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Four different azo dyes were decolourized and biodegraded in a sequential microaerophilic-aerobic
treatment by a facultative Klebsiella sp. strain VN-31, a bacterium isolated from activated sludge process
of the textile industry. Dye decolourization was performed under microaerophilic conditions until no
colour was observed (decolourization percentage >94%). The medium was then aerated to promote the
biodegradation of the amines produced. The presence of aromatic amine in the microaerophilic stage and
its absence in the aerobic stage demonstrate azo bond reduction and an oxidative biodegradation
process, respectively. Total Organic Carbon (TOC) reduction for the growth medium plus dyes was ~50%
in the microaerophilic stage and ~80% in the aerobic stage. The degradation products were also
characterized by FT-IR and UV-vis techniques and their toxicity measured using Daphnia magna. The
results provide evidence that the successive microaerophilic/aerobic stages, using a single Klebsiella sp.
strain VN-31 in the same bioreactor, were able to form aromatic amines by the reductive break down of
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the azo bond and to oxidize them into non-toxic metabolites.
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1. Introduction

Pollution problems due to textile industry effluents have
increased in recent years. From the available literature it can be
estimated that approximately 75% of the dyes discharged by textile-
processing industries belong to the classes of reactive (~36%), acid
(~25%) and direct (~15%) dyes [1]. In these classes, the azo dyes
(aromatic moieties linked together by azo (-N=N-) chromophores)
are the most important chemical class of synthetic dyes and
pigments, representing between 60% and 80% of the organic dyes
used in industries such as the textile, leather, plastic, cosmetic and
food industries [2]. Recent studies have shown that azo dyes
contribute to the mutagenic activity of ground and surface waters
polluted by textile effluents [3]. Furthermore, their discharge into
surface water leads to aesthetic problems and obstructs light
penetration and oxygen transfer into bodies of water, hence
affecting aquatic life [4]. Moreover, it is very difficult to treat textile
industry effluents because of their high BOD, COD, heat, colour, pH
and the presence of metal ions [5]. In recent years, new processes for
dye degradation and wastewater reutilization have been developed
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[6]. In particular, systems based on biological processes using a large
variety of bacterial strains, allow for degradation and mineralization
with a low environmental impact and without the use of potentially
toxic chemical substances, under mild pH and temperature
conditions [7-10]. Amongst these systems, several facultative
anaerobic bacterial strains including Sphingomonas sp., Pseudomonas
luteola, Streptococcus faecales and Klebisiella pneumonae have been
described as being capable of reducing azo dyes [11-14].
Reductive azo dye decolourization by microorganisms usually
starts with the cleavage reduction of the azo bond under anaerobic
or microaerophilic conditions, and leads to the accumulation of
toxic aromatic amines [4]. To overcome this problem, recent
studies included combinations of anaerobic and aerobic steps in an
attempt to achieve not only dye decolourization but also
degradation of the aromatic amines [15-17]. However, very few
studies have been performed using sequential microaerophilic/
aerobic conditions with the same microorganism, preferring the
use of consortia or different microorganisms, used separately
under anaerobic, microaerophilic and aerobic conditions [18,19].
In this study, degradation of four azo dyes was carried out under
microaerophilic conditions (O, limited environments) until no
colour was observed using a facultative Klebsiella sp. strain VN-31.
The medium was then aerated by stirring to promote oxidation of
the aromatic amines formed by reductive break down of the azo
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Fig. 1. Chemical dye structures.

bond, into non-toxic metabolites. The degradation products were
characterized by FT-IR and UV-vis techniques and their toxicity
and Total Organic Carbon (TOC) measured. Thus, the main
achievement of this work was to prove that the degradation of
azo dyes in a successive microaerophilic/aerobic process using,
exclusively, a facultative anaerobic Klebsiella sp. bacterium isolated
from textile dye effluents was possible not only to decolourize the
dyes but also to achieve a good degree of mineralization and low
toxicity with low running and maintenance costs.

