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Abstract. In recent years special hypercomplex Appell polynomials have been introduced by
several authors and their main properties have been studied by different methods and with dif-
ferent objectives. Like in the classical theory of Appell polynomials, the generating function of
hypercomplex Appell polynomials is a hypercomplex exponential function. The observation that
this generalized exponential function has, for example, a close relationship with Bessel func-
tions confirmed the practical significance of investigation on special classes of hypercomplex
differentiable functions. Its usefulness for combinatorial studies has also been investigated.
Moreover, an extension of those ideas led to the construction of complete sets of hypercomplex
Appell polynomial sequences. Here we show how this opens the way for a more systematic
study of the relation between some classes of Special Functions and Elementary Functions in
Hypercomplex Function Theory.
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1 INTRODUCTION

Looking back to a time without computers, let’s say to the middle of the last century, one
can recognize that the role of the so called Special Functions in the mathematical practice must
have been enormous. Indeed, in a lot of mathematical and engineering courses Special Func-
tions played an important part of instruction and the ability to work with their tables were
mandatory. Superseded by other emerging disciplines of that time like, for instance, topology,
measure theory or functional analysis, the Special Functions have lost their impact. But mainly
the development of big computers with their capacity of dealing instantaneously with almost all
differential equations contributed for some time to the fact that they fall into oblivion. Never-
theless, their relative revival in the time of Scientific Computing is not surprising. If we have in
mind that Special Functions are omnipresent in the theoretical background of any differential,
integral or functional equation and that the use of symbolic algebraic calculations simplifies the
detection of interesting unknown properties, than we can understand that the amount of papers
written about Special Functions and related subjects is again increasing. From this general point
of view it also seems natural to ask for the role and the application of Special Functions in Clif-
ford Analysis and, more concretely, in hypercomplex function theory (HFT). Since the theory of
monogenicor hypercomplex differentiableor Clifford holomorphicfunctions (see [6],[16],[13])
has its origin in complex function theory one can expect that almost all properties of Special
Function theory should have its counterpart in HFR and that therefore a deeper study would
not be interesting. Particularly this could be the case for the well known relationship between
Special Functions and Elementary Functions of one variable. A first superficial look may con-
firm those positions, but two arguments exist that are in our opinion essential for a different
judgement about the usefulness of studies on Special Functions in Clifford Analysis. First, it
seems that the possible contribution to a different way of dealing with functions in several real
variables could enrich the multidimensional theory of Special Functions. Second, the use of
the non-commutative Clifford Algebra promises results which cannot be obtained in the usual
multidimensional commutative setting. Otherwise, defending the opinion that everything can
be done with real analytic methods, one would also question the value of complex analytic
methods in the plane case. In the following we would like to invite the reader to a first glimpse
about related questions by surveying some older (see [5], [22], [23]) and more recent (see [15],
[13], [19], [9], [20], [7], [4]) developments in direction to a better understanding of the role of
Special Functions in Clifford Analysis.

After introducing very briefly the necessary notations we motivate the further results by an
elementary observation, which to our knowledge has not been used so far. It is based on the
construction of a special exponential function in HFR analogously to the complex one and on the
deduction of its relationship with Bessel functions by deducing the corresponding differential
equations for the scalar and vector part of the exponential function. Since the main tool for our
approaches are series expansions of holomorphic functions, in Section 1, we refer to a special set
of Appell type polynomials which also stresses the central role of the hypercomplex derivative
in problems of this type. The next step is the connection of the special set of Appell type
polynomials to its exponential generating function and the corresponding Special Functions.
Section 2 develops these methods further and reveals us connections of other types of Special
Functions with other Elementary Functions in the sense of HFR. The last section is dedicated
to application to combinatorial identities.
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1.1 PRELIMINARIES

