
GPU Ray Casting

Ricardo Marques
Dep. Informática, Universidade do Minho

VICOMTech
ricjmarques@gmail.com

Luís Paulo Santos
Dep. Informática, Universidade do Minho

Braga, Portugal
psantos@di.uminho.pt

Peter Leškovský Céline Paloc
VICOMTech

Donostia - San Sebastian, Spain
{pleskovsky,cpaloc}@vicomtech.org

Abstract
For many applications, such as walk-throughs or terrain visualization, drawing geometric primitives is the
most efficient and effective way to represent the data. In contrast, other applications require the visualiza-
tion of data that is inherently volumetric. For example, in biomedical imaging, it might be necessary to
visualize 3D datasets obtained from CT or MRI scanners as a meaningful 2D image, in a process called
volume rendering. As a result of the popularity and usefulness of volume data, a broad class of volume
rendering techniques has emerged. Ray casting is one of these techniques. It allows for high quality volume
rendering, but is a computationally expensive technique which, with current technology, lacks interactivity
when visualizing large datasets, if processed on the CPU. The advent of efficient GPUs, available on
almost every modern workstations, combined with their high degree of programmability opens up a wide
field of new applications for the graphics cards. Ray casting is among these applications, exhibiting an
intrinsic parallelism, in the form of completely independent light rays, which allows to take advantage of
the massively parallel architecture of the GPU. This paper describes the implementation and analysis of
a set of shaders which allow interactive volume rendering on the GPU by resorting to ray casting techniques.

Keywords
Volume rendering, GPU ray casting, volume visualization

1. INTRODUCTION

Three dimensional volume datasets are frequently
used in the scientific community. They are obtained
by simulation, sampling or modeling. In economics
or fluid dynamics, for example, numerical simulations
can generate large scale volumetric datasets. In med-
ical imaging, different scanning techniques such as
Magnetic Resonance Imaging (MRI) or Computed To-
mography (CT) are used to collect samples of the
interior of the human body, which are stored as 3D
datasets [Johnson 04].
These datasets may be visualized in three dimen-
sions, in order to allow specialists to interpret the
information. In traditional computer graphics, 3D
objects are created using surface representations, by
drawing geometric primitives that create polygonal
meshes [Levoy 88]. However, using surface render-
ing techniques to display volumetric data results in
the loss of a dimension of information [Johnson 04,
Hadwiger 06]. For example, in CT datasets, the use-

ful information is not only contained on extracted iso-
surfaces, but within the iso-surfaces as well. There-
fore, several volume rendering techniques were devel-
oped to visualize the entire 3D data as a single 2D
image. Volume rendering techniques convey more in-
formation than surface rendering methods, but at the
cost of increased algorithm complexity and, conse-
quently, increased rendering times [Bruckner 08].
Ray casting [Kajiya 84] is one of these techniques. It
evaluates the color of each pixel in the final image by
shooting a ray through the scene starting from the
viewer position. If the ray hits the volume, the color
of the pixel is calculated by sampling the data values
along the ray at a finite number of positions in the
volume and combining them together. This technique,
however, has a limitation when executed on CPUs: for
large volume datasets and close viewing planes that
maximize the number of rays which must be shot, the
time to render a single image is too high to allow for
a real time visualization.



Driven by the demand of the game industry, the per-
formance of modern GPUs has exceeded the compu-
tational power of CPUs both in raw numbers and in
the growth rate [Stegmaier 05, Weiskopf 07]. There-
fore, GPUs appear as an interesting opportunity
to execute heavy algorithms, for which the CPUs
cannot give a real time response. Modern graph-
ics cards are characterized by the following features
[Kruger 03, Scharsach 05]:

• A massively parallel architecture

• A separation into two distinct units (vertex and
fragment shader) that can double performance if
workload can be split

• Fast memory and memory interface

• Dedicated instructions for graphical tasks

• Vector operations on 4 floats that are as fast as
scalar operations

• Trilinear interpolation is automatically (and ex-
tremely fast) implemented in the 3D texture

The ray casting algorithm fits modern GPUs. It ex-
hibits an intrinsic parallelism, in the form of com-
pletely independent light rays, which allows to take
advantage of the massively parallel architecture of the
GPU. But as a new technology, GPU ray casting is not
well established yet. Appropriate libraries implement-
ing the technique which are compatible with graphics
processors from the two main manufacturers, NVidia
and ATI, cannot be found.
The work presented in this paper is motivated by the
creation of a Human Atlas visualization tool which
allows the user to navigate through human medical
datasets (obtained from CT or MRI scanners) in real
time, using direct volume rendering. Although no orig-
inal techniques are described, the paper presents a
detailed overview of the current state of the art in
GPU ray casting for volume visualization and a thor-
ough comparison of different compositing and antial-
ising techniques.

