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Influence of physico-chemical properties of porous
microcarriers on the adhesion of an anaerobic consortium
MA Pereira, MM Alves, J Azeredo, M Mota and R Oliveira

Centro de Engenharia Biologica-IBQF, Universidade do Minho, 4700 Braga, Portugal

The ability for biomass colonization of four porous mineral microcarriers (sepiolite, clay, pozzolana and foam glass-

Poraver ), was studied and related to their surface properties. The surface hydrophobicity of the mineral carriers

was a more important factor influencing colonization by the anaerobic consortium than was surface charge. It was

possible to correlate linearly the degree of hydrophobicity with the biomass retention capacity. Although the thermo-

dynamic theory did not explain adhesion, an increase in cell attachment was directly related to the decrease of the

positive values of the free energy of adhesion. Surface roughness, porosity and the amount of surface Mg 2+ were
also determinant factors in bacterial immobilization. However a great biomass accumulation can originate a decrease

in biological activity due to mass transfer limitations. Journal of Industrial Microbiology & Biotechnology (2000) 24,
181-186.
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Introduction expressed by the Dupmequation [1] which states that the
o . . Gibbs free energy of interaction can be calculated assumin
In the last two decades anaerobic digestion technology Sigiat the interfa%)(/as between bacteria/liquid medium andg

mﬁ%gtill?/z;;?géoyscdhr?;gé;n .:%rgreefg?g’ Iiﬁot\:ﬁgggeb'gfmglsessolidlliquid medium are replaced by a bacteria/solid inter-
. X L S face. Hydrophobicity has been considered the most
basic processes of biomass immobilization is important. important short-range interaction force in bacterial attach-

gates are more protected from adverse emuironmental coflNt8:30]. A number of authors reported that the hydro-
ditions [9,16]. Although biomass immobilization in the hobicity of the adhesion surface plays a determinant role

popular Upflow Anaerobic Sludge Blanket (UASB) reactorin ?(acterir;l adhe[gi(ﬂ, 2b3ei2n£?2e6\?er: mrc])relidmgortant tha(;] tne
! ; P surface charge [3,11,23,24,26]. It should be stressed that
is based on self-granulation, anaerobic filters (AF) and flu- . ; .
idized bed (FB) d?gesters are examples of true(bio)film reac_sun‘ace charge is usually assessed in terms of zeta potential.

. S s they are directly related, both are used interchangeably

g;rsédlﬂelzs?oﬂ'%isée;éviltﬁdgﬁ ;eﬁggic;]g'25#;?;”%3?@%%@roughout the literature to express qualitatively the electri-
.- ) : cal surface properties of colloidal particles.

formance of this kind of digester was reported to be highly Apart frorr? thpese properties sur?ace morphology is also

dependent on the characteristics of the support matenI portant. Adhesion is enhanced on porous surfaces on

used for biomass colonization [12]. account of a higher surface area for bacteria attachment.

The colonization of solid surfaces is ruled by the surfac o .
properties of both interacting bodies (surface charge, Su‘ilﬂowever, pore size is an important feature for surface

face tension, wettability, composition, porosity and colonization [17]. Accordingly, the best pore size for

roughness). Surface charge and surface tension are respcﬁ%t-aChment should range between the smallest cell dimen-

sble for shor and long Tare nleracions. Long (e Soner 2] s repore hat micabe-size revices v
Y 1895 rface colonization.

ates that the nt fores of interacton betwean cells and the SOMe aUOrS claim that surface roughness is more
portant for colonization than internal surface area [20].