Let {e1, e2, · · · , en} be an orthonormal base of the Euclidean vector spaceRn with a non-
commutative product according to the multiplication rules

ekel + elek = −2δkl, k, l = 1, · · · , n,

whereδkl is the Kronecker symbol. The set{eA : A ⊆ {1, · · · , n}} with

eA = eh1eh2 · · · ehr , 1 ≤ h1 ≤ · · · ≤ hr ≤ n, e∅ = e0 = 1,

forms a basis of the2n-dimensional Clifford algebraCl0,n over R. Let Rn+1 be embedded in
Cl0,n by identifying(x0, x1, · · · , xn) ∈ Rn+1 with the elementx = x0 +x of the algebra, where
x = e1x1 + · · · + enxn. The conjugate ofx is x̄ = x0 − x and the norm|x| of x is defined by
|x|2 = xx̄ = x̄x = x2

0 + x2
1 + · · ·+ x2

n.
We consider functions of the formf(z) =

∑
A fA(z)eA, wherefA(z) are real valued, i.e.

Cl0,n-valued functions defined in some open subsetΩ ⊂ Rn+1. We suppose thatf is hypercom-
plex differentiable inΩ in the sense of [12], [17], i.e. has a uniquely defined areolar derivative
f ′ in each point ofΩ (see [18]). Thenf is real differentiable andf ′ can be expressed by the real
partial derivatives asf ′ = 1/2(∂0 − ∂x)f, where

∂0 :=
∂

∂x0

, ∂x := e1
∂

∂x1

+ · · ·+ en
∂

∂xn

.

With D := ∂0 +∂x as the generalized Cauchy-Riemann operator, obviously holdsf ′ = 1/2D̄f .
Since a hypercomplex differentiable function belongs to the kernel ofD, i.e. satisfiesDf = 0
or 0 = fD (f is a left resp. right monogenic functionin the sense of Clifford Analysis), then it
follows that in factf ′ = ∂0f like in the complex case. We also need to consider the monogenic
polynomials as functions of the hypercomplex monogenic variables

zk = xk − x0ek = −xek + ekx

2
, k = 1, 2, · · · , n.

This implies the use of so calledgeneralized powersof degreem that are by convention sym-
bolically written as

zµ1

1 × · · · zµn
n

and defined as anm-narysymmetric product by

zµ1

1 × · · · zµn
n =

1

m!

∑
π(i1,...,in)

zi1 · · · zin ,

where the sum is taken overall m! = |µ|! permutations of(i1, . . . , in), (see [17] and [18]).

As a starting point for the discussion on Elementary Functions in HFT, one could take the
simple problem of a generalized holomorphic exponential function. Due to the special role of
the (real or complex) exponential function in all areas of pure and applied analysis, the idea to
ask for the existence of a generalized holomorphic exponential function was from the beginning
on a principal question in HFT and reflects the main differences with the complex case. Why?
Of course, it is not possible to distinguish among all functions in the kernel ofD a generalized
holomorphic exponential functionf = f(x), x ∈ Rn+1 , if one relies only on the fact that
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Df = 0 or fD = 0. The characterization should be based on some analogy with the ordinary
complex exponential functionf(z) = ez, z ∈ C.

Depending from the main property that one would like to preserve for the higher dimensional
case, one could demand a series representation similar tof(z) :=

∑∞
k=0

zn

k!
.

If the conservation of the addition theorem would be in the center of attention then one could,
for example, demand that the functional equationf(z + w) = f(z)f(w) should be fulfilled.

A third possibility would be through an analytic continuation approach (Cauchy-Kowalevskaya
extension) starting from the exponential function with real argument and asking for a complex
holomorphic function that equals in the case of its restriction to the real axis exactly the expo-
nential function with real argument.

But it would also be possible to define a generalized holomorphic exponential functionf as
a solution of the simple first order differential equationf ′ = f, f(0) = 1. Here, of course, the
derivative means the hypercomplex derivativef ′ = 1/2D̄f.