2. RELATED WORK

In the field of GPU-Based volume render-
ing [Weiskopf 07, Hadwiger 06], there are two
distinct approaches to render 3D datasets at in-
teractive rates: a texture based approach, and a
ray casting based approach. Below, these two
approaches are presented, along with their main
features, advantages and drawbacks.

2.1. Texture Based Approach

The texture based approach was the first GPU-Based
volume rendering technique, originally presented by
Cullip and Newman [Cullip 94], and further developed

by Cabral et al. [Cabral 94]. In this approach, the vol-
umetric data is stored in the GPU memory as a stack
of object aligned 2D textures [Westermann 98] or as
a viewport aligned 3D texture [RS00]. These textures
are then mapped onto a sequence of semi-transparent
2D slices, called proxy geometry, using the built in
hardware texture interpolation. The function of the
proxy geometry is to provide a sequence of polygons
where the texture slices will be displayed. Finally,
the proxy geometry is rendered in back to front order,
exploiting the hardware per fragment operations and
alpha blending capabilities of the GPU.
The 2D texture approach requires three copies of the
volume dataset, each of them aligned with one of the
main axis of the object (see Figure 1).

Figure 1: Object aligned sampling surfaces.

This increases three times the amount of memory
needed to store the volumetric data. During the vi-
sualization process, one of the stacks is chosen to be
displayed, depending on the current viewing direction.
The chosen stack is the one corresponding to the axis
most parallel to the viewing vector. To map the tex-
ture slices to the proxy geometry, 2D interpolation
within each slice of the stack is used. When a given
texture slice is mapped, the information from the pre-
vious and the next slices is not taken into account.
This causes the final result to have lower quality, usu-
ally arising in visible artifacts [Hadwiger 06]. The way
to increase the quality of the final image, thus remov-
ing these imperfections, is to increase the sampling
rate by incrementing the number of texture slices that
store the volume on the graphics card, causing the
amount of memory necessary to be even larger.
Compared with the 2D texture solution, the 3D tex-
ture based approach is superior, removing some of the
significant drawbacks while preserving almost all the
benefits [Hadwiger 06]. With 3D textures only one
copy of the volume dataset is necessary, because trilin-
ear interpolation allows for the extraction of slices in
arbitrary directions, for example diagonally (see Fig-
ure 2).
This reduces the size of the volume in the graphics
card memory when compared to the 2D texture ap-
proach. The volume is sliced by a set of planes parallel
to the viewing direction, and the resulting slices are
composed to achieve the final image. Furthermore,
the use of trilinear interpolation instead of bilinear re-



Figure 2: Viewport aligned sampling surface.

sults in higher image quality. It also provides a natural
way to increase the sampling rate only by increasing
the number of slices of the proxy geometry, without
having to increase the size of the volume stored in
memory.

2.2. Ray Casting Approach

Ray casting is a well-known volume rendering algo-
rithm designed by Kajiya and Herzen [Kajiya 84] back
in the 1980s. The basic idea is to trace rays from the
camera into the volume, computing the volume render-
ing integral along the rays (see Figure 3).

Figure 3: Ray casting scheme.

For each pixel in the image, typically a single ray is
cast into the volume. The volume data is sampled at
discrete positions along the ray. The contribution of
each sample is accumulated to obtain the final color
and opacity of the pixel.
This algorithm fits very well the GPU architecture
and capabilities [Kruger 03, Scharsach 05]. In GPU
ray casting, the volume data is uploaded to the GPU
memory as a 3D texture. A fragment shader program
is used to implement the ray casting algorithm, work-
ing on the fragments generated by rendering a poly-
gon covering the screen space occupied by the volume
bounding box. For each fragment of the polygon a
ray is cast. Due to the independence between the per
ray operations, and to the parallel architecture of the
GPU, this operation can be done in parallel. The
samples along the ray are taken using the hardware
trilinear interpolation, and composed to compute the
final pixel color.