2. Material and methods
2.1. Chemicals and medium

The azo dyes Reactive Yellow 107 (RY107), Reactive Black 5 (RB5), Reactive
Red 198 (RR198) and Direct Blue 71 (DB71) were kindly provided by the textile

company Vicunha, Itatiba, Brazil. The structures of the dyes are shown in Fig. 1.
All other analytical grade reagents were purchased from Sigma and used
without further purification. The mineral salts medium (MM) at pH 7 used in all
the batch experiments contained K;HPO4 (1.6 g/L), KH,PO4 (0.2 g/L), (NH4)»SO04
(1.0 g/L), MgS04-7H,0 (0.2 g/L), FeSO4-7H,0 (0.01 g/L), NaCl (0.1 g/L) and CaCl,-2
H,0 (0.02 g/L). The medium was supplemented with 100 mg/L of dye, 3 g/L of
glucose and 1 g/L of sodium pyruvate and was described as mineral medium rich
(MMR).

2.2. Strain isolation and characterization

The microorganisms were isolated from the activated sludge produced by the
Vicunha textile company, Itatiba, Brazil. Serial dilutions (107! to 107°) of the
samples collected were inoculated into Nutrient Agar Medium by the spread plate
technique. Isolated strains were inoculated into MMR with the azo dyes
(100 mg L~!/dye) and incubated under microaerophilic conditions at 30 °C for 7
days. The strain that achieved the best decolourization was selected for this study.
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Identification of the isolated strain was performed by 16S rRNA gene sequence
analysis. Genomic DNA was obtained using guanidium thyocianate method
according to Pitcher et al. [20]. Cultures were harvested at the end of the
exponential growth phase by centrifugation at 18.600 x g for 3 min. Cells were
resuspended in 100 pL of fresh lysozyme (50 mg/mL) in TE buffer (10 mmol Tris—
HC1; 1 mmol/LEDTA, pH 8) and were incubated at 37 °C for 30 min. Cells were lysed
with 0.5 mL of guanidium thyocianate (5 mol/L guanidium thiocyanate (Sigma),
100 mmol/L EDTA and 0.5%, v/v, sarkosyl) and vortexed briefly. The lysates were
cooled on ice, 0.25 mL cold 7.5 mol/L ammonium acetate added with mixing, held
on ice for a further 10 min and then 0.5 mL chloroform and isoamilic alcohol (24:1)
mixture added. The phases were mixed thoroughly, transferred to a 1.5 mL
Eppendorf tube and centrifuged (18.600 x g) for 10 min. Supernatant fluids were
transferred to Eppendorf tubes and 0.54 volumes of cold 2-propanol added. The
tubes were inverted for 1 min to mix the solutions and the fibrous DNA precipitate
was deposited by centrifugation at 10.000 x g for 20 s. Pellets of DNA were washed
in 70% ethanol and dried under vacuum heated at 65 °C with mixing until dissolved.
DNA samples were redissolved overnight at 4 °C in a 50 pL of sterile, deionized
water.

The 16S rRNA gene was amplified by PCR using the specific primers, 27f and
1401r for the universal Bacteria Domain. Fifty microliter reaction mixtures were
used contained 100 ng of total DNA, 2 U of Taq polymerase (Invitrogen™), 0.2 mM of
deoxynucleoside triphosphates and 0.4 wM of each primer. The PCR amplifications
were carried out using an initial denaturation step of 2 min at 94 °C, followed by 10
cycles of 1 min at 94 °C, 30s at 69 °C, decreasing 0.5 °C each cycle, and 3 min at
72 °C, followed by another 10 cycles of 1 min at 94 °C, 30 s at 63 °C and 3 min at
72 °C, in an Eppendorf thermal cycler (Eppendorf Mastercycler Gradient). The PCR
product was purified on GFX™ PCR DNA Kit and a Gel Band Purification kit (GE
HealthCare) for automated sequencing in the MegaBace DNA Analysis System 1000.
The sequencing was carried out using the 10f (5’ GAG TTT GAT CCT GGC TCA G3');
765f (5’ATT AGA TAC CCT GGT AG3'); 782r (5’ACC AGG GTA TCT AAT CCT GT3') and
1100r (5'AGG GTT GGG GTG GTT G 3’) primers and the DYEnamic ET Dye
Terminator Cycle Sequencing Kit for the automated MegaBace 500 system (GE
Healthcare), according to the manufacturer’s instructions. Partial 16S rRNA
sequences obtained from the isolates were assembled in a contig using the
phred/Phrap/CONSED program [21].

