigned perturbations are small, the transformed governing

equations in the perturbed shock frame are linearized about the steady solution z∗(x), by

means of the expansions (30). Performing a further normalization of the state variables

with respect to the complex amplitude parameter ψ, namely w = z/ψ, one obtains the

evolution equations in the wave coordinate x, for the complex disturbances. Rewriting

z instead of w, the resulting equations, for x ∈ ]xF , 0[, are

Danα + (v∗ −D)
dnα

dx
+
n∗

α

dx
(v −Da) +

dv∗

dx
nα + n∗

α

dv

dx
= τα, α = A,B, (31)

̺∗Dav +
dp

dx
+ ̺∗

dv∗

dx
(v −Da) + (v∗ −D)

dv∗

dx
̺+ ̺∗ (v∗ −D)

dv

dx
= 0, (32)

Dap+
5

3

(
p∗
dv

dx
+ p

dv∗

dx

)
+ (v∗ −D)

dp

dx
+ (v −Da)

dp∗

dx
=
Q∗

RDtcτA
3

, (33)

with τα being the linearized reaction rate, given by

τB = − τA,

τA = − 4d2r

√
πk

m
e−ǫ⋆

[(
2n∗

AnA

√
T ∗ +

p+ n
n∗
p∗

2n∗k
√
T ∗

n∗

A
2

)(
1 + ǫ⋆ + Γx∗A

2
)

(34)

+ 2
√
T ∗

n∗

A

n∗

3

(−n∗

AnB + n∗

BnA)

]
,

where T ∗ = kn∗p∗ is the steady mixture temperature and Γ is given by

Γ =
1

128

(
d

dr

)2

Q⋆
R

(
1 +Q⋆

R +Q⋆
Rε

⋆
A + ε⋆A − 2ε⋆2A

) (
4ε⋆3A − 8ε⋆2A − ε⋆A − 1

)
e−ε⋆

A. (35)

Equations (31-33) constitute the stability equations for the present modelling, giving

the spatial evolution of the complex perturbations z(x) in the reaction zone, from the

perturbed shock position x = 0 to the equilibrium final state x = xF . They consti-

tute a system of eight first-order homogeneous linear ordinary differential equations

with spatially varying coefficients, for the real and imaginary parts of the complex

perturbations.

Initial conditions. The initial conditions to be joined to the stability equations (31-

33) are the linearized perturbed Rankine-Hugoniot relations which connect the value

of the disturbances at the von Neuman state to their zero value ahead the perturbed

shock. They are provided by the Rankine-Hugoniot relations (24-26) together with the

further jump condition for the von Neuman state obtained as explained in Subsection

3.1. After transforming to the wave coordinate, linearizing around the steady state and

normalizing with respect to ψ, the resulting jump conditions at the von Neuman state

are obtained in the form

nα(0) =
(n∗

α − n+
α ) a− n∗

αv(0)

v∗ −D
, α = A,B, (36)

v(0) =
3̺+v∗2 + 3

2
(p∗ − p+)− 3

2
D̺+v∗ + 2EAn

+ +Q∗

Rn
+

B

−̺∗ (v∗ −D)2 + 5

2
p∗

a , (37)

p(0) = −̺+av∗ − (v∗ −D) ̺∗v(0) . (38)



Dynamics and stability of detonation waves 16

Equations (36-38) give the initial conditions for the stability equations (31-33). However,

the stability system is not closed, since the complex growth rate a is involved.

Closure condition. The required closure condition, which gives the dispersion relation

for the normal modes (30), is the acoustics radiation condition adopted in many previous

works on detonation stability as, for example, in papers [10, 18, 34, 37, 41, 42, 47]. Such

condition states that the inherent instability of the detonation wave solution results

exclusively from the interplay between the leading shock and the reaction zone and can

not be affected by further disturbances traveling towards the shock from a great distance

from the reaction zone. Thus the closure condition is a boundary condition assigned at

the equilibrium final state as

v(xF ) + a =
−1

γ̺∗eqc
∗

eq

p(xF ), (39)

where γ is the ratio of specific heats, c∗eq and ̺∗eq the isentropic sound speed and gas

density at the equilibrium final state, for x = xF . Equation (39) is usually regarded

as the necessary condition to define the dynamics of the complex growth rate a. It

was originally derived in paper [34] through an acoustic analysis performed at the end

of the reaction zone. Important discussions about the closure condition and detailed

derivations can be found in papers [18, 37, 42], for example. These papers show that

the closure condition can be alternatively derived following two distinct approaches,

one being physically based on an accurate acoustic analysis and another one being

justified by a boundedness condition which requires that the asymptotic structure of

the perturbed solution is independent of elementary unbounded solutions. Different

closure conditions can be imposed to assure the determinacy of the stability problem,

as for example a piston-type condition which requires the vanishing of the velocity

perturbation at a piston located far downstream of the shock wave. However, as

discussed in paper [42], the further interaction of the piston with the shock wave would

alter the instability spectrum leading to different stability results in comparison to those

coming from the intrinsic mechanism between the shock wave and the reaction zone.