2.3. Texture Based vs Ray Casting Approaches

Compared with the ray casting technique, the texture
based approach has several drawbacks [Hadwiger 06,
Scharsach 05]. First, it performs the evaluation of
the volume rendering integral for fragments that
do not contribute to the final image [Stegmaier 05,
Kruger 03] (e.g. occluded fragments). This character-
istic significantly increases the amount of texture fetch
operations, numerical operations, i.e. lighting calcu-
lations, and per pixel blending operations that are ex-
ecuted. Due to the inflexible nature of this algorithm,
advanced acceleration techniques which could correct
this situation are hardly implementable.
Ray casting, on the other hand, is a much more flex-
ible algorithm which allows for the integration of
acceleration techniques that can solve the problem
of unnecessary per fragment calculations [Kruger 03,
Stegmaier 05]. The early ray termination mechanism
which truncates the ray when the upcoming samples
do not influence the final result, and the empty space
skipping technique [Kruger 03] which skips volume re-
gions that are considered empty are examples of these
techniques.
Another disadvantage of the texture based approach
compared to the ray casting technique is when a per-
spective view is applied: using a texture based ap-
proach and a perspective view, the sampling distances
vary from ray to ray, introducing incoherences in the
final image. In contrast, ray casting maintains a con-
stant sampling distance, therefore avoiding visual ar-
tifacts [LM99].
For these reasons, the texture based techniques can
be considered secondary for the implementation of a
volume rendering framework, as they fail to take full
advantage of the hardware capacities.

3. RAY CASTING IN GPU

The basic idea of GPU ray casting is to implement the
ray casting algorithm in a fragment shader program.
Multipass ray casting is an approach used to implement
a GPU ray caster. It was described in [Kruger 03], by
Krüger et al., and consists of the following main steps:

• a first rendering pass, processed in the GPU,
in which the exit point for each ray is calculated

• a second pass, in which the entry point for each
ray is obtained

• main passes 3 to N consist of sampling the vol-
ume dataset along the ray and combine the sam-
ples to determine the pixel color. In each pass, M
steps along the ray are performed, and then an
intermediate pass is executed

• intermediate passes 3 to N, where the stop
criterion is tested and the ray is terminated in
case it left the volume dataset boundaries or if



the opacity accumulated for the current pixel has
reached a given threshold

This multipass approach was first designed to over-
come hardware limitations, since early GPUs did not
provide loops functionality and conditional branches
were hard to implement [Hadwiger 06]. Therefore,
the traversal of a ray was initiated and driven by
a CPU-based program. Currently, loops and condi-
tional branches are available in the instruction set of
the GPU programming languages, which permits the
simplification of the algorithm to two passes:

• in a first pass, the exit points for each ray are
calculated

• in the second pass, the entry points of each ray
are calculated, and using a loop instruction the
rays traversal is performed, combining the sam-
ples collected, until the stop criterion is reached

The strategy to calculate the entry and exit points
of the rays is to store the volumetric dataset in a 3D
texture and define a bounding box for this dataset.
This bounding box is a cube where the color channel
encodes the 3D texture coordinates of the volumetric
dataset boundaries (which range from 0 to 1). Ren-
dering the front faces of the cube yields an image with
the entry position of the rays in the bounding box, en-
coded in color (see Figure 4a). Drawing the back faces
of the bounding box results in an image encoding the
exit position of the rays (see Figure 4b).

(a) (b)

Figure 4: Rendered front (a) and back (b) faces of the
bounding box.

Subtracting the two images shown in Figure 4, yields
the lines going from the start to the exit ray positions.
These lines are used to calculate the ray directions,
necessary for the ray traversal step.
In the first pass of the algorithm, the back faces of the
bounding box are rendered using the OpenGL fixed
functionality. The resulting image is stored in a 2D
texture (i.e. the exit texture). In the second pass,
with the ray casting shaders enabled, the front faces
of the bounding box are rendered. This will cause the
GPU to receive the information of the entry points of

the rays, in the form of a color for each pixel. The
GPU combines this information with the exit points
previously stored in a 2D texture and performs the
ray set up and ray traversal, evaluating the color for
each pixel. Following is a detailed description of the
implementation.

3.1. Multipass Ray Casting Implementation

Algorithm 1 shows the core of the CPU part of the
multipass ray casting algorithm.