Identification was achieved by comparing the contiguous 16S rRNA sequences
obtained with the 16S rRNA sequence data obtained from reference and type strains
available in the public databases GenBank and RDP (Ribosomal Database Project II
Release 9, Michigan State University, USA) using the BLASTn and Seqmatch,
respectively. The sequences were aligned using the CLUSTAL X program and
analyzed with MEGA software [22,23]. Evolutionary distances were derived from
sequence-pair dissimilarities, calculated as implemented in MEGA using Kimura’s
DNA substitution model [24]. The phylogenetic reconstruction was done using the
neighbor-joining (NJ) algorithm, with bootstrap values calculated from 1000
replicate runs, using the routines included in the MEGA software [25]. The 16S rRNA
partial sequence determined in this study were deposited at the Genbank database
under the accession number FJ468444.

2.3. Aromatic amines detection

The aromatic amines in the solid phase were determined by the modified
method of Marik et al. [26]. Samples were taken after incubation under
microaerophilic and aerobic conditions, frozen and freeze dried (FTS System
model Dura-Dry MP). The samples (5 mg) were dissolved in 5 mL of a 0.4% solution
of chloranil in dimethylformamide (DMF) and heated at 100 °C for 5 min. The
absorption was measured in a Hexios a Unicam UV-vis spectrophotometer at
560 nm. A calibration curve was prepared using aniline-2-sulfonic acid as a model
product of azo dye reduction, and the sample amine concentration was calculated in
mM. The value of the control was subtracted from that of the biodegraded samples.
The use of a single aromatic amine as model substrate introduces a very low error
because the chloranil reaction is very specific to primary aromatic amines. The
colour intensity could be slightly affected by the position of amino group due to
steric hindrance. However, the presences of others ring substituents interfere
weakly with the colorimetric reaction between the primary aromatic amine and the
chloranil. Moreover, secondary and tertiary aromatic amines, as well as pyridine
and pyrimidine moieties, all tested negative under these conditions [26].

2.4. Dye decolourization

Decolourization assays under microaerophilic conditions were performed in
cultures containing 350 mL of MMR (pH 7) supplemented with 100 mg/L~" of dyes.
The TOC of this medium was around 2000 mg/L (dyes TOC ~ 60 mg/L). Samples
were incubated under microaerophilic conditions at 30 °C for 168 h or until no
colour was observed. Microaerophilic conditions were achieved by placing culture
flasks in sealed jars containing microaerobac gas generators envelopes (Probac-
Brazil), reducing the oxygen level to 15-5% and generating an enriched carbon
dioxide environment within the incubator jars after the system was properly
activated according to the manufacture’s instructions.

The culture was then aerated by stirring without any further supplementation of
the medium. Dye decolourization was measured in a UV-vis spectrophotometer

(Shimadzu 2101) for the microaerophilic and aerobic stages and the percentage of
effluent decolourization calculated.

2.5. UV-vis analysis

The dye degradation products produced during biodegradation after incubation
under microaerophilic and aerobic conditions were studied by following the change
in the UV-vis spectra (from 200 to 800 nm) using a UV-vis spectrophotometer
(Agilent 8453).