In the beginning of HFT only the Riemann approach to generalized holomorphic (mono-
genic) functions as solutions ofDf = 0 or fD = 0 was at hand, being even considered as the
only one possible approach (see [6], [13], [18]). That is why one can not find any remark on a
regular quaternionic exponential function in the work of R. Fueter (see e.g. [10]).

The fact, thatDxn = 1 − n, i.e., that only for the complex casen = 1 an integer power
of x belongs to the set of monogenic functions, caused problems by taking the adapted series
expansion

f(z) :=
∞∑

k=0

xn

k!
, x ∈ Rn+1

as defining relation. Nevertheless, Sprößig discussed this situation in [23] (see also [13]) and
showed how far one could come with discussing such a series as defining property for a non
holomorphic analogue to the complex exponential. Of course, some algebraic manipulations
allow to define a non holomorphic analogue to the complex cosine or sine function etc., too.

The next mentioned hypothetic possibility, i.e., the objective to preserve the functional equa-
tion f(z + w) = f(z)f(w) in the higher dimensional case in this form is illusorily, because the
set of monogenic functions is not closed with respect to multiplication.

The first attempts towards a meaningful definition of an exponential function in the context
of HFT have been [5], [22]. Both papers rely on the Cauchy-Kowalevskaya extension approach
(see also [6]).

In the previous list of possibilities we mentioned at the end the way of defining a generalized
exponential functions as a solution of a first order differential equation. This approach is very
natural and well motivated by the fact, that hypercomplex differentiability is granted for our
type of solutions of generalized Cauchy-Riemann systems. In [19], [9], [20], [7] we have
chosen exactly this approach, but still combined with the idea that through the construction of
a set of special polynomials with differential properties likexn also an easy to handle series
representation should be obtained. Therefore we combined the differential equation approach
with the construction of Appell sequences of holomorphic polynomials. The advantage of such
method is to have an easy way to construct other Elementary Functions, too.

To be complete we mention also the paper [15] where an interesting integral operator method
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for defining a generalized exponential function is presented.

1.2 THE APPEARANCE OF SPECIAL FUNCTIONS

Before coming to the main part, we will show the appearance of the connection with cer-
tain Special Function by a simple observation. Therefore we ask for a Clifford algebra-valued
functionE = E(x), defined and hypercomplex differentiable inRn+1, such that

E ′ = E

E(0) = 1.

Instead ofx = x0 + x = x0 + e1x1 + · · · + enxn we can also writex = x0 + ω|x| with
ω = x

|x| if x 6= 0. Applying toω and|x| the vectorial part

∂x := e1
∂

∂x1

+ · · ·+ en
∂

∂xn

of the differential operatorD we observe that

∂x|x| = ω

and ∂xω =
1− n

|x|
.

In the special case ofn = 2 the second equation leads to

∂xω =
−1

|x|
. (1)

The simplicity of those relations together with the fact thatω2 = −1 allows now to determine
E = E(x) for n = 2 in the most suggestive generalized complex form, namely as

E(x) = E(x0 + x) = E(x0 + ω|x|) = ex0(F (|x|) + ωG(|x|))
with F (|x|) andG(|x|)) as real valued functions of their arguments andF (0) = 1; G(0) = 0.
In this case the initial valueE(0) = 1 is obviously automatically fulfilled.

To determineF andG we have to consider the equation

DE(x) = (∂0 + ∂x)[e
x0(F (|x|) + ωG(|x|))] = 0,

which is equivalent to the system

F − 1

|x|
−G′ = 0 (2)

G + F ′ = 0. (3)

Differentiating equation (3) we see that with equation (2) follows that

F ′′ +
1

|x|
F ′ + F = 0. (4)

But (4) is nothing else than the differential equation for the Bessel function of the first kind
F (|x|) = J0(|x|).