Algorithm 1 Multipass ray casting algorithm in the
CPU.
For each frame:

1. Render the back face of the bounding box to a 2D texture
using the OpenGL fixed functionality

2. Enable the Ray Casting Shaders

3. Render the front face of the bounding box and perform the
Ray Casting using the Ray Casting Shaders

4. Disable the Ray Casting Shaders

5. Enable the OpenGL fixed functionality

It consists of a loop where, for each frame, the back
face of the volume bounding box is rendered to a 2D
texture using the OpenGL fixed functionality. Then,
with the ray casting fragment shader enabled (further
described in Algorithms 2 and 3), the front face of the
bounding box is rendered. This way, an interpolated
color for each pixel becomes available in the fragment
shader, corresponding to the texture coordinates of
the ray starting point. The shaders enter in action
to calculate the color value of each pixel, sampling
the volumetric dataset. Finally, the OpenGL fixed
functionality is re-enabled, and the display loop can
be repeated.
To perform the second pass of the algorithm, a frag-
ment shader program was designed to drive the per
pixel operations. The first task of the fragment shader
is the ray set up. It consists in finding, for each pixel,
the entry and exit points of the ray in the volume
bounding box. This information, combined with the
step size, allows to compute the ray direction, the ray
length and the step vector needed for the ray traver-
sal. The next step is to traverse the ray according
to a given step size. The hardware built-in trilinear
interpolation is used to obtain the value of each data
sample from the 3D texture which stores the volume
dataset. At last, the color for each pixel is calculated
by compositing the samples obtained.
The structure of the fragment shader is divided in two
parts. The first one, called the ray set up, is described
in Algorithm 2.
For each pixel, the exit and entry points of the ray
in the bounding box are fetched (instructions 1 and 2
respectively). In step 3, the line from the entry point



Algorithm 2 Ray Set Up in the fragment shader pro-
gram.
Ray Set Up:

1. Get the ray exit position from the exit texture
exitRayPosition = getValue(current pixel position,

exit texture);

2. Get the ray starting position from the color of the current pixel
startRayPosition = currentPixelColor;

3. Compute the maximum ray length, which can be used to ter-
minate the ray

rayLine = exitRayPosition - startRayPosition;
maxRayLength = length(rayLine);

4. Compute the step vector
normalizedRay = normalize(rayLine);
stepVector = normalizedRay * stepSize;

to the exit point is calculated (rayLine) and used to
compute the maximum ray length (maxRayLength). The
maximum ray length is used later in the ray traversal
loop (described in Algorithm 3) to test whether to
terminate the loop or not. Finally, in step 4, a step
vector is calculated (stepVector). The step vector is
used to increment the sampling position during the
ray traversal. Its length is used to accumulate the
total length traversed so far.
The second part of the fragment shader program,
called ray traversal, is the one that actually “shoots”
the ray, i.e. collects the samples and composites them
into the final pixel color (see Algorithm 3).
It is assumed that the same amount of light reaches
every point inside the volume. The first step (1) is
to initialize the variables where the color and alpha
values will be accumulated (accumulatedColor and accu-
mulatedAlpha respectively). In step 2, the ray traver-
sal loop starts. The loop starts by getting a volume
sample using the 3D hardware built-in interpolation
(step 2.1). In step 2.2, the value is classified using the
transfer functions, yielding a color and an alpha values
(colorSample and alphaSample). Notice that, to compute
the volume rendering integral, the alpha value is mul-
tiplied by the step size. That is because the opacity
value to be summed to the accumulated alpha depends
on the sampling distance (given by stepSize). The vol-
ume rendering integral is updated in 2.3: the alpha
value of the current sample is summed to the accumu-
lated alpha value, and the sampled color is incorpo-
rated in the accumulated color value. The sampling
position and the traversed ray length are refreshed in
steps 2.4 and 2.5 respectively. This loop will be re-
peated till the ray exceeds the previously evaluated
maximum ray length, or till the maximum opacity
value is reached (see the loop condition in step 2). The
second loop condition (accumulatedAlpha < 1.0) imple-
ments the early ray termination mechanism, a feature
of the ray casting algorithm which consists on trun-

Algorithm 3 Ray Traversal in the fragment shader
program.
Ray Traversal:

1. Initialize accumulation variables
accumulatedColor = (0.0, 0.0, 0.0);
accumulatedAlpha = 0.0;

2. Ray traversal loop
while(currentRayLength < maxRayLength &&

accumulatedAlpha < 1.0)

2.1. Get a volume sample
sample = getSampleValue(volume texture,

current ray position);

2.2. Get the optical properties for the sample
colorSample = getColorValue(color transfer function,

sample);
alphaSample = getAlphaValue(opacity transfer function,

sample) * stepSize;

2.3. Update the Volume Rendering Integral
accumulatedColor += (1.0 - accumulatedAlpha) *

(colorSample * alphaSample);
accumulatedAlpha += alphaSample;

2.4. Compute the next sample position
currentRayPosition += stepVector;

2.5. Compute the ray length traversed
currentRayLength += stepSize;

3. Attribute the accumulated color and opacity to the pixel
pixelColor = accumulatedColor;
pixelAlpha = accumulatedAlpha;

cating the light rays as soon as the volume elements
further away along the ray are occluded. Finally, af-
ter the loop termination, the accumulated color and
opacity are displayed (step 3).

3.2. Jittering

The use of a large step size which allows for a faster
rendering time, can cause aliasing in the final image,
which results in visible artifacts named wood-grain ef-
fects. Stochastic jittering is a technique used to hide
wood-grain effects by introducing a variation in the
starting position of the rays, along the viewing di-
rection [Hadwiger 06]. This causes the aliasing to be
substituted by noise.
The variation introduced causes the samples along the
ray to be offset by a random number ranging from
0 to the step size value. The samples along a ray
have the same offset, while different rays are likely to
have assigned a different jitter value. Consequently,
the coherence between pixels which causes wood-grain
artifacts is suppressed by noise.
The implementation of the jittered multipass ray cast-
ing does not differ much from the multipass ray cast-
ing algorithm described in the previous section. The
CPU part of the algorithm, differs in that a 2D tex-
ture with size 32× 32 is created, containing a random
number at each position. This texture is uploaded to



the graphics card memory, during the application set
up phase, and is later used by the fragment shader as
a source of random numbers to perturb the starting
positions of the rays.
In the fragment shader program, only the ray set up
stage differs from the implementation described in sec-
tion 3.1. Here, a variation ranging from 0 to the cur-
rent step size value is introduced in the ray starting
position. This value is calculated based on the 2D tex-
ture holding the random numbers, and added to the
ray starting position. The ray traversal stage remains
unchanged. Algorithm 4 shows the ray set up stage
for the jittered multipass ray casting.

Algorithm 4 Ray Set Up for the jittered multipass ray
casting.
Ray Set Up:

1. Get the ray exit position from the exit texture
exitRayPosition = getValue(current pixel position,

exit texture);

2. Get the ray starting position from the cube color already inter-
polated

startRayPosition = currentPixelColor;

3. Compute the ray line
rayLine = exitRayPosition - startRayPosition;

4. Compute the step vector
normalizedRay = normalize(RayLine);
stepVector = normalizedRay * stepSize;

5. Introduce an offset in the ray starting position along the ray
direction

offset = getRandomNumber(jitterTex,
exitFragPosition * textureSize));

startRayPosition += offset * stepSize * normalizedRay;

6. Compute the maximum ray length, which can be used to ter-
minate the ray

maxRayLength = length(rayLine) - (offset * stepSize);

The sequence of steps 1 to 4 yields the normalized ray
direction, the step vector and its length, necessary to
perform the ray traversal. In step 5, an offset based
on a random number extracted from the jitter texture
is calculated and added to the ray starting position.
The ray set up stage ends with the computation of the
new ray length (step 6), and the ray traversal stage is
ready to be executed.
3.3. Empirical Visualization Methods
The ray casting technique can be used for alternative
visualization techniques which might be useful to un-
derstand the information contained in the 3D dataset,
rather than to evaluate the volume rendering inte-
gral presented in Algorithm 3. Examples of these
alternative techniques are the X-Ray and the Maxi-
mum Intensity Projection (MIP) compositing meth-
ods, often applied in medical imaging applications
[Preim 07, Hadwiger 06]. These two techniques com-
pute the final image in the following way:

• X-Ray. The scalar values of the data samples
along each ray are summed up, resulting in a final
image close to an X-Ray image.

