

³¹P Nuclear Magnetic Resonance and X-Ray Diffraction Studies of Na-Sr-Phosphate Glass-Ceramics

R.A. Pires¹, I. Abrahams², T.G. Nunes¹, G.E. Hawkes²

¹Departamento de Engenharia de Materiais, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal, pc1539@popsrv.ist.utl.pt
²Structural Chemistry Group, Department of Chemistry, Queen Mary College, University of London, London E1 4NS, UK.

Keywords: glass-ceramics, phosphates, NMR, X-ray powder diffraction

Abstract. A set of Na-Sr-phosphate glass and glass-ceramic samples, with general formula xSrO:(0.55-x)Na₂O:0.45P₂O₅, were prepared and analysed by solid state ³¹P nuclear magnetic resonance spectroscopy and X-ray powder diffraction. The results show the presence of Q^1 and Q^2 phosphate species in all samples. At low concentrations of Sr^{2+} ($x \le 0.20$) the strontium is preferentially incorporated in Sr^{2+} - Q^1 crystalline phases, and only at higher Sr^{2+} concentrations are crystalline phases present which Sr^{2+} is associated with Q^2 phosphate units.

Introduction

Glasses and glass-ceramics are widely used as biomaterials, mainly as bone replacement materials [1] and as base materials for dental restorations [2, 3]. One of the main advantages of phosphate based materials, and particularly the Na-Ca-phosphate system, is their chemical relationship with hydroxylapatite, one of the main constituents of bone and teeth. However, X-ray examination of the restoration is often necessary and this demands the use of materials with a higher radiopacity. The substitution of CaO for SrO improves the material's radiopacity.

The structures of phosphate glasses and glass-ceramics are based on networks of corner sharing phosphate tetrahedra. Four types of phosphate moiety can be present, which are commonly described using Q^n nomenclature, where n represents the number of bridging oxygens (BO) of the unit. Accordingly, the $(PO_4)^{3-}(Q^0)$ unit has no BO, the $(PO_{3.5})^{2-}(Q^1)$ unit has 1 BO, the $(PO_3)^-(Q^2)$ unit has 2 BO, and the $(PO_{2.5})(Q^3)$ unit has 3 BO. These phosphorous environments can be distinguished by ^{31}P solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, due to their characteristic isotropic chemical shift (δ_{iso}) and chemical shift anisotropy (CSA) ranges in glass and ceramic structures [4].

In this study, a set of sodium strontium phosphate glasses and glass-ceramics, with general formula xSrO:(0.55-x)Na₂O:0.45P₂O₅, were synthesised. The crystalline phases were analysed by X-ray diffraction (XRD) and the phosphorous environment was probed by solid state ³¹P MAS NMR spectroscopy.

Materials and methods

Anhydrous sodium carbonate (Analar, 99.9 %), strontium carbonate (Hopkin & Williams Ltd, 98 %) and diammonium hydrogen phosphate (BDH, 97 %) were used to prepare a set of Na-Sr-phosphate glass samples of general composition xSrO:(0.55-x)Na₂O:0.45P₂O₅, with x = 0.00, 0.09, 0.19, 0.29, 0.39, 0.49 and 0.55, by melt quenching. The starting materials were ground as a slurry in ethanol using an agate mortar and pestle. After drying at 70° C for 3 h the mixtures were placed in platinum crucibles and heated at 300° C for 30 min to allow the release of H₂O and NH₃, at 650° C

for 30 min to allow the release of CO₂ and at temperatures between 1000-1300° C to produce the melts. After 1 h at that temperature, the melts were splat quenched in air onto a stainless steel plate.

The glass transition temperature (T_g) and crystallization temperature (T_c) were measured by differential scanning calorimetry (DSC) using aluminium pans on a Perkin-Elmer DSC 7 under nitrogen atmosphere and at a heating rate of 10° C min⁻¹.

