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Abstract

The purpose of this paper is to present a wavelet–Galerkin scheme for solving
nonlinear elliptic partial differential equations. We select as trial spaces a nested
sequence of spaces from an appropriate biorthogonal multiscale analysis. This gives
rise to a nonlinear discretized system. To overcome the problems of nonlinearity, we
apply the machinery of interpolating wavelets to obtain knot oriented quadrature
rules. Finally, Newton’s method is applied to approximate the solution in the given
ansatz space. The results of some numerical experiments with different biorthogonal
systems, confirming the applicability of our scheme, are presented.

1 Introduction

In recent years, the interest on using wavelets as a tool for the numerical treatment
of partial differential equations has been growing considerably. So far, the most far-
reaching results were obtained for linear, boundedly invertible operator equations; see, e.g.
[4, 3, 5, 6]. (This list is clearly not complete.) Once these problems are well–understood
and almost completely solved, the next challenging task is the numerical treatment of
nonlinear problems. This paper can be viewed as one small step in this direction. We
shall be concerned with the numerical treatment of nonlinear partial differential equations
of the type

F (u) := Lu + G(u) = 0, (1)

on some bounded domain Ω ⊂ Rd, where L is an elliptic linear differential operator of
second order and G is a nonlinear operator.

As a typical example we will focus here on the model problem

Lu = −∆u + u and G(u) = u3 − f, (2)

for a given function f ∈ L2(Ω).
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To simplify the description of the method and to avoid possible boundary effects, we
will concentrate on the 1D case and on periodic problems, i.e. we will take Ω to be the
unidimensional torus Ω = T := R/Z. This might sound artificial at first sight. However,
one of our aims is to apply our scheme to problems in image processing where the use of
periodic boundary conditions is quite standard. Also, the generalization to problems in
higher dimensions, via tensor product techniques, is straightforward.

By modifying in an obvious manner the analysis contained in [1], one can show that the
above problem has a unique solution, which we now aim to approximate numerically. In
order to do this, we first consider the associated weak formulation

a(u, v) +

∫

T
g(u)v dx−

∫

T
fvdx = 0 , for all v ∈ H1 , (3)

where a(., .) is the bilinear form induced by L and the prescribed boundary conditions

a(u, v) =

∫

T
∇u · ∇v dx +

∫

T
uv dx. (4)

Here, H1 := H1(T ) denotes the first order Sobolev space on T equipped with the usual
norm ‖ · ‖1 and g(u) = u3. We can then use a classical Galerkin approach, i.e., consider a
nested sequence of finite–dimensional approximation spaces {Vj}j≥0, Vj ⊂ H1, and look
for an approximation uj ∈ Vj to the solution u of the problem by solving

a(uj, vj) +

∫

T
g(uj)vj dx−

∫

T
fvj dx = 0 , for all vj ∈ Vj. (5)

2 Multiresolution Analysis

Our goal is to derive efficient Galerkin methods for the approximate solution of (3). Here,
in contrast to conventional finite element discretizations, we will work with trial spaces
that, not only exhibit the usual approximation and good localization properties, but in
addition lead to expansions of any element in the underlying Hilbert spaces in terms of
multiscale or wavelet bases with certain stability properties.

We now briefly review some essential features of wavelet approximation that will be impor-
tant in the sequel; for more details the reader is referred to, e.g. [2]. We start by recalling
the concept of multiresolution. A multiresolution analysis (MRA) (Vj, φ) of L2(R) is a
sequence of closed subspaces of L2(R) and an associated function φ, called the generator
or scaling function, satisfying:

Vj ⊂ Vj+1,
⋃

j∈Z
Vj = L2(R),

⋂

j∈Z
Vj = {0}, (6)

f ∈ Vj ⇔ f(2·) ∈ Vj+1, (7)

{φ(· − k) : k ∈ Z} is a Riesz basis of V0. (8)

It then follows that, for each j, the set of functions {φj,k := 2j/2φ(2j. − k) : k ∈ Z} is a
Riesz basis for the space Vj (the so-called nodal basis). Wavelets are associated with detail
spaces, i.e. with complementary spaces Wj satisfying Vj+1 = Vj ⊕Wj, where ⊕ denotes
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a direct sum. The properties of a multiresolution analysis imply that
⊕

j∈ZWj = L2(R).
Hence, if we can find a function ψ whose integer translates form a Riesz basis of W0, then
the collection {ψj,k := 2j/2ψ(2j · −k) : j, k ∈ Z} will be a good candidate for a Riesz
basis for the space L2(R) (a so-called wavelet basis). Of course, there is a continuum
of possible choices of such complement spaces. Orthogonal decompositions would lead
to orthogonal wavelets. However, orthogonality often interferes with locality and the
actual computation of orthonormal bases might be too expensive. Moreover, in certain
applications orthogonal decompositions are actually not best possible. These limitations
motivated the search for biorthogonal wavelet bases, i.e., for bases {ψj,k} and {ψ̃j,k} which
satisfy

〈
ψj,k, ψ̃j′,k′

〉
= δj,j′δk,k′ , for all j, j′, k, k′ ∈ Z, (9)

with 〈·, ·〉 denoting the usual inner product in L2(R). These biorthogonal wavelet bases

can be associated with two multiresolution analyses (Vj, φ) and (Ṽj, φ̃) which are connected
in the following manner:

L2(R) = V0 ⊕ (Ṽ0)
⊥, (10)

where X⊥ denotes the orthogonal complement of X in L2(R). Two such multiresolution
analyses are said to form a dual or biorthogonal multiresolution analysis of L2(R). In

this case, we can define the detail spaces Wj and W̃j by Wj = Vj+1 ∩ Ṽ ⊥
j and W̃j =

Ṽj+1∩V ⊥
j . Each function vj ∈ Vj will have a nodal basis representation representation, as

vj =
∑

k

cj,k φj,k (11)

and also a so-called multilevel representation

vj =
∑

k

cj0,kφj0,k +
∑
j≥j0

∑

k

dj,kψj,k, (12)

where j0 denotes a certain chosen coarsest level and cj,k =
〈
vj, φ̃j,k

〉
and dj,k =

〈
vj, ψ̃j,k

〉
.