• Maximum Intensity Projection. For each
pixel, only the sample with the highest value
along the ray is taken into account for the pixel
color.

In Algorithm 5 the ray traversal scheme used to imple-
ment the X-Ray compositing method is presented. It
is assumed that the ray set-up phase was already ex-
ecuted, yielding all the information necessary to per-
form the ray traversal. The ray set-up phase can be
either jittered (Algorithm 4) or non-jittered (Algo-
rithm 2). Algorithm 5 consists on summing up the
scalar values for each sample along the ray. The opac-
ity is directly attributed (in 2.3) from the scalar value
acquired from the dataset in 2.1. The color is also
directly attributed from the scalar value, yielding a
gray scale where the most opaque values are colored
in white (2.2). Lighting information is not considered,
leading to a final image which is as it would be com-
posed of X-Ray (see Figures 7a and 7b).

Algorithm 5 Ray Traversal for X-Ray compositing.
Ray Traversal:

1. Initialize accumulation variables for color and opacity at zero

2. Ray traversal loop
while(currentRayLength < maxRayLegth &&

accumulatedAlpha < 1.0)

2.1. Get a volume sample
sample = getSampleValue(volume texture,

current ray position);

2.2. Update the accumulated color
accumulatedColor += sample;

2.3. Update the accumulated opacity
accumulatedAlpha += sample * stepSize;

2.4. Compute the next sample position

2.5. Compute the ray length traversed

3. Attribute the accumulated color and opacity to the pixel

Maximum Intensity Projection is a popular composit-
ing mode that searches for the highest sample value
along a ray. The main idea is to traverse the ray, and
attribute the value of the highest sample found, in
gray scale, to the pixel color. MIP is mostly used to
display bone structures and contrast enhanced vascu-
lar structures (vessels), where the measured intensity
is significantly higher than the regular tissue value
[Preim 07, Hadwiger 06]. Algorithm 6 presents the
ray traversal for the MIP compositing method.
The traversal loop is executed until the ray is com-
pletely traversed (step 2.). For each loop, the volume



Algorithm 6 Ray Traversal for Maximum Intensity
Projection.
Ray Traversal:

1. Initialize the variable holding the highest sample value
maxSample= 0.0;

2. Ray traversal loop
while(currentRayLength < maxRayLegth)

2.1. Get a volume sample

2.2. Store the current sample value if it has the highest
value so far

if (sample > maxSample)
maxSample = volumeDataSample;

2.3. Compute the next sample position

2.4. Compute the ray length traversed

3. Attribute the color in gray scale, and set the opacity to 1
(maximum)

pixelColor = (maxSample, maxSample, maxSample);
pixelAlpha = 1.0;

is sampled at the current position (2.1). If the sam-
ple value is higher than the maximum sample value
taken so far, the variable maxSample is refreshed with
the current sample value (2.2). The sample position is
incremented to the next position on the ray, and the
total ray length traversed so far is computed (2.3 and
2.4). At last, after the loop termination, the accumu-
lated color and opacity are attributed to the pixel, in
step 3. (see Figures 7c and 7d).
4. RESULTS AND DISCUSSION

A dataset with a dimension of 512 × 512 × 246
(64.487.424 voxels) has been rendered to a 1000×1000
viewport in a machine equipped with an ATI Radeon
HD 3450 GPU and OpenGL 2.1, using three different
opacity transfer functions. Each of the transfer func-
tions, when applied to a given dataset sample, yields
a different opacity level (high, medium and low). The
shaders were implemented using the GLSL language.

Figure 5 shows the variation of the quality of the fi-
nal image according to the step size. It can be ob-
served that the quality of the final image is dependent
on the step size. Using a big step size results in an
undersampled, strongly aliased image, with the wood-
grain effect referred in section 3.2. As the step size is
decreased, and consequently, the number of samples
per ray increases, the rendered image demonstrates a
higher quality. Figure 5b shows this behavior. How-
ever, as it can be seen in Table 1 high quality may
cause loss of interactivity.
Table 1 shows the average framerate achieved, with 4
different step sizes, for each of the three volume opaci-
ties tested, when a complete rotation is applied to the

(a) (b)

Figure 5: Images obtained for different step size val-
ues. In (a) a step size of 0.050, resulting in a maximum
of 34 samples per ray was used. Image (b) was ren-
dered with a step size of 0.005, yielding a maximum
of 346 samples per ray.