5



Analogously, differentiating equation (2) together with equation (3) we end up with a differ-
ential equation for the unknown functionG, i.e. we obtain

G′′ +
1

|x|
G′ + (1− 1

|x|2
)G = 0. (5)

and (5) is nothing else than the differential equation for the Bessel function of the first kind
G(|x|) = J1(|x|). Obviously, we also have that the hypercomplex derivative of a hypercomplex
holomorphic functionf given byf ′ = ∂0f applied tof = E(x) leads really to the differential
equation of an exponential function, i.e. we haveE ′(x) = E(x), and all together means that
the generalized exponential function we have asked for in the casen = 2 can be obtained as

Exp(x) := E(x) = ex0(J0(|x|) + ωJ1(|x|)).
This result coincides with the results of the previously mentioned papers [5], [22], and [15],

but only relies on some elementary formal generalization of the complex exponential function
ez = ex0 [cos y + i sin y].

The following sections are now giving a survey on the subject and compile mainly the results
obtained in [19], [9], and [20].

2 SPECIAL POLYNOMIALS AND GENERATING FUNCTIONS

The essential ideas of our approach can be shown for the casen = 2, since the general
structure of the considered polynomial remains one and the same for different values ofn ≥ 2.

We recall that a sequence of polynomialsP0(x), P1(x), · · · is said to form a Appell sequence
if

i. Pk(x) is of exact degreek, for eachk = 0, 1, · · · ;

ii. P ′
k(x) = kPk−1(x), for eachk = 1, 2, · · · .

The basic idea is that the polynomials of an Appell sequence behave like power-law functions
under the differentiation operation (see e.g. [2], [8], [3]). In our case the polynomials will be
holomorphic. As usual, the sequence will be normalized by demanding thatP0(x) ≡ 1. It is
evident, that only the use of a hypercomplex derivative enables us to speak about an Appell
sequence in the setting of Clifford Analysis. We stress the fact that treating such polynomials
exclusively as solutions of a generalized Cauchy-Riemann system would not allow to obtain an
analogue to the concept of an Appell sequence in the real or complex case.

Independent of the dimensionn, we are looking for an Appell sequence of monogenic poly-
nomialsPk(x) of the form

Pk(x) =
k∑

s=0

T k
s xk−s x̄s,

whereT k
s are suitable defined real numbers.1

1Notice that special monogenic polynomials in terms ofx andx̄ similar to (16) have been considered before in
[1]. But the paper [1] is concerned with the extension of the theory of basic sets of polynomials in one complex
variable, as introduced by J. M. Whittaker and B. Cannon, to the setting of Clifford analysis. At the time of
publication of [1] the concept of hypercomplex differentiability or the corresponding use of the hypercomplex
derivative, first published in [16] resp. [12], have not been at disposal for the investigation of Appell sequences of
monogenic polynomials.
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In the complex case, corresponding ton = 1 with e1 := i, for polynomialsPk(x) normalized
by Pk(1) = 1, k = 0, 1, . . . follows immediately thatT k

0 ≡ 1 and T k
s ≡ 0, for s > 0,

since holomorphic functions inC have a series expansion which involves only the powers of
z = x0 + ix1 and not the conjugate variablēz = x0 − ix1. In the hypercomplex case, and
particularly in the casen = 2 which is in the center of our attention, thePk a priori may depend
on the values ofT k

s not only for the trivial cases = 0. This can already be seen by the following

Theorem 1 Consider in the casen = 2 the variablex = x0 + x1e1 + x2e2 and its conjugate
x̄ = x0 − x1e1 − x2e2 . The homogeneous polynomial of degreek; k = 0, 1, · · · ,

Pk(x) =
k∑

s=0

T k
s xk−sx̄s, (6)

normalized by
Pk(1) = 1, (7)

is monogenic if and only if the alternating sum

ck :=
k∑

s=0

T k
s (−1)s (8)

satisfies

ck =

∑
|ν|=k

(−1)k

(
k

ν

)
(eν1

1 × eν2
2 )2

−1

. (9)

The explicit expression of the uniquely definedck relies on the fact that the polynomialsPk(x)
in terms of the corresponding hypercomplex monogenic variableszk = xk − x0ek, k = 1, 2
are obtained as

Pk(x) = Pk(z1, z2) = ck

n∑
k=0

zn−k
1 × zk

2

(
n

k

)
en−k
1 × ek

2. (10)

The normalization condition (7), i.e.Pk(1) = Pk(−e1,−e2) = 1 then implies that

ck =

∑
|ν|=k

(−1)k

(
k

ν

)
(eν1

1 × eν2
2 )2

−1

.