2.6. Infrared spectrum analysis

The controls and samples were dried and mixed with KBr (1:20; 0.02 g of sample
plus KBr to a final weight of 0.4 g). The samples were then ground, desorbed at 60 °C
for 24 h and compression molded in a uniaxial hydraulic press under a load of
0.9 MPa to obtain IR-transparent pellets. The absorbance FT-IR spectra of the
samples were recorded using a FT-IR Spectrum 2000 PerkinElmer spectrometer
with a resolution of 4 cm~! and averaged over 32 scans. The spectra were collected
within a scanning range of 400-4000 cm~'. The FT-IR was first calibrated for
background signal scanning with a control sample of pure KBr, the experimental
sample then scanned. The FT-IR spectrum of the control was finally subtracted from
the spectra of the dye and dye degraded samples.

2.7. TOC measurement

The existence of organic carbon in the dye containing samples was monitored by
measuring the TOC under microaerophilic conditions and after agitation using a
TOC analyzer (Shimadzu 5000A) with direct injection of the samples after
centrifugation (20.000 x g for 15 min) and filtration through a 0.45 pwm pore size.

2.8. Toxicity test

The samples taken after treatment with Klebsiella sp. strain VN-31 were
centrifuged at 20.000 x g for 20 min and filtered through a 0.45 wm pore size filter.
Acute toxicity tests with Daphnia magna (Crustacea, Cladocera) were carried out
according to the ABNT norms (Associacdo Brasileira de Normas Técnicas NBR
12713)[27]. The sensitivity tests were carried out with neonates (6-24 h of life). For
each concentration (1%, 25%, 50%, 75%, 100%), 5 organisms were used in 5 mL flasks.
The tests and the control in distilled water were carried out in triplicate for each
concentration. The flasks containing the samples were maintained at 20 °C for 48 h
in the absence of light. The numbers of immobile organisms were counted after 20 s
of light exposure.

3. Results
3.1. Strain isolation and identification

The phylogenetic tree of the partial sequences based on the 16S
RNA gene of the Klebsiella sp. strain VN-31 was constructed by the
neighbor-joining method on the program Mega 2.0. The bootstrap
and values higher than 70% were indicated on the tree (Fig. 2). The
evolutive distance was based on the Kimura 2p model [24]. The
numbers of the GenBank access are in parenthesis. Sulfobacillus
acidophilus DSM 10332" was used as the outgroup. The nucleotide
alignment of strain VN-31 supported values of the boot strap of
99% similarity to Klebsiella pneumoniae subsp pneumoniae and
other Klebsiella sp. The phylogenetic tree showed the grouping of
VN-31 within the Klebsiella sp., biochemical tests being required to
confirm the subspecies.

3.2. Decolourization

The strain Klebsiella sp. strain VN-31 was tested to separately
decolourize four azo dyes (Reactive Yellow 107, Reactive Red 198,
Reactive Black 5 and Direct Blue 71) in a microaerophilic/aerated
sequential process. Complete decolourization (>94%; Table 1) of
the azo dyes was achieved in the microaerophilic stage and no
significant colour changes were detected in the following aerobic
stage. Klebsiella sp. strain VN-31 could only decolourize the dyes
effectively when the medium was supplemented with glucose and
pyruvate. In the absence of glucose and pyruvate, the culture was
unable to grow and decolourize, thus indicating an obligate
requirement for a supplementary carbon source for growth and
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Fig. 2. Phylogenetic tree of the Klebsiella sp. strain VN-31 for the partial sequences based on 16S rDNA.

Table 1

Amine concentrations (mM) + SD, decolourization times (h) + SD, and decolourization (%) 4+ SD in solutions incubated with Klebsiella sp under microaerophilic and aerobic

conditions in the presence of azo dyes.