Glass-ceramics were prepared by heating the glass samples overnight at temperatures between $T_{\rm g}$ and $T_{\rm c}.$

The crystalline and amorphous materials were analysed by X-ray powder diffraction (XRD) on an automated Phillips PW1050/30 diffractometer, in flat plate $\theta/2\theta$ geometry using Ni filtered Cu K α radiation. Data were collected from 5 to 70° 2 θ , with a step width of 0.05° and a count time of 2 s per step. Diffraction patterns were modelled by Rietveld refinement using GSAS [5].

³¹P MAS NMR spectra of the glasses and glass-ceramics were acquired at a frequency of 242.9 MHz on a Bruker AVANCE 600; a simple single pulse, acquire sequence was used, with a recycle delay of 60 s and a pulse width of 1 μs which corresponds to a flip angle ca. 10°. 24 FIDs, each of 16384 data points were accumulated, from which, 8192 points were Fourier transformed. MAS rates were set to 12 kHz. The spectra were fitted with dmfit [6], to obtain δ_{iso} , CSA and the relative concentration of each species.

Results and discussion

³¹P MAS NMR spectroscopy indicated the presence of two phosphorous species in the glass structure: Q^1 and Q^2 . The assignment was based on the δ_{1so} and CSA of each signal. The Q^1 species, in the glass samples have δ_{1so} from, approximately, 1.2 to -6.3 ppm, while values of CSA, ranged from 130.2 to 152.7 ppm [7]. Q^2 species have δ_{1so} from, approximately, -18.5 to -22.5 ppm while values of CSA, ranged from -202.7 to 213.8 ppm [7]. The relative concentration of the two species was found to be 22 and 78 % for the Q^1 and Q^2 species respectively, which agrees with the values calculated from the equations developed by Van Wazer [4, 8].

The ³¹P MAS NMR spectra of the glass-ceramic samples are shown in Fig. 1. Several different species are observed within the Q^1 and Q^2 δ_{iso} ranges.

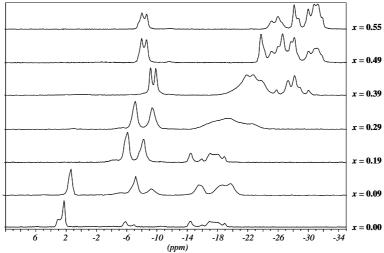


Fig. 1. 31 P MAS NMR spectra for glass-ceramics in the system xSrO:(0.55-x)Na₂O:0.45P₂O₅.

The changes in the spectra with change in the Sr^{2+} concentration reflect the stabilisation of particular crystalline phases at certain compositions. At lower Sr^{2+} concentrations (x = 0.00 to 0.19) the Q^2 band is mostly unchanged in isotropic chemical shift, whereas the Q^1 region shows species

with lower frequency shifts dominating as $[Sr^{2+}]$ increases. The sample with x = 0.29 shows the broadest resonances and this certainly reflects the incomplete crystallisation of this sample. The spectra with the highest concentrations of Sr^{2+} (x = 0.39 to 0.55) reveal a low frequency shift with $[Sr^{2+}]$, and small changes in the Q^1 region. Turner *et al*. [9] have shown that the cation can influence the ^{31}P isotropic shift in structurally related phosphate groups, according to the factor $-Z/\sqrt{r}$, where Z is the ionic charge and r is the ionic radius. In substituting Na^+ by Sr^{2+} in the material the dominant effect is the doubling of the ionic charge, and consequently the factor is a larger number for Sr^{2+} and the negative sign results in the prediction of a shift to low frequency. Thus the changes in the spectra in Fig. 1 are consistent with the introduction of Sr^{2+} into the sodium phosphate material first producing new Sr^{2+}/Q^1 crystalline phases, and at higher concentrations producing new Sr^{2+} phases.

Fig. 2 shows the XRD powder patterns of the glass-ceramics. Several stoichiometric crystalline phases have been identified and are correlated with the composition of the parent glass. Below the x = 0.39 composition, sodium phosphate phases dominate the X-ray patterns, while at compositions with higher Sr^{2+} concentrations, crystalline strontium phosphates are evident.