Suppose now thatP ′
k(x) = kPk−1(x); k = 1, 2, · · · . Then it is possible to prove that the values

of T k
s , s = 0, · · · , k, can be determined recursively from the values ofT k−1

s , j = 0, · · · , k − 1
andck. In other words, we have a recursion formula for thePk(x).
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Theorem 2 The coefficientsT k
s , s = 0, · · · , k andT k−1

s , j = 0, · · · , k − 1 satisfy the(k +
1)× (k + 1) system of algebraic equations

Mk



T k
0

T k
1

T k
2
...

T k
k−2

T k
k−1

T k
k


= k



T k−1
0

T k−1
1

T k−1
2
...

T k−1
k−2

T k−1
k−1

ck


. (11)

where

Mk :=



k 1 0 0 0 0
0 k − 1 2 0 0 0
0 0 k − 2 3 0 0
...

...
...

0 0 0 0 k − 1 0
0 0 0 0 1 k
1 −1 1 −1 · · · (−1)k−1 (−1)k


.

The system is uniquely solvable since

det(Mk) = (−1)kk!2k 6= 0, k = 0, 1, . . . .

As a corollary it is possible to relate for every fixed value ofk ≥ 0 the vector{T k
s } to the

vector{cs}, s = 0, · · · , k.

Corollary 1 For everyk ≥ 0 the values ofT k
s andcs; s = 0, 1, · · · , k are related by T k

0
...

T k
k

 = Nk

 c0
...
ck

 , (12)

where

Nk = M−1
k

 kNk−1 0

0 1

 ; k = 1, 2, · · · and N0 = 1.

It is also possible to prove other intrinsic properties of the set{T k
s , s = 0, · · · , k}, which

are of own interest in combinatorial questions, since they resemble in a lot of aspects a set of
non-symmetric generalized binomial coefficients.

This all together leads to the following

Theorem 3 Monogenic polynomials of the form

Pk(x) =
k∑

s=0

T k
s xk−s x̄ s, with T k

s =
1

k + 1

(3
2
)(k−s)(

1
2
)(s)

(k − s)!s!
, (13)
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wherea(r) denotes the Pochhammer symbol (raising factorial) form an Appell sequence of
monogenic polynomials.

In terms of generalized powers these polynomials are of the form

Pk(x) = Pk(z1, z2) = ck

n∑
k=0

zn−k
1 × zk

2

(
n

k

)
en−k
1 × ek

2, (14)

where

ck :=
k∑

s=0

T k
s (−1)s =


k!!

(k+1)!!
, if k is odd

ck−1, if k is even
(15)

Let us now consider the case of arbitraryn ≥ 1.
In the casex = x0+x = x0+x1e1+x2e2+· · ·+xnen, we denote byPn

k (x) the homogeneous
monogenic polynomial of degreek, generalizing the particular casen = 2 . It can be proved
that for arbitraryn ≥ 1, the polynomials

Pn
k (x) =

k∑
s=0

T k
s (n) xk−s x̄s, with T k

s (n) =
k!

(n)k

(n+1
2

)(k−s)(
n−1

2
)(s)

(k − s)!s!
, (16)

form an Appell sequence. In terms of generalized powers these polynomials are of the form

Pn
k (x) = Pk(z1, · · · , zn) = ck(n)

∑
|ν|=n

zν1
1 × · · · × zνn

n

(
n

ν

)
eν1
1 × · · · × eνn

n , (17)

whereν = (ν1, · · · , νn) is a multiindex and

ck(n) :=
k∑

s=0

(−1)sT k
s (n) =



k!

n(k)

(
n + 1

2

)
( k−1

2
)

1

(k−1
2

)!
, if k is odd

k!

n(k)

(
n + 1

2

)
( k
2
)

1

(k
2
)!