Dyes Amine concentration (mM) Decolourization time (h) Decolourization (%)

Microaerophilic Aerobic Microaerophilic Microaerophilic Aerobic
RY107 0.16 + 0.04 0.01 £0.02 72 +4 100 + 0.1 92.8 £ 0.5
RB5 0.24 +0.02 0.01 +0.03 120+ 8 94 + 0.6 92.8+0.3
RR198 0.1+0.03 0.02 +0.02 96 +5 98 + 0.5 100 + 0.1
DB71 n.d. n.d. 168 £ 12 94 £ 0.4 96.6 + 0.4

n.d., Not detected.

dye decolourization (data not shown). The decolourization time
showed a relationship with the chemical structure of the dyes. The
monoazo dyes RY107 and RR198 were decolourized in 72 and 96 h,
respectively. The diazo RB5 and triazo DB71 were decolourized
after 120 and 168 h, respectively (Table 1).

3.3. Aromatic amine determination

All the decolourized dye media showed the presence of
aromatic amines after the microaerophilic stage, with the
exception of DB71, for which the measurement could not be
made due to interference by the chemical structure of this dye with
the methodology used (Table 1). The concentrations of aromatic
amines determined were in accordance with the number of azo
bonds in the chemical structure of the dye. The monoazo dyes
RY107 and RR198 showed amine concentrations of 0.16 and
0.1 mM, respectively, and the diazo RB5 showed the highest amine
concentration (0.24 mM). After the aerobic stage a significant
reduction in the amine concentration was observed (Table 1).

3.4. UV-vis characterization

The biodegradation of the four azo dyes was monitored by UV-
vis analysis. Untreated dyes: Fig. 3(A) shows that RY107 presented
two absorbance peaks at 285 and 410 nm. Fig. 3(B) shows that
RR198 presented absorbance peaks at 510, 380 and 285 nm and a
shoulder at 320 nm. Fig. 3(C) shows that RB5 presented intense
peaks at 570 and 320 nm. Two additional peaks with low
absorbance were observed at 440 and 390 nm. Fig. 3(D) shows
that DB71 presented an intense peak at 575 and three shoulders at
290, 300 and 320 nm. Wide band absorption near 250 nm was
observed for all the dyes. Treated dyes: After biodegradation of the
four azo dyes in the microaerophilic and aerobic treated solutions,

the absorbance peaks in the visible region disappeared indicating
their complete decolourization. In the UV spectra, the peaks at 285
and 320 nm disappeared following by the formation of a new peak
at 260 nm (Fig. 3).

3.5. FT-IR characterization

The FT-IR spectra obtained from the untreated dye samples
showed several peaks in the region where N-H and O-H stretching
is normally observed (3300-3500 cm™!). After the microaerophilic
and aerobic treatments a significant reduction in absorption was
observed in this region. Other bands located within the region
1610-1630cm~! and at 1402 cm™! disappeared during the
microaerophilic stage after the reductive treatment. Moreover,
during the microaerophilic stage, two new bands appeared in the
carbonyl region at around 1680-1600cm~!, attributed to the
formation of amine groups. These two bands disappeared during
the aerobic stage and a new peak around 1680 cm~! was observed.
In the aerated samples a new broad region was observed between
2300 and 2500 cm™!, associated with carboxylic acids and NH5"
ions, and also new peaks at 850, 950 cm~! and 1140 cm™ .

3.6. Toxicity test and TOC reduction

The results for D. magna toxicity are presented as the
percentage of death occurred during the incubation of Klebsiella
sp. strain VN-31 under microaerophilic and aerobic conditions, as
compared to a control composed of the dye solution and the
culture medium without the bacteria. The tests were carried out in
a 1:4 dilution of the original supernatant concentration, since 100%
of mortality occurred in the original and 1:2 supernatant
concentrations. The controls showed equal mortality for all the
dyes (47%) except for DB71, which presented 53% of mortality.
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Fig. 3. UV-vis spectra of the azo dyes before (straight line) and after microaerophilic (dashed line) and aerobic (dotted line) treatments: (A) RY107; (B) RR198; (C) RB5; (D)

DB71.