Step Size
0.125 0.050 0.025 0.005

low op. 43 24 13 4
medium op. 43 25 14 4

high op. 45 28 16 5

Table 1: Rendering speed in frames per second
achieved for the three volumes rendered, and differ-
ent step sizes.

dataset. The results show that for small step sizes,
the rendering speed decreases dramatically. This can
be seen by comparing the 25 fps framerate for the
medium opacity volume with a step size of 0.050, with
the 4 fps yielded for a step size of 0.005. As expected,
the results also demonstrate that the number of frames
per second (fps) increases with more opaque volume
datasets, due to the early ray termination mechanism
implemented.
The jittering technique was implemented as a possible
solution for achieving higher quality results without
decreasing the step size, by introducing a random vari-
ation in the sampling positions. Figure 6 shows the
result of rendering the dataset with medium opacity
and a step size of 0.025, with multipass ray casting and
jittered multipass ray casting.

The image resulting from rendering with a stochastic
jitter (Figure 6b) does not contain the regular pat-
terns (wood-grain effects) which can be observed in
the original image (Figure 6a). The patterns are sub-
stituted by noise caused by the random variation in-
troduced in the ray starting positions. For a human
being, the noise is easier to tolerate than the regular
patterns present in the non jittered image. As a con-
clusion, the result obtained with the jittered multipass
ray casting is visually more acceptable.



(a) (b)

Figure 6: Comparison of the images obtained when
rendering the volume dataset, with medium opacity,
with multipass ray casting (a) and with jittered multi-
pass ray casting (b). A step size of 0.025 was used.

Due to the increase of the per fragment operations,
rendering a volume with jittered multipass ray casting is
slower than using the multipass ray casting technique
for the same step size. In Table 2 a comparison of
the average framerate for the medium opacity volume,
obtained when applying a complete rotation to the
dataset, can be seen. Different step sizes were used,
and combined with jittered and non jittered ray set
up.

Step Size
0.125 0.050 0.025 0.005

jittered 23 16 11 4
non jittered 43 25 14 4

Table 2: Comparison of the fps obtained when ren-
dering the medium opacity volume with jittered multi-
pass ray casting (jittered) and with multipass ray cast-
ing (non jittered), for different step sizes.

The results in Table 2 show that the jittered version
is consistently slower than the non jittered version.
But the decrease of the number of fps for the jittered
version is not too high regarding the corresponding
improvement in the subjective image quality. For ex-
ample, for the images shown in Figure 6 (rendered
with a step size of 0.025), the difference between the
two versions is of 3 fps. As the step size decreases, the
ray set up overhead introduced in the jittered multi-
pass ray casting becomes less relevant for the render-
ing time and the results obtained with both techniques
converge (see for example the results for a step size of
0.005, in Table 2).
Figure 7 shows the results for rendering the dataset
with X-Ray and MIP techniques.

Figures 7a and 7b were rendered using the X-Ray tech-
nique. The weighted sum of the samples along the
ray results in a final image similar to an X-Ray im-
age. In the Figures 7c and 7d, rendered using the MIP

(a) (b)

(c) (d)

Figure 7: Images (a) and (b) show the dataset ren-
dered with the X-Ray compositing technique. In (c)
and (d), the dataset was rendered with the MIP com-
positing method.

compositing technique, only the highest sampled value
along each ray contributes to the final image. This
emphasizes the bone and vascular structures present
in the dataset, but does not provide the viewer with
depth information.
In Table 3, the average framerate obtained while ren-
dering a complete rotation of the dataset, using the
X-Ray and MIP compositing methods, is shown.

Step Size
0.125 0.050 0.025 0.005

X-Ray 28 19 16 7
MIP 29 21 18 7

Table 3: Comparison of the time per frame obtained
while rendering the volume dataset with the X-Ray
and MIP compositing methods, with jittered ray set
up, and different step sizes.

The results show that the performance of these tech-
niques is in line with the results achieved previously
(e.g. see Table 2, jittered), with an increasing ren-
dering time as the step size decreases. The simplicity
of the operations during the ray traversal, cause the
time to render an image with the X-Ray and MIP
compositing methods to be less than the one needed
to evaluate of the volume rendering integral (e.g. Ta-
ble 2, jittered).