Concluding this subsection, the one-dimensional linear stability problem of the steady

detonation is formulated in terms of the complex disturbances z(x) and complex growth

rate a, by means of the ordinary differential equations (31-33) for x ∈ ]xF , 0[, with

initial conditions (36-38) at x = 0 and closure condition (39) at x = xF . This problem

is treated numerically as described in the next subsections.

4.2. Discussion on the numerical scheme

The stability problem is treated numerically with the aim of obtaining an extensive

investigation of the stability spectrum for the eigenfunction perturbations z and

eigenvalue perturbation parameter a, in terms of the parameters characterizing the

steady solution. For a given set of thermodynamical and chemical parameters describing

the steady detonation solution, the disturbances z(x) and perturbation parameter a are
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determined applying an iterative shooting technique based on the numerical method

proposed by Lee and Stewart in paper [37]. Accordingly, a trial value of a in a fixed

bounded domain R of the complex plane is considered and then equations (31-33) are

integrated in the reaction zone ]xF , 0[ with initial conditions (36-38) at x = 0, using

a fourth order Runge-Kutta routine. The solution z(x), x ∈ [xF , 0], obtained for the

considered trial value of a is then specialized for x = xF to inquire if the boundary

condition (39) is verified. However, for a given steady detonation solution, an arbitrary

value of a does not satisfy the closure condition (39) and thus it does not produce

a solution of the stability problem. To overcome this difficulty, the residual function

H (a), defined from the closure condition (39) by the expression

H (a) = v(xF ) + a+
1

γ̺∗eqc
∗

eq

p(xF ) , a ∈ R, (40)

is estimated at each trial value of a, and only those solutions z(x) obtained for values of

a for which the residual function H (a) vanishes within a given tolerance are accepted.

The search for trial values of the complex parameter a constitutes the key problem

in the stability analysis. There exist some numerical techniques to search for these

values, as for example those used by Erpenbeck in papers [32, 33] and by Lee and

Stewart in paper [37]. In the present study, a different numerical scheme is proposed,

recovering the Erpenbeck’s idea of counting the number of zeros of H in a fixed domain

of the complex plane, combined with the sooting method proposed by Lee and Stewart.

First, a confidence domain R in the complex plane, containing at least one zero of

H , is found and successively refined in order to reduce the computational effort in

the next calculations. Then, a three-dimensional plot of |H | is constructed in the

considered refinement of R and the zeros of H are finally identified. In Subsection 4.3,

the numerical scheme is explained in detail.

4.3. Numerical solution and technique

Instability modes correspond to a positive growth rate Re a, so that the zeros of the

residual function H are serached in a domain R on the right half of the complex plane.

On the other hand, since these modes occur in conjugate pairs, it is enough to choose a

domain R in the upper-right quarter of the complex plane.

The numerical method proposed in this paper provides a rapid and efficient

procedure to investigate if the domain R contains any zero of H , meaning that the

corresponding detonation solution is unstable. Moreover, the effective determination of

the approximate locations of the zeros of H in the domain R, and the identification of

the corresponding growth rate Re a and frequency Im a, requires a further refinement of

the domain R as well as a three-dimensional plot of |H | in the refinement.

Preliminaries. The argument principle used by Erpenbeck in paper [33], combined with

the shooting method proposed by Lee and Stewart in paper [37], is adopted here to

count the number of zeros of the residual function H and approximate their location.
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This principle states that the difference between the number Z of zeros and P of poles

of the function H within the region R, provided that there are no zeros in its contour,

is given by

Z − P =
1

2πi

∫

ζ

H ′(u)

H (u)
du, (41)

or equivalently by

Z − P =
1

2πi

∫ ℓ

k

H ′(ζ(t))

H (ζ(t))
‖ ζ ′(t) ‖ dt, (42)

where ζ : [k, ℓ] → C is a path smooth by parts, describing the contour ofR in the positive

sense. Since H has no poles in the complex plane, one has P = 0 and the expression

(42) gives the number of zeros of H inside the region R,

Z =
1

2πi

∫ ℓ

k

H
′(ζ(t))

H (ζ(t))
‖ ζ ′(t) ‖ dt. (43)

Then, after counting the zeros of H inside the region R as well as inside successive

refinements of R, a three-dimensional plot of |H | in the last refinement allows to locate

the zeros of H .