Under microaerophilic conditions, mortality decreased for all the
dyes except for the DB71 dye, which showed an increase in the
percentage mortality (60%). When the samples were aerated, no
mortality was detected for any of the dyes except for that
containing the triazine RR198, which maintained 10% of mortality.
The TOC reduction (Table 2) are explained as the percentage of
Total Organic Carbon occurred in the medium (MMR) including
glucose, pyruvate and dyes. After 7 days the reduction in TOC
under microaerophilic conditions was only ~50%. However, after
shaking (aerobic condition), a significant increase in TOC reduction
(~80%) was observed.

4. Discussion

The Klebsiella sp. strain VN-31 is a gram negative, facultative
anaerobic bacterium of the family Enterobacteriaceae. Even
though is commonly found in the normal flora intestinal, there
are numerous reports about the presence this strain in con-
taminated soil and wastewaters indicating its ability to metabolize
toxic compounds [14,28].

Although this bacterium has shown considerable dye degrada-
tion ability as compared to other bacteria, there is little literature
regarding dye decolourization using Klebsiella sp. Previous studies

Table 2

Mortality for Daphnia magna exposed to a 1:4 dilution of the supernatant containing
azo dyes and incubated with Klebsiella sp., and the % TOC removal, under
microaerophilic and aerobic conditions.

Dyes Mortality (%)* TOC reduction (%)

Control Microaerophilic Aerobic Microaerophilic Aerobic
RY107 47 33 0 56 78
RB5 47 40 0 46 74
RR198 47 27 10 54 64
DB71 53 60 0 51 87

2 SD + 11% for all the data.
> SD + 2% for all the data.

have shown that strains of Klebsiella oxytoca isolated from cyanide-
containing wastewater were able to use nitriles as the sole source
of nitrogen [28]. Wong et al. isolated five bacteria from dye-
contaminated sludge and found that two bacteria, identified as
Klebsiella ssp. and K. pneumonae, showed decolourization ability
with respect to the Methyl Red dye [14].

Azoreductase is the key enzyme responsible for reductive azo
dye degradation in bacterial species. Azoreductases isolated from
several bacteria have been shown to be inducible flavoproteins and
to use both NADH and NADPH as electron donors [29]. The
presence of oxygen normally inhibits the azo bond reduction
activity, since aerobic respiration may dominate use of the NADH;
thus impeding electron transfer from NADH to the azo bonds. The
advantage of the anaerobic reduction of azo dyes is that the
depletion of oxygen is easily accomplished in microaerophilic
cultures thus enabling anaerobic, facultative anaerobic and
microaerobic bacteria to reduce azo dyes. The reaction takes place
at neutral pH values and is extremely unspecific [30]. However, the
precise mechanism of anaerobic azo-reduction is not yet totally
understood. A different model was recently suggested for the non-
specific reduction of azo dyes by bacteria, which does not require
transport of the azo dyes or reduced flavins through the cell
membrane [12]. Earlier studies provided evidence that microbial
anaerobic azo-reduction was linked to the electron transport
chain, and suggested that dissimilatory azo-reduction was a form
of microbial anaerobic respiration [31]. In addition, different
models for the non-specific reduction of azo dyes by bacteria,
which did not require transport of the azo dyes or reduced flavins
through the cell membrane and that described the extracellular
reduction of azo dyes by anaerobic bacteria, were recently
suggested [32]. These results suggested that azo dye reduction
was a strain specific mechanism that could be performed by an
azoreductase enzyme or by a more complex metabolic pathway.
Thus, due to the scarcity of information on the metabolism of
Klebisella sp., the usual true time dependant kinetic studies of
azoreductase activity using the azo dye as substrate were not
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performed, and the azo reduction mechanism in Klebsiella sp. strain
VN-31 will be the subject of a further specific study.