, if k is even

(18)

We would like to remark, that the number of hypercomplex linear independent polynomials
of homogeneous degreek is

(
n+k−1

k

)
, which is easy to check. OurPn

k (x) written in terms of
x and x̄ is only one special representative for arbitrary degreek of such homogeneous poly-
nomials. But our aim was not to discuss the completeness of a system of Appell sequences,
for example in the space of square integrable hypercomplex functions. This question has been
principally solved in [7] with respect to a representation in terms of the hypercomplex variables
zk, k = 1, . . . n. It is interesting to notice that in that obtained system our special polynomials
Pn

k (x) not occur, i.e., its structure seems really to be very special.
A detailed and profound discussion of completeness of a system of Appell sequences in

the space of square integrable hypercomplex functions is given in the very recent paper [4].
It contains a very interesting construction of those systems including orthogonality and their
applications and relations to Fourier series.

Here our intention were more the intrinsic structure of our special polynomials. Notice that
several important properties of thePn

k are independent fromn. If we look, for instance, to their
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representation in terms ofx0 andx, then the following binomial type theorem holds:

Pk(x0 + x) =
k∑

s=0

(
k

s

)
Pk−s(x0)Ps(x). (19)

From (19) andc0(n) ≡ 1 for any dimensionn follows in the case ofx ≡ 0 that

Pk(x0) = xk
0

as consequence of the construction of{Pn
k } as Appell set withPn

k (0) = c0(n) ≡ 1 for ∀n.
In the case ofx0 ≡ 0 we obtain the essential property which characterizes the difference to

the complex case:
Pk(x) = ck(n)xk.

With these relations and the binomial type theorem (19) we can obtain the remarkable for-
mula

Pk(x) =
k∑

s=0

cs

(
k

s

) (
x + x̄

2

)k−s (
x− x̄

2

)s

.

Observe that for Legendre polynomialsLk(x) holds a similar formula with
(

k
s

)2
instead of

cs

(
k
s

)
Lk(x) =

k∑
s=0

(
k

s

)2 (
x− 1

2

)k−s (
x + 1

2

)s

as a consequence of Rodrigues’ formula

Lk(x) =
1

2kk!

d

dxk
(x2 − 1)k.

Now if we define

Expn(x) :=
∞∑

k=0

Pn
k (x)

k!
(20)

then we can prove the following result.

Theorem 4 TheExpn-function can be written in terms of Bessel functions of the first kind,
Ja(x), for ordersa = n

2
− 1, n

2
as

Expn(x0 + x) = ex0Γ(
n

2
)

(
2

|x|

)n
2
−1 (

Jn
2
−1(|x|) + ω(x)Jn

2
(|x|)

)
. (21)

For n = 1 andn = 2, (21) gives the ordinary complex exponential and the reduced quater-
nion valuedExp-function, respectively. Moreover, it is easy to conclude that this function is
different from zero everywhere.

For the particular casen = 3, leads to

Exp3(x0 + x) = ex0

(
sin(|x|)
|x|

+ ω(x)
sin(|x|)− |x| cos(|x|)

|x|

)
. (22)

ThisExp3-function coincides with the one referred by W. Sprößig in [23].

Due to the fact that Appell sequences imply automatically a direct link to a corresponding
exponential function ([3]) we have the following result.