adhesion substratum arises from the balance between v . X Lo
der Waals forces of attraction and electrostatic forces o canning electron microscopy revealed that the initial
olonization starts from surface irregularities such as

repulsion [19]. Short-range interactions take place when th%racks grooves or abrasion defects. Moreover, on a rough

cells are close to the surface<2 nm) and include Born . . .
repulsion forces, hydration forces and hydrophobic an cl)JrrCfde[,zrlr]ncroorganlsms are more protected against shear

steric interactions [10]. When a bacterium and a surface Many authors reported an enhancement of adhesion in

enter into dlrec_:t_ contact, the water film present between th e presence of specific surface groups, such & arad
interacting entities has to be removed. This is in accordanc 92" [5,26,28] due to cation bridges between the nega-
with - the  thermodynamic theory of adhesion and IStively charged bacterial surface and the substratum [19].
The aim of this work was to study the surface properties
Correspondence: Dr R Oliveira, Dept Engenharia Bjaa, Universidade of f_ou.r porous carrers (Clay’ foa}m gllass, po_zzolana and
do Minho, 4709 Braga Codex, Portugal. E-mail: roliveirdeb.uminho.pt ~ Sepiolite) and relate these properties with the biomass reten-
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Table 1 Characteristics of the microcarriers

Material Diameter (mm) Dry grain density (g cfh Wet grain density (g cni) Internal poroudvolume
(Crn?. Crnparlicleia)

Clay 3.35-4.75 0.714 0.017 1.094+ 0.001 0.3810.019
Foam glass 3.35-4.75 0.380.012 1.101%0.013 0.796: 0.016
Pozzolana 3.35-4.75 1.5320.068 2.03% 0.049 0.508t 0.100
Sepiolite 3.35-4.75 0.994.0.066 1.627% 0.049 0.638:0.114

AWater accessible.

Materials and methods Table 2 Attached biomassH95% confidence interval)
Microcarriers and biomass retention capacity Material Attached biomass
Four porous microcarriers were tested: sepiolite, foam glass (9 VS Lpariae H?
(Poraver], Dennert, Poraver GmbH, Germany), clay and

pozzolana. Table 1 summarizes some of their relevansepiolite 24515
characteristics. The dry grain density was measured by meFJIJam glass liﬁ (1)5
cury picnometry. The wet grain density was determined b B ozrolana 13304

water picnometry, after forcing the penetration of water

inside the pores of each material (autoclaving). watety, e solids per volume of particle. Determined by weight loss after

accessible porosity was considered to be a more suitabl@ating at 550C.

parameter than total porosity to characterize the suscepti-

bility of each material for internal microbial colonization. _ ) _ )
The biomass retention capacity, expressed as volatile sofpaterial was determined by EDS (Energy Dispersion

ids (VS) per volume of particle, of each microcarrier wasSpectroscopy) (Leica, Cambridge S360).

determined in a previous work [2]. Each material (heated

at 550C and autoclaved) was placed in a continuous reacresults and discussion

tor, under similar environmental conditions. At the end of o

the adhesion experiment the specific methanogenic activi%omass colonization - ) -

initial rate of degradation of a stock solution of volatile t0 baqterlal colonization. Sepiolite was the most colonized

fatty acids (VFA) in batch assays, as detailed elsewhere [2](?11_3'[;”6‘2') followed by foam glass, clay and pozzolana

able 2).

Surface tension In a previous work describing the adhesion experiment,

The surface tension of the anaerobic consortium was calciil® amount of volatile solids (VS) attached was expressed

lated according to the approach of van @ssl[32], using ~ Per internal porous volume [2]. This representation allowed

the values of the contact angles formed by water, formadifferentiation and qualification of the internal porosity

mide and di-iodomethane on bacterial lawns [6]. The sur/elative to the biomass retention capacity, which was

face tension of the carriers, due to their shape, was assessiigted to surface morphology, particularly to pore size.

by means of the thin layer wicking technique as described @ble 3 summarizes these results.

by Teixeiraet al [27]. The rough surface of sepiolite with cell-size crevices fav-
ored adhesion. On the other hand the relative smooth sur-
Zeta potential face and large pores of foam glass accumulated less

The zeta potential of the mineral carriers was determinediomass. _ o o _ .
(after grinding) by measuring the electrophoretic mobility ~ The conclusion that sepiolite is an efficient microcarrier
in a Zeta-Meter 3.8 (Zeta-Meter Inc, USA) at 100 V. for biomass immobilization is in accordance with earlier
Determinations were performed in the culture mediumWorks. Huysmaret al [14] observed that sepiolite was the
adjusted to pH values in the range between 6.7 and 7.7 with