In the present work the strain of Klebsiella sp. strain VN-31 was
tested to separately decolourize four azo dyes (RY107, RR198, RB5
and DB71)in asequential microaerophilic/aerated process.RY107
and RR198 are both monoazo dyes and showed relatively short
decolourization times (72 and 96 h respectively). The increase in
degradation time (24 h) for RR198 was probably due to the
triazine group, whose degradation is more recalcitrant than that
of the benzene and naphthalene rings. The chemical structures
of the dyes greatly influence their decolourization rates and
the decolourization efficiency was limited to several azo dye
structures [33].

Dyes with simple structures and low molecular weights usually
exhibit higher rates of colour removal, whereas colour removal is
more difficult with highly substituted, high molecular weight dyes
[34]. For this reason, the highly substituted diazo RB5 and the
triazo DB71 showed longer decolourization times (120 and 168 h
respectively). It has been reported that the azo compounds with
hydroxyl or amino groups are more likely to be degraded than
those with methyl, methoxy, sulfo or nitro groups [35]. Usually, the
presence of sulfonates in reactive dye structures results in low
levels of colour removal. However, this is not applicable to direct
dyes (DB71) that usually exhibit high levels of colour removal
independent of the number of sulfonate groups in the dye
structure, reinforcing the idea that steric hindrance and the
number of azo bonds are responsible for the different decolour-
ization times [36]. It has also been reported that a correlation
between the enzyme redox potential and its activity towards the
substrates could influence their decolourization rates [37]. In this
context, the present decolourization times are in agreement with
those of Zille et al., who found a linear relationship between the
cathodic peak potentials and the time of maximum decolouriza-
tion for several azo dyes using the ascomycete yeast Issatchenkia
occidentalis [38]. Thus, the ability of the bio-agents to degrade azo-
dyes depends on the structural characteristics of the dye, the
temperature and pH of the treatment, the presence of inter-
mediates and the difference between the redox potentials of the
biocatalyst and the dye. Further studies will be carried out to
measure the redox potentials of the dyes by cyclic voltammetry in
order to verify this correlation.

Biodegradation of the azo dyes was also monitored by UV-vis
(Fig. 3) and FT-IR analyses. After biodegradation of the four azo
dyes in the microaerophilic and aerobic treated solutions, the
absorbance peaks in the visible region disappeared, indicating
complete decolourization. Moreover, the absence of the typical
absorption peak of the hydrogenated azo bond structure
(Ar---NH---NH- - -Ar’) at 245 nm in all the dyes indicated complete
disruption of the azo bonds [39]. The presence of high concentra-
tions of aromatic amines in the microaerophilic stage confirmed
this statement (Table 1). In the UV spectra, the decrease in
absorbance of the peaks at 285 and 320 nm, related to the benzene
and naphthalene rings, respectively, and the formation of a new
peak at 260 nm, suggested that the reductive destruction of the
conjugated azo structure uncovered the fine multi-peaks of
aromatic rings in the spectra [39]. In the FT-IR analysis, the bands
located within the range 1610-1630 cm~! and at 1402 cm™' were
due to azo linkages -N—N- on aromatic structures and of -N—N-
stretching in a-substituted compounds, respectively [40]. These
peaks diminished during the treatment and in some cases
disappeared completely from the spectrum of the microaerophilic
and aerobic treated dyes, confirming the previous UV-vis results
about disruption of the azo linkage. In the microaerophilic stage,
the reduction in the azo linkage peak was followed by the
formation of two bands in the carbonyl region at around 1680-
1600 cm~!. Two bands in this region were consistent with an