10



Theorem 5 LetJa(x) be Bessel functions of the first kind for ordersa = n
2
− 1, n

2
. Then

Expn(x t) = S̃c [Expn] + Ṽec [Expn] x =
∞∑

k=0

Pn
k (x)tk

k!

is the exponential generating function of the special monogenic polynomialsPn
k (x) with

S̃c [Expn] = ex0 tΓ(
n

2
)

(
2

|x|t

)n
2
−1 (

Jn
2
−1(|x|t)

)
,

Ṽec [Expn] =
1

|x|
ex0 tΓ(

n

2
)

(
2

|x|t

)n
2
−1 (

Jn
2
(|x|t)

)
.

3 SPECIAL FUNCTIONS VERSUS ELEMENTARY FUNCTIONS

The results of the previous section suggest now to introduce the following series as a hyper-
complex cosine function

COSn(x) :=
∞∑

k=0

(−1)kPn
2k(x)

(2k)!
= Γ(

n

2
)

(
2

|x|

)n
2
−1

Jn
2
−1(|x|)

and the hypercomplex sine function

SINn(x) :=
∞∑

k=0

(−1)kPn
2k+1(x)

(2k + 1)!
= Γ(

n

2
)

(
2

|x|

)n
2
−1

Jn
2
(|x|).

Analogously, by substituting the powerzk byPk(x) in the complex series ofcosh andsinh we
can introduce the hypercomplex hyperbolic cosine and hypercomplex hyperbolic sine as

COSHn(x) :=
∞∑

k=0

Pn
2k(x)

(2k)!
= Γ(

n

2
)

(
2

|x|

)n
2
−1

In
2
−1(|x|)

and

SINHn(x) :=
∞∑

k=0

Pn
2k+1(x)

(2k + 1)!
= Γ(

n

2
)

(
2

|x|

)n
2
−1

In
2
(|x|)ω(x),

respectively. The change to modified Bessel function of the first kind shows the role of this type
of Special Functions for expressions as Elementary Functions in the HFT setting. The last result
coincides with results in [15] obtained by a so called Bessel integral transform and splitting the
generalized exponential function in its even and odd part.

We notice that this type of combination of Special Functions in expressions of hypercomplex
functions differs from the corresponding combinations of Bessel functions in the form of Han-
kel functions (Bessel functions of the third kind), obtained as complex combination of Bessel
functions of the first and second kind.

Finally we mention, that more complicated relations are obtained by the same procedure
for the hypercomplex analogue of, for example,arccos or arcsin, which lead to expressions
involving elliptic integrals of typeK andE.

The corresponding series forarctan leads to expressions involving the LerchPhi-function
etc.
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4 APPLICATIONS: COMBINATORIAL IDENTITIES

At the end and without a more detailed explanation we would like to remark, how the de-
veloped relationships between Elementary and Special Functions could be used for deriving
new combinatorial identities. Notice, for example, that forn = 2 in the generalized exponen-
tial function (21) the involved Bessel functions are justJ0 andJ1 with derivatives very easy
to handle. It implies, that also the determination of the generated polynomials in terms of the
derivatives ofJ0 andJ1 is a relatively easy task. And this is just the point for their use in the de-
duction of combinatorial identities arising from the comparison with expressions derived from
(13) for special values ofx0 and|x|. Take, for instancex0 = 1 and|x| = 1. This leads on one
side to the binomial sum

(
2l

0

)
−

(
2l

2

)
1

2
+

(
2l

4

)
1 · 3
2 · 4

− · · ·+ (−1)l

(
2l

2l

)
(2l − 1)!!

(2l)!!
= A(

2l

1

)
1

2
−

(
2l

3

)
1 · 3
2 · 4

+ · · ·+ (−1)(l−1)

(
2l

2l − 1

)
(2l − 1)!!

(2l)!!
= B,

but on the other side to the determination of the corresponding values of thek-th coefficients in
the well known series development ofJ0 andJ1. The corresponding expressions of A and B in
terms of binomial coefficients form together with the corresponding left sides examples of two
combinatorial identities. It is evident that this method works for anyn ≥ 2 and is not less and
not more than a generalization toRn+1 of the use ofzk for the determination of binomial sums
(see [11], [14], [24]).
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