NaOH and HCI. The same procedure was followed tOraple3 Characteristics of the microcarriers and attached biomass,
obtain the zeta potential of the cells. However, in this casexpressed per internal porous volurte95% confidence interval)
anaerobic conditions were maintained inside the electro=

phoretic cell by saturating the culture medium with Material ~ Roughness Surface Attached biomass

n|trogen appear'ance/pore g VSJernal porous volumie:l
sSize

Surface morphology and chemical composition Sepiolite s+ cell size crevices 38424

The surface morphology of each material was evaluated by, A 10-100um 351+ 1.0

scanning electron microscopy (Leica, Cambridge S360) [2]pozzolana  ++ 10-300um 29.3+1.3

Prior to microscopic examination, samples were sputterFoam glass  + 20-1000um 19.3+1.4

coated with gold. The chemical composition of each
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Figure 1 Zeta-potential values of the anaerobic consortium and microcarriers in the operating pH range.

most efficient material for microbial colonization, when Table 4 Surface tension and surface tension components of the mineral

compared with glass beads, argex, activated carbon and¢g’iers and the bacterial cells (values in mJ at 20°C)
zeolite. The amount of macro and micropores and the sur-

Lw + - AB tot

face roughness of sepiolite were suggested to be importarit"2 Y Y Y Y Y
factors for its ability to achieve a good and fast microbial Cells 29.6 35 55.9 279 575
colonization [18,22]. _ _ Clay 50.7 0.8 520 129 636
In the present work an attempt to explain the differentsepiolite 42.1 0.7 37.0 10.2 52.3
degrees of colonization was made by investigating som@ozzolana 49.3 34 62.6 29.2 78.5
surface properties such as surface tension, hydrophobicifyeam glass 52.9 0.1 80.4 5.7 58.6

and chemical composition of the four materials. ]
YW = apolar component of surface tensioyt;= electron acceptor para-

Surf h meter of the polar component of surface tensigrs electron donor para-
uriace charge . . . meter of the polar component of surface tensipft® = polar component
The surface charge of the interacting entities (cells an@f surface tensiony * = total surface tension.

carriers) was evaluated by means of zeta potential
(Figure 1). Both pozzolana and clay behaved similarly
showing an oscillatory pattern of zeta potential with pH:

negative for pH between 6.9 and 7.5 and positive outside 69 Hydrophobicity

this pH range. In the pH range 6.9-7.5, where all the _ Free energy of adhesion = - == = =~ -

materials show a negative zeta potential, foam glass is les<% 594 ®©

negatively charged. Bacteria also present a negative zetg—

potential for pH values between 6.9 and 7.5. Therefore, iNc&  49-

this pH range a high electrostatic repulsion would prevent g ﬂmﬂ g

bacteria from adhering to the carriers. Moreover, it was not fg%,% s ...,

possible to find any direct correlation between a less nega-“géé """"""

tive surface charge and a higher tendency for adhesion 25 294 pozzolana® -8

Thus, in the present situation, this parameter has a minois 3 °

influence on bacterial adhesion. 8 194 -
I sepiolite

Surface tension or % 5 p -

According to van Os®t al [32], the surface tension of a
substance comprises a component arising from Lifshitz—van
der Waals interactionsyf) and a component related to Figure 2 Interfacial free energy of adhesion@y,,) and hydrophobicity

Attached biomass (gVS/Li; porous vor.)

polar interactions ,{/\B) of the electron acceptor-electron (AGs,d of the carriersvs attached biomass expressed as volatile solids

donor type,y* and v, respectively {/\B =92 [’Y+ 'y_]l/z). per litre of internal porous volume.