It is important to note that the requirement that the residual function H has no

zeros in the contour of R does not constitute an actual limitation for the application of

expressions (43) in the present numerical computation. In fact, the method starts with

the residual values H (aj) for a very huge number of points aj in the contour of R. If

there is any zero of H in the contour of R then, at least one of the considered points

aj should be close enough to this zero and the location of such point allows to identify

the zero without the need of using any further strategy.

General description of the numerical technique. The starting point for the implemen-

tation of the numerical technique is the random selection of a great number of trial

values for the perturbation parameter a in the contour of a fixed domain R, say

aj , j = 1, 2, . . . , n, such that aj = ζ(tj), for j = 1, 2, . . . , n. Then the integral in

expression (43) is estimated using a rather cumbersome procedure. More in detail, the

mean value theorem gives
∫ ℓ

k

H ′(ζ(t))

H (ζ(t))
‖ ζ ′(t) ‖ dt = µ(ℓ− k), (44)

where µ represents the mean value in the interval [k, ℓ] of the function h : [k, ℓ] → R

defined by

h(t) =
H ′(ζ(t))

H (ζ(t))
‖ ζ ′(t) ‖, t ∈ [k, ℓ] . (45)

The mean value µ of h, in turn, is approximated with the mean value µS of the set

S =

{
H ′(ζ(tj))

H (ζ(tj))
‖ ζ ′(tj) ‖: j = 1, 2, . . . , n

}
. (46)
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The derivative H ′(ζ(tj)) = H ′(aj) is estimated by choosing a suitable point close

enough to aj , say bj , with Re bj = Re aj + 10−6 and Im aj = Im bj , as follows

H
′(aj) ≈

H (bj)− H (aj)

bj − aj
, j = 1, 2, . . . , n. (47)

Moreover, it is well known that if n is large enough, then the mean value of the sample

S, µS, can be treated as a statistical variable following a normal distribution with mean

value µ and standard deviation σS/
√
n, with σS being the standard deviation of S.

Therefore, the mean value µ of the function h can be inferred in a confidence interval

by the mean value µS of the sample S. The amplitude of the confidence interval can be

reduced enlarging, as much as necessary, the number n of points in the set S. In the

present paper, all the calculations have been performed with a confidence level of 99%.

Consequently, the number of zeros of the residual function H inside the domain R is

estimated as follows

ℓ− k

2πi

(
µS − 2.58

σS√
n

)
< Z <

ℓ− k

2πi

(
µS + 2.58

σS√
n

)
. (48)

Finally, the location of the zeros of H inside the domain R is determined resorting to

a three-dimensional plot of |H | in a suitable refinement of R. Even if the domain R is

small, the three-dimensional plot of |H | requires a large computational effort.

Details on the numerical technique. Having the above preliminary ideas in mind, the

numerical technique used to solve the stability problem comprises the following steps,

as described bellow.

Step 1 (choice of the domain R). A bounded domain R in the upper-right complex

plane is considered, and a path ζ : [k, ℓ] → C, which is smooth by parts and describes

the contour of R in the positive sense, is fixed.

Step 2 (selection of the trial values for a). A great number of points, say aj with

j = 1, . . . , n, are selected at random in the contour of R. For each point aj , one

determines the unique point tj ∈ [k, ℓ] such that aj = ζ(tj). Moreover, for each point

aj one chooses another point close enough, say bj , such that Re bj = Re aj + 10−6 and

Im aj = Im bj , for j = 1, . . . , n.

Step 3 (integration of the ODE’s). Assuming each point aj and bj , for j = 1, . . . , n,

as a trial value for the perturbation parameter a, the differential equations (31-33) are

integrated with initial conditions (36-38), using a fourth order Runge-Kutta routine.

Step 4 (evaluation of the residual function). The solutions z(x), x ∈ [xF , 0], obtai-

ned in the previous step for the considered trial values aj and bj are used to evaluate the

residual function H defined by expression (40) at each point aj and bj , for j = 1, . . . , n.