5. CONCLUSIONS

In this article, a set of shaders used to perform vol-
ume ray casting on the GPU was presented. Com-
parisons were performed among different compositing
techniques, and the effect of different step sizes along
each ray was also evaluated. Larger step sizes result
in faster rendering, but aliasing becomes apparent in
the resulting images. Jittering of the origin of the rays
was introduced to minimize this problem, using this
stochastic process to trade noise for aliasing. Noise
is more easily tolerated by the Human Visual System
than the visible artifacts caused by the aliasing, which
allows for the utilization of larger step sizes achieving
the same subjective image quality.
This project was motivated by the creation of a Hu-
man Atlas visualization tool, based on volume render-
ing techniques, which could allow a real time inter-
action. The large rendering times obtained by using
traditional CPU ray casting, prohibitive for a real time
visualization, and the availability of extremely efficient
and highly programmable GPUs, drove the project to
the field of GPU ray casting. The results achieved
so far are satisfactory regarding both image quality
and rendering time. The parallel nature of the ray
castingalgorithm, where each ray is processed inde-
pendently of the other rays, sugests that the shaders
implemented should be well scalable.

References

[Bruckner 08] Stefan Bruckner. Efficient Vol-
ume Visualization of Large Medi-
cal Datasets - Concepts and Algo-
rithms. VDM Verlag, Saarbrücken,
Germany, Germany, 2008.

[Cabral 94] Brian Cabral, Nancy Cam, and Jim
Foran. Accelerated volume render-
ing and tomographic reconstruction
using texture mapping hardware.
Proceedings of the 1994 symposium
on Volume visualization, pages 91–
98, 1994.

[Cullip 94] Timothy J. Cullip and Ulrich Neu-
mann. Accelerating volume re-
construction with 3d texture hard-
ware. Technical Report: University
of North Carolina at Chapel Hill,
1994.

[Hadwiger 06] Markus Hadwiger, Joe M. Kniss,
Christof Rezk-salama, Daniel
Weiskopf, and Klaus Engel. Real-
time Volume Graphics. A. K.
Peters, Ltd., Natick, MA, USA,
2006.

[Johnson 04] Christopher Johnson and Charles
Hansen. Visualization Handbook.

Academic Press, Inc., Orlando, FL,
USA, 2004.

[Kajiya 84] James T. Kajiya and Brian P
Von Herzen. Ray tracing volume
densities. SIGGRAPH Comput.
Graph., 18(3):165–174, 1984.

[Kruger 03] J. Kruger and R. Westermann. Ac-
celeration techniques for gpu-based
volume rendering. Proceedings of
the 14th IEEE Visualization 2003
(VIS’03), page 38, 2003.

[Levoy 88] Marc Levoy. Display of surfaces
from volume data. IEEE Computer
Graphics and Applications, 8(3):29–
37, 1988.

[LM99] Eric C. La Mar, Bernd Hamann,
and Kenneth I. Joy. Multiresolution
techniques for interactive texture-
based volume visualization. Pro-
ceedings of the 10th IEEE Visual-
ization 1999 Conference (VIS ’99),
1999.

[Preim 07] B. Preim and D. Bartz. Visual-
ization in Medicine: Theory, Algo-
rithms, and Applications. Elsevier,
2007.

[RS00] C. Rezk-Salama, K. Engel,
M. Bauer, G. Greiner, and T. Ertl.
Interactive volume on standard
pc graphics hardware using multi-
textures and multi-stage rasteri-
zation. Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware,
pages 109–118, 2000.

[Scharsach 05] H. Scharsach. Advanced gpu ray-
casting. Proceedings of CESCG,
pages 69–76, 2005.

[Stegmaier 05] S. Stegmaier, M. Strengert,
T. Klein, and T. Ertl. A simple and
flexible volume rendering frame-
work for graphics-hardware-based
raycasting. Volume Graphics, 2005.
Fourth International Workshop on,
pages 187–241, June 2005.

[Weiskopf 07] Daniel Weiskopf. GPU-Based In-
teractive Visualization Techniques
(Mathematics + Visualization).
Springer-Verlag Berlin Heidelberg,
2007.

[Westermann 98] Rüdiger Westermann and Thomas
Ertl. Efficiently using graph-
ics hardware in volume rendering



applications. Proceedings of the
25th annual conference on Com-
puter graphics and interactive tech-
niques, pages 169–177, 1998.