From the data presented in Table 4 it is clear that all the
surfaces are predominantly electron dongr % v*). The

electron acceptor parameter of all the surfaces studied i&)/water (w)/substratum (s), meaning a negative value of
very small; therefore the apolar component has a greatexG,,. In this case, theoretically, the anaerobic biomass
contribution for the overall surface tension than the polarwould not adhere to the assayed carriers because the free
component. Knowing surface tension values it was possiblenergy of adhesion is always positive (Figure 2). This ano-
to calculate the free energy of adhesion [1]. maly reveals limitations in thermodynamic theory, which
Thermodynamically, adhesion is favored when it leads tchas also been reported by other authors [7]. Nevertheless a
a decrease of the free energyQ) at the interface bacteria decrease in the interfacial free energy seems to correlate
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Figure 3 Elemental surface composition of foam glass, sepiolite, pozzolana, and clay obtained by energy dispersion spectroscopy (EDS) analysis.

with the biomass retention capacity of each materiallso very hydrophilic 4G,,s=29.8 mJ m?), the interac-
(Figure 2). In fact, the material that had the highest biomassions took place between two hydrophilic entities. Some
retention capacity, sepiolite, showed a less positive freauthors [8,29] claim that adhesion is favored between
energy of interaction with the cells, followed by clay, poz- hydrophobic surfaces because a closer contact is attained
zolana and foam glass. Other authors reported a similavhen the water layer between the two interacting entities
behavior for different types of microorganisms and surfacess removed, which is also facilitated if at least one of the
[7,25]. This means that for each bacterial strain a decreassurfaces is hydrophobic. Although all the surfaces assayed
in the free energy of adhesion is indicative of an increasevere hydrophilic it was found that a decrease in surface
in the number of adhering cells. hydrophilicity leads to an increase in cell attachment
(Figure 2).
Surface hydrophobicity
According to the definition of hydrophobicity proposed by Surface composition
van Oss and Giese [31], a solid is considered hydrophobi@he presence of divalent cations has also been considered
when the free energy of interaction between its surface molimportant in the adhesion process [26]. Divalent cations
ecules in the presence of wateé¥Q,,) is negative; other- such as C& and Mg* may provide the existence of punc-
wise it will be hydrophilic. It should be pointed out that tual positive charges on the material surface that can pro-
based on this concept the absolute degree of hydrophobicitypote the establishment of ionic bridges, resulting in an
or hydrophilicity can be precisely expressed in applicableattractive interaction. From the EDS analysis (Figure 3), it
Sl units, which also makes possible the use of mathematan be seen that a significant amount ofZMgas found
ical correlations. in sepiolite, the microcarrier that exhibited the highest
With the data presented in Table 4 it was possible tdbiomass retention capacity.
calculate AG,,s [4,31]. As all the materials have a
AG,,s>0, it can be said that they are all hydrophilic. Methanogenic activity
Foam glass was the most hydrophilic support assayeé good carrier for biomass colonization should not only
(Figure 2), mainly due to its greater electron donor abilitypromote high cell retention but also high biomass activity.
(Table 4). The other carriers were less hydrophilic thanClay and pozzolana supported the highest specific biologi-
foam glass, having a lower electron donancy. As cells areal activity and had an intermediate level of colonization,
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Table 5 Specific methanogenic activity (SMA) of the attached biomassa very important surface characteristic, adhesion being 185

and volumetric methanogenic activity (VMA) of the colonised microcar- enhanced in the carriers with smaller pore size.

riers & 95% confidence interval o . . .
& 95% ) From the colonization point of view the best carrier was
sepiolite which presented the lowest value of free energy

S{&Tﬁiﬁ to SngtheV;ﬁa(j?)? LVI'\AAggp\:FIAl é:;;?)c of adhesion, the greatest hydrophobicity, the highest rough-
ness, and the presence of a higher amount of*Ngy the
Clay 0.329+ 0.003 4.440.4 surface. However, it is also important to take into account
Foam glass 0.2880.010 4.4:1.2 the effect of mass transfer limitations due to a great
Pozzolana 0.3480.038 5105 biomass accumulation, which can decrease the biological
N s 0 oog 4215 activity of a well-colonized carrier. In practice this problem

can be overcome by manipulating operating conditions

aThe methanogenic activity of the attached biomass was determined b§UCh as upflow velocity.

measuring the initial rate of volatile fatty acids (VFA) degradation in strict

anaerobic batch assays. A volume of 0.26 ml of a VFA solution of acetate,
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