The results above where given for spaces defined on the whole of R. To adapt this
construction to the periodic setting, we can simply use a well-known procedure of pe-
riodization, as described in detail in, e.g., [2]. For a given pair of dual multiresolution

analyses of L2(R), with dual scaling functions φ and φ̃, we can consider the periodized
functions

[φj,k] = 2j/2
∑

l∈Z
φ(2j(·+ l)− k)

and define the spaces

[Vj] := Span({[φj,k] : k = 0, 1 . . . , 2j − 1}), j ∈ N0.

(Similar constructions, naturally, associated with φ̃.) Then, it can easily be shown that

these finite dimensional spaces are nested and dense in L2(T ). If ψ and ψ̃ are the basic
wavelets associated with the biorthogonal multiresolution analyses and we consider also
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the periodized functions [ψj,k] and [ψ̃j,k], j ∈ N0, k = 0, 1 . . . , 2j−1, then, it can be shown
that the orthogonality conditions (9) carry over to analogous conditions relative to the
inner product defined on L2(T ).

In this paper, we propose to adopt for test spaces in the Galerkin method, the (periodized)
spaces [Vj] of a dual multiresolution analysis generated by scaling functions selected from
the family of the so called Deslauriers-Dubuc fundamental functions. These functions,
which are obtained as auto-correlation of the well-known compact support orthogonal
Daubechies scaling functions, have very attractive properties, particularly important for
our purposes; see, e.g., [10, 9]. In particular, each of these functions is compactly sup-
ported and is also interpolating, i.e., satisfies φ(k) = δ0k, k ∈ Z. Also, several dual

functions φ̃ to φ, with certain smoothness properties, can be obtained; see. e.g. [11] and
[8] for details.

Recalling the Galerkin approach (5) to solve our problem, we see that we obtain the
following system for determining the coefficient vector cj := (cj,k) of the approximate
solution uj ∈ Vj in the nodal basis

∑

k∈Λj

cj,ka([φj,k], [φj,k′ ]) +

∫

T
g(

∑

k∈Λj

cj,k[φj,k])[φj,k′ ]dx−
∫

T
f [φj,k′ ]dx = 0 k′ ∈ Λj,

where Λj := {0, 1, . . . , 2j−1}. Due to the nonlinear structure of the function g, we are faced
with the problem of adequately estimating the integral

∫
T g(

∑
k∈Λj

cj,k[φj,k])[φj,k′ ]dx. In
this paper, we suggest to approximate the above integral by a version of the so called knot
oriented quadrature rules used in the finite element setting. We replace

∫
T f(x)dx by∫

T (Ijf)(x)dx, where Ij is an interpolation projector induced by the interpolating scaling
function φ and defined as follows:

(Ijf) :=
∑

k

f(2−jk)φ(2j · −k). (13)

Some properties of this interpolation operator can be seen in [7]. We thus obtain the
following approximation

∫

T
g


∑

λ∈Λj

cj,k[φj,k]


 [φj,k′ ]dx ≈ 2−j/2g(2j/2cj,k′).

This leads to a modified Galerkin system, which can be written as

Aj · cj + g̃j(cj)− f = 0. (14)

Here, we propose to use of Newton’s method for solving the above system. With J = 2j,
let Fj : RJ → RJ be the mapping defined by

Fj(ξ) := Aj ξ + g̃j(ξ)− f . (15)

Then, we apply the following iterative scheme, starting with an appropriate initial vector
d

(0)
j : 




F′j(d
(n)
j ) ζ(n+1) = Fj(d

(n)
j )

d
(n+1)
j = d

(n)
j − ζ(n+1).

(16)
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The Jacobian matrix of Fj is naturally given by

F′j(ξ) = Aj +




g′(2j/2ξ1) 0
. . .

0 g′(2j/2ξJ)


 (17)

In every Newton step one has to solve a linear system of equations. Hence, we have to
be careful about the condition of F′j. A detailed discussion of this problem is given in
[7]. We just refer here that it is necessary to use a wavelet preconditioner that realizes a
change of basis from nodal to multilevel; the numerical results presented were obtained
by doing this change of basis.

3 Numerical Results

To confirm the quality of our approach we present some test examples that describe
e.g. a chemical intermixture process. Numerical results were obtained by choosing the
(periodized) Deslauriers-Dubuc interpolating scaling functions φ2N ; N = 2, 3, 4, with a

dual φ̃2N,1, whose construction is described in detail in [11] and [8]. We assume that the
function u is given by u(x) = sin(2πx) which is a sufficiently smooth periodic function on
Ω = [0, 1]. Then, we specify f as f(x) = sin3(2πx) + ((2π)2 + 1) sin(2πx). The numerical
approximations are displayed in the figure below.

Figure 1: Approximations on scales j = 5 through j = 9 with trial functions of
varying smoothness and H1-approximation error (below).
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Remark : A more thorough investigation of the method here proposed, including a detailed
analysis of convergence and more numerical results are given in a forthcoming paper; see [7].
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