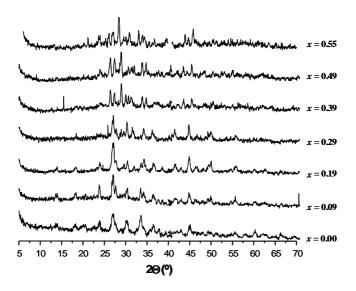


Fig.2. XRD powder patterns for glass-ceramics in the system xSrO:(0.55-x)Na₂O:0.45P₂O₅.

At the x=0 composition Na₃P₃O₉ [10] and Na₅P₃O₁₀ [11] have been identified as the principal crystalline phases, with some evidence of a small amount of Na₄P₂O₇ [12]. As x increases, Sr²⁺ rich phases become evident and in the fully substituted system (x=0.55) α -Sr₂P₂O₇ [13] and Sr(PO₃)₂ [14] have been identified. These results are consistent with the observation and variation of Q^1 and Q^2 species in the ³¹P NMR spectra.

Theoretically, the limiting composition at which all the Na⁺ ions associated with the charge balancing of the Q^1 sites is with $x \approx 0.20$. This composition is in between samples with x = 0.19 and x = 0.29, where, from the analysis of the ³¹P MAS NMR spectra the changeover from association of Sr²⁺ with Q^1 species to Q^2 occurs.

Conclusion

The results indicate the preferential substitution of the Na⁺ cations closely associated with the Q^1 phosphorous species, and only at a second stage the substitution of Q^2 associated cations occur. This

conclusion is based on the ^{31}P MAS NMR spectra of the glass-ceramics, where, at lower Sr^{2+} concentration the Q^1 species changes its surroundings, while the Q^2 species remains in a similar structural organization. This is consistent with a preferential substitution model, where the Na^+ cations are closely associated with the Q^2 phosphorous, while the Sr^{2+} cations are closely associated with the Q^1 phosphorous tetrahedron. The non-random distribution of cations in the structure of Na-Sr-phosphate glasses reported on a previous study [7] is also observed in the glass-ceramics with similar compositions.

Acknowledgments

This work was supported by the Portuguese Foundation for Science and Technology, project POCTI/33193/99. RP acknowledges a PhD research grant, PRAXIS/BD/21572/99. We gratefully acknowledge the Chemical Database Service for the ICSD database.

References

- [1] T. Kokubo, H-M, Kim and M. Kawashita: *Biomaterials*, 24(13) (2003), p. 2161;
- [2] A. Wilson and J. MacLean: *Glass-Ionomer Cements* (Quintessence Publishing, Chicago 1988);
- [3] A. Wilson and J.W. Nicholson: *Acid-base cements Their biomedical and industrial applications* (Cambridge University Press, Cambridge 1993);
- [4] R.K. Brow: J. Non-Cryst. Solids, 263&264 (2000), p. 1;
- [5] A. C. Larson and R. B. Von Dreele: Los Alamos National Laboratory Report, No. LAUR-86-748, (1987);
- [6] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J-O. Durand, B. Bujoli, Z. Gan and G. Hoatson: Magnetic Resonance in Chemistry, 40 (2002), p.70;
- [7] R. Pires, I. Abrahams, T.G. Nunes and G.E. Hawkes: submitted to J. Non-Cryst. Solids;
- [8] J.R. Van Wazer: Phosphorous and its Compounds, vol. 1, (Interscience, New York 1958);
- [9] G.L. Turner, K.A. Smith, R.J. Kirkpatrick and E. Oldfield: J. Magn. Reson., 70 (1986), p. 408;
- [10] H.M. Ondik: Acta Crystallogr., 18 (1965), p. 226;
- [11] D.E.C. Corbridge: Acta Crystallogr., 13 (1960), p. 263;
- [12] K.Y. Leung and C. Calvo: Can. J. Chem., 50 (1972), p. 2519;
- [13] L.O. Hagman, I. Jansson and C. Magneli: Acta Chemica Scandinavica, 22 (1968), p.1419;
- [14] M. Jansen and N. Kindler: Zeitschrift für Kristallographie, 212 (1997), p. 141.