amide derived from ammonia or a primary amine. During the
aerobic stage, these two bands disappeared and a new peak around
1680 cm~! was observed. The presence of this additional group,
due to the conjugation of C=C and C=0 groups, suggested that the
peak at 1680 cm™! could belong to a carbonyl group in a carboxylic
acid, ketone, ester or conjugated aldehyde group attached to an
aromatic ring [40]. The fact that no new peaks appeared between
3300 and 3500 cm ™! (attributed to azo bonds and an OH group in
the «a-position relative to the azo linkage) and in the region
between 1340 and 1250 cm~! (-NH,) after the aerobic treatment,
suggested that the azo linkage could have been transformed into
N, or NH3 or incorporated into the biomass [41]. Moreover, the
presence of a new broad region between 2300 and 2500 cm~! in
the aerobically treated samples, could indicate the presence of
carboxylic acid and NH3" ions (symmetric stretching mode),
suggesting a partial mineralization. Also the presence of new peaks
at 850 and 950 cm ™! (associated with the out-of-plane bending
vibration of substituted benzenes) and the peak at 1140 cm~' that
could belong to acetates, formates, propionates, benzoates,
suggested that the products were undergoing irreversible chemical
changes probably due to concomitant biodegradation and auto-
xidation reactions of the products formed during the reductive dye
degradation [41]. A large fraction of the aromatic amines from azo
dyes are susceptible to autoxidation, producing water-soluble,
highly coloured dimers, oligomers and eventually dark-coloured
polymers with low solubility [42]. Remarkably, contrary to
expectations that biorecalcitrant aromatic amines would tend to
autoxidize, forming coloured products, in the present experiment,
no increase in colour was observed during the aerobic stage,
suggesting that the aromatic amines were effectively biodegraded.
However, although in some cases biodegradation of the dye
cleavage products was demonstrated [43], it is difficult to predict
the fate of aromatic amines during the anaerobic-aerobic
treatment of azo dyes, because it is not clear whether their
removal is due to biodegradation, adsorption or chemical reactions
[17].

The toxicity results shown in Table 2 are in agreement with the
findings reported by Hunger and Jung that the reactive dyes and
hydrolyzed reactive dyes had a low toxic potential in aquatic
organisms as compared to basic, acid and disperse dyes [44]. The
increase in the mortality percentage of the DB71 dye under
microaerophilic conditions could be attributed to the triazo bonds
binding four aromatic rings, thus generating more toxic amines
than the other dyes [45]. Therefore oxidation of the aromatic
amines, as confirmed by the absence of amine in the aerobic stage
(Table 1), was necessary to diminish the toxicity of the medium.
The 10% of mortality for the triazine containing RR198 in the
aerated samples could be attributed to the triazine reactive group
that persisted in the aerobic treated effluent due to its slower
reaction rates [46]. In addition the effectiveness of the micro-
aerophilic-aerobic process by a facultative Klebsiella sp. strain VN-
31 was evaluated by the biodegradation of the Total Organic
Carbon, as a complementary indicator of the treatment efficiencies.

As shown in Table 2, when the medium was incubated under
microaerophilic conditions, the TOC reduction was only ~50% even
after 7 days of incubation. Conversely, a significant increase in TOC
reduction (~80%) was observed during the aerobic stage. It was
concluded that even if the microorganisms were able to
decolourize the dye under microaerophilic conditions, the aerobic
microorganisms required aeration not only for amine removal but
also for TOC stabilization [3].

In conclusion, the strain VN-31 isolated from the dye effluent
was identified by 16S rRNA gene as Klebsiella sp. All the dyes tested
were totally decolourized under microaerophilic conditions with
some difference in the decolourization time depending on the dye
structure, as confirmed by the UV-vis analysis. The formation of
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amines during the microaerophilic stage and their disappearance
during the aerobic stage was confirmed by direct measurement
and by FT-IR analysis. In the aerobic stage, partial mineralization of
the dye degradation products as well as of the medium metabolites
was confirmed by the FT-IR, toxicity and TOC measurements. This
methodology using a single microorganism in a sequential
microaerophilic/aerobic process was shown to be very effective
in azo dye decolourization. In a single reactor with a single
bacterium, only changing the agitation conditions, it was possible
not only to decolourize the dyes but also to achieve a good degree
of mineralization and low toxicity with low running and
maintenance costs.
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