Step 5 (estimation of the derivative of the residual function). The derivative H ′(aj)

is estimated with the quotient between the differences H (bj)− H (aj) and bj − aj , as

indicated in equation (47).
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Step 6 (mean value of the sample S). The mean value µS of the sample S introduced

in expression (46) is evaluated as the mean value of a statistical variable following a

normal distribution with standard deviation given by σS/
√
n, where σS is the standard

deviation of S

Step 7 (mean value of the function h). The mean value µ of the function h defined

by expression (45) is inferred from the mean value µS of the sample S, using a 99%

confidence interval.

Step 8 (estimation of the number of zeros of H ). The integral in equation (43) is

approximeted by the quantity (k − ℓ)µ. The number of zeros of the residual function

H within the region R is approximated using the estimation (48). The amplitude of

the interval can be controlled by the number n of points in the set S in such a way that

there is only one integer in the interval.

Step 9 (location of the zeros of H ). A three-dimensional plot of the magnitude of

the residual function H is drawn in a suitable refinement of the domain R, in order to

approximate the location of the zeros of H .

For a given set of thermodynamical and chemical parameters, and considering

certain bounds for the perturbation parameter a, the numerical method described above

has been applied to investigate the linear stability of the steady detonation solution. The

main objective is to describe the structure of unstable detonation waves and provide

more detailed information about the instability parameter regimes. Some numerical

simulations have been performed and several visualizations are provided in the next

section.

5. Results and discussion

The response of the steady detonation solution to the rear boundary perturbations,

as well as the influence of the reaction heat on the stability spectra, is investigated

numerically. The stability problem formulated in terms of perturbation parameter

a and spatially disturbances z by the ODE’s (31-33) with initial conditions (36-38)

and closure boundary condition (39) is treated with the numerical shooting technique

described in subsection 4.3. A rectangular domain R in the upper-right complex plane

is considered in order to locate the unstable modes, namely 0.001 < Re(a) < 0.02 and

0.001 < Im(a) < 0.1. This particular choice of the domain allows to avoid numerical

difficulties coming from the possible existence of a neutral mode, a = 0, as well as other

instability modes on the coordinate axes. The missing area in the domain R, namely

the region [0, 0.001]× [0, 0.1] ∪ [0.001, 0.02]× [0, 0.001], is rather small when compared

with the domain R and can be studied separately.

All the results presented here about the linear stability problem are in dimensionless

form. The numerical simulations have been performed assuming the following data for

what concerns the kinetic and thermodynamical input parameters as well as the initial
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Figure 6. Stability boundary in the Q∗
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plane, for the considered region R.

state of the fresh mixture,

D=1700 ms−1, EA = 2400 K, m = 0.01 Kg/mol,

n+

A = 0.35 mol/l, n+

B = 0 mol/l, T+ = 298.15 K.
(49)

The considered detonation velocity corresponds to an overdriven detonation. The reac-

tion heat is varying in the range −2 ≤ Q∗

R ≤ 2, allowing to investigate the stability

for both types of exothermic and endothermic chemical reactions. Furthermore, the

equilibrium final state at the end of the reaction zone is assumed to be that point

where the derivative of the number density of the constituent A reaches the value 10−6.

Figure 6 shows the stability boundary in the parameter plane defined by the reaction

heat Q∗

R and forward activation energy ε⋆A, for the considered domain R in the complex

plane, and for the selected detonation velocity. The meaning of this representation is

the following: a pair (Q∗

R, ε
⋆
A) in the stability zone indicates that for the corresponding

values of the reaction heat and activation energy, no instability modes have been found in

the domain R; analogously, a pair (Q∗

R, ε
⋆
A) in the instability zone indicates that for the

corresponding values of the reaction heat and activation energy, one instability mode,

at least, has been found in the domain R. Moreover, figure 6 reveals that for a fixed

value of the activation energy, the detonation becomes stable for larger values of the

reaction heat, whereas for a fixed value of the reaction heat, the detonation becomes

stable for smaller values of the activation energy. These results are consistent with

previous experimental works and numerical simulations, which show that increasing the

reaction heat, or decreasing the activation energy, tends to stabilize the detonation. See,

for example, the book [23] by J. H. S. Lee and the references therein cited.

A further and detailed analysis can provide a more deep description of the instability

spectrum. In particular, if one sets the forward activation energy equal to a fixed value,

namely ε⋆A = 7, and left the reaction heat Q∗

R varying in a certain range as the parameter

of interest, the numerical method allows to count the instability modes. Table 2 shows

the number of instability modes that have been found in the domain R, for different

values of the reaction heat in the range −2 ≤ Q∗

R ≤ 2. One can see that the number

of instability modes in the region R is zero when Q∗

R ≥ −0.6 and increases for lower

values of Q∗

R. These results are in agreement with the behaviour recognizable in figure
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6 as well as with the general trend described above.

Table 2. Number of the instability modes in the domainR, for fixed forward activation

energy, ε⋆
A
= 7, and different values of the reaction heat in the range −2 ≤ Q∗

R
≤ 2.

Q∗

R
number of modes

2 0

1.5 0

1 0

0 0

−0.5 0

−0.6 0

Q∗

R
number of modes

−0.62 1

−0.65 2 to 3

−0.7 4 to 7

−1 18 to 24

−1.5 57 to 70

−2 215 to 252

Table 2 suggests the idea that for the considered value of the forward activation energy,

ε⋆A = 7, the number of instability modes increases indefinitely when the reaction heat

decreases. Similar results have been obtained in some previous works [37].
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Figure 7. Three-dimensional plot of the magnitude of the residual function, |H (a)|,
in the sub-domain of R defined by Re (a) ∈ [0.00102, 0.00117], Im (a) ∈ [0.089, 0.091],

for reaction heat and forward activation energy given by QR = −0.1 and ε⋆
A
= 7.5.

Figure 7 shows a three-dimensional plot of |H (a)|, for an exothermic chemical

reaction with QR = −0.1 and forward activation energy ε⋆A = 7.5. This plot was

obtained with increased resolution in a refinement of the region R, namely in the sub-

region [0.00102, 0.00117] × [0.089, 0.091]. A very thin uniform grid is used, with step

10−4 for the imaginary part and 10−5 for the real part. The points aj of this grid

are assumed as trial values to evaluate the magnitude of the residual function and the

instability modes are obtained as the zeros of |H (a)|. Figure 7 shows the existence of

four instability modes. A thinner grid should produce accurate approximations for these

modes, however the computational effort should become rather intensive. Applying this
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Figure 8. Migration of the fundamental instability mode (lowest perturbation

frequency) for the activation energy ε⋆
A

= 7.5, as the reaction heat Q∗

R
is varied,

with a step of 10−2, from −0.5 to 0.5. Re a is scaled by the factor 103 and Im a by the

factor 10.

procedure with grids occupying different regions, one obtains the instability spectra

represented bellow, in figure 9, for different values of the reaction heat Q∗

R. In particular,

the spectrum of figure 9, for Q∗

R = −0.1, includes the four instability modes of figure 7.

Another study concerning the effect of the reaction heat on the stability behaviour is

represented in figures 8 and 9. Figure 8 shows the migration of the fundamental insta-

bility mode, corresponding to the lowest perturbation frequency (small imaginary part),

for the activation energy ε⋆A = 7.5, as the reaction heat Q∗

R is varied from −0.5 to 0.5.

This choice for the range of the reaction heat allows to follow the migration of the

fundamental mode when it passes, in particular, through the inert system characterized

by the vanishing of the reaction heat, Q∗

R = 0. Note that the plot range of figure 8 is

not contained in the domain R, already defined, but they intercept each other. In figure

8, the inert system is represented by the square labeled point, which is located on the

right-hand-side of the frame. All the points labeled with the cross correspond to Q∗

R < 0,

or ZND detonation with exothermic chemical reaction, whereas the points labeled with

the black triangle correspond to Q∗

R > 0, or pathological stage of the detonation with

endothermic chemical reaction. The mode departs from the crossed point located on

the left-hand-side of the frame, corresponding to Q∗

R = −0.5, and starts moving above

and to the right, until Q∗

R reaches its zero value at the square labeled point. This trend

means that the perturbation frequency increases and the growth rate also increases, so

that a destabilizing effect of the detonation is verified. Then, when Q∗

R increases from

its zero value to positive values, the mode moves above and to the left. This behaviour

means that the perturbation frequency increases but the growth rate decreases, so that

a stabilizing effect of the detonation is observed. Therefore one can conclude that the

endothermic reaction (Q∗

R > 0) has a stabilizing effect on the detonation wave. The

results shown in figure 8 are in agreement with those provided in other previous works

on detonation stability, see for example [17, 37, 40, 47].

The unstable spectra in the domain R are represented in figure 9, when the forward

activation energy is ε⋆A = 7.5, and the reaction heat takes the values Q∗

R = −0.1,
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Figure 9. Unstable spectra for the activation energy ε⋆
A
= 7.5, as the reaction heat

takes the values Q∗

R
= −0.1, Q∗

R
= 0, Q∗

R
= 0.1. Re a is scaled by the factor 102 and

Im a by the factor 10. Zoom at an upper-left sub-domain of R.

Q∗

R = 0, Q∗

R = 0.1. All the instability modes in the domain R are located in the

upper-left sub-domain [0.1, 0.22] × [0.79, 1] considered in figure 9. These modes were

obtained using various three-dimensional plots of |H (a)| similar to the one drawn in

figure 7. Each curve of figure 9 consists of all instability modes that have been found in

the considered searching window, for the corresponding value of the reaction heat. In

particular, the four instability modes with lower perturbation frequency shown in the

instability spectrum for Q∗

R = −0.1 are those modes previously represented in the three-

dimensional plot of figure 7. Similarly, the instability mode with the lowest perturbation

frequency shown in the instability spectrum for Q∗

R = 0 is the one represented in figure 8

at the square labeled point. Since the lower curve corresponds to the inert case (Q∗

R = 0)

and all the instability modes for both positive and negative reaction heat are located in

the area above this curve, figure 9 suggests the idea that all other possible instability

modes are located above the inert curve for Q∗

R = 0, and thus the region below the curve

corresponds to a stability region. Another interesting feature of figure 9 is the following.

Since the perturbation frequency increases with the growth rate, this figure suggests

that, for a fixed growth rate, the perturbation frequency of the inert instability mode

may be seen as the lower bound of the instability perturbation frequencies; conversely,

for a fixed perturbation frequency, the growth rate of the inert instability mode may be

seen as the upper bound of the instability perturbation frequencies.

6. Conclusion and final remarks

In the present paper, the propagation of the steady detonation wave is studied, resorting

to the Zeldovich, von-Neuman and Doering idealized model of detonation. The one-

dimensional linear stability of the steady detonation wave is then investigated, with

emphasis on the influence of the reaction heat on the instability behaviour. The study

of both the propagation and linear stability is based on the reactive Euler equations

derived from the Boltzmann equations and closure procedure proposed in paper [6] for
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a binary mixture with reversible reaction of symmetric type. Assuming a chemical

regime of slow reactive process, the Euler equations obtained with the kinetic approach

incorporate explicit contributions of the reaction heat and activation energy, which result

to be fundamental for the stability analysis. In fact, this explicit dependence permits

to obtain a rather complete analysis, in comparison to the previous investigations based

on a kinetic approach.

The numerical method of solution proposed in this paper for the stability problem

combines the original ideas posed by Erpenbeck [33] and the sooting technique proposed

by Lee and Stewart [37]. Some representative results are given concerning both the

steady detonation solution of ZND and pathological type, and the related linear stability

spectra. whole structure of the ZND solution with exothermic chemical reaction, as well

as the second branch of the pathological solution with endothermic chemical reaction.

On the other hand, concerning the hydrodynamic linear stability, this paper presents

the first exhaustive study based on a kinetic theory for chemically reactive mixtures.

The numerical results show that the stability of the detonation wave is attained for

increasing the reaction heat or decreasing the activation energy. Moreover, the stability

boundary in the parameter plane Q∗

R − ε∗A, the migration of the fundamental instability

mode with lowest perturbation frequency and the unstable spectra are given, showing a

good agreement with the analytical and numerical predictions known from the classical

detonation literature.

Some prospects of the present linear stability approach are the following. First,

the present study can be easily extended to a quaternary reactive mixture, starting

from the kinetic modelling and macroscopic closure procedure referred to a mixture of

four constituents, in order to consider more general detonating mixtures. Then, the

application of the present approach to the CJ idealized detonation in a reactive mixture

of two or four constituents should not be a difficult task. Another interesting extension

of the present study should be the analysis of the complete structure and stability

of the pathological detonation, by considering two consecutive chemical reactions, the

former being of exothermic type describing the branch between the shock front and

the pathological point and the latter being of endothermic type describing the branch

between the pathological point and the final equilibrium state. Finally, the numerical

method here proposed should be improved and the hydrodynamic instability of the

detonation wave with bi-dimensional disturbances can be analyzed.
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