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Abstract. The task of global optimization is to find a point where the objective functistains its most extreme value.
Differential evolution (DE) is a population-based heuristic approactctieates new candidate solutions by combining several
points of the same population. The algorithm has three parameters: aatjlifitactor of the differential variation, crossover
control parameter and population size. It is reported that DE is sensitilee choice of these parameters. To improve
the quality of the solution, in this paper, we propose a modified different@ugon introducing self-adaptive parameters,
modified mutation and the inversion operator. We test our method with & sehbnear continuous optimization problems
with simple bounds.
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INTRODUCTION

Problems involving global optimization over continuousieps are ubiquitous throughout the scientific community.
In optimization, the task is to optimize certain propertiés system by pertinently choosing the system parameters
called variables. In general, a variety of actual optimaatroblems are formulated as large-scale mathematical
programming problems involving continuous variables witimlinear objective function.

Generally, the nonlinear continuous optimization protdemith simple bounds on variables are formulated as

min f(x) (1)
where f : R" — R with Q = {x e R": Ib; < xj < ubj, j =1,...,n}. The task of global optimization in (1) is to
find a solution where the objective function obtains its nexgteme value, the global minimum. When the objective
function has a huge number of local minima, local optimmatiechniques are likely to get stuck before the global
minimum is reached, and some kind of global search is neexdfialk the global minimum with some reliability.

In the last decades, depending on the nature of objectivetibminvolved many solution methods have been
proposed to solve (1). In these methods, algorithms forisglglobal minimization problem can be classified into
deterministic methods that guarantee to find a global optimuith a required accuracy and stochastic methods that
find the global minimum only with high probability. In deteimistic methods, the values of the objective function
are assumed to be exact, and the computation is completeymdaed by the values sampled so far. A number of
deterministic methods [5, 8, 9] are present to solve glolpsintization problems of kind (1). Stochastic methods
involve function evaluations at a suitably chosen randompda of solutions and subsequent manipulation of the
sample to find good local (and hopefully global) minima. Tteckastic methods can be classified as point-to-point
search technigue and population based search techniqusolFimg those problems, a number of stochastic methods
[1,4,6,7,10,12, 13] are present.

A local search algorithm starts from a candidate solutiod Hren iteratively moves to a neighbor solution.
Typically, every candidate solution has more than one rmigkolutions and the choice of movement depends only
on information about the solutions in the neighborhood efdhrrent one. Differential evolution (DE) proposed by
Storn and Price [13] is a population-based heuristic apbrdizat is very efficient when solving derivative-free glbba
optimization problems. DE has only three parameters anardicy to Storn and Price is sensitive to these parameters.
To improve the local search and quality of the solution, iis fraper, we propose a modified differential evolution



(mDE) introducing self-adaptive parameters, modified mmaand the inversion operator for nonlinear continuous
optimization problems with simple bounds.

DIFFERENTIAL EVOLUTION

Differential evolution is a simple yet powerful evolutiagalgorithm for global optimization problems. Itis a flaadg-
point encoding for global optimization over continuouscgma It creates new candidate solutions by combining the
parent individual and several other individuals of the sgmgulation. A candidate replaces the parent only if it has
better or equal fitness. DE’s three parameters are ampiificéctor of the difference vectd¥, crossover control
parameteCR, and population siz& P. DE is a direct search method which utilize$ ndimensional component
points. The target points are definedy= (Xi1t, Xi2t, - - - , Xint) Wheret is the index of generation ame=1,2,... ,NP.

NP does not change during the optimization process. The limitaulation is chosen randomly and should cover
the entire solution space. As a rule, it is assumed a unifaobability distribution for all random decisions unless
otherwise stated. DE’s operations are outlined briefly enftilowing.

Mutation : For each target poing ¢, i = 1,2,3,...,NP, a mutant point is created according to

Vitrl = Xrpt + F (Xrpt — Xrgt) (2

with uniformly chosen random indices,r»,r3 from the set{1,2,...,NP}, mutually different and > 0. The indices
ri, r> andrs are also chosen to be different from the running ingeso thatNP must be greater or equal to four to
allow for this conditionF is a real and constant parametej0, 2] which controls the amplification of the differential
variation(xr, t — Xr,t). Here x;, + is called the base point. Differential mutation is DE’s expkion operator.
Crossover In order to increase the diversity of the perturbed compbpeints, crossover is introduced. To this end,
the trial pointu; 141 is formed, where

Ui _ [ Vijr i (rp<CR or j=3
TELT X if rj >CR and j#37 ° 3)
i = 1,2,...,n

In (3), the random numbaer; ~ U[0,1] performs the mixing ofjth component of pointsCR € [0,1] is a constant
parameter for crossover which has to be determined by threamskthe uniformly chosen integer random index
from the set{1,2,...,n} ensures that; ;1 gets at least one component fram, 1.

Selection To decide whether or not it should become a member of gaaettat 1, the trial pointu; ;11 is compared
to the target poink;; using the greedy criterion in the following way

o Uiggr 0f F(Uiggr) < f(Xig)
Xit+1 = { Xi t otherwise. @

OUR MODIFIED DIFFERENTIAL EVOLUTION

According to Storn and Price [13], DE is much more sensitivéhe choice of than it is to the choice cER The
suggested choices for the three parameters ar€: €)0.5,1]; (i) CR< [0.8,1]; and (iii) NP = 10 x n. Recall that

n is the dimensionality of the problem. The parameters in DElapt constant throughout the entire evolutionary
process. However, it is not an easy task to set appropriatargders since these depend on the nature and size of
the optimization problems. In original DE, three points eh@sen randomly for mutation and the base point is then
chosen at random within the three. This has an exploratdegtebut it slows down the convergence of DE. In the
following the modified differential evolution (mDE) is outed.

Modification of F and CR Since the choice df andCR mainly depend on the nature and size of the problems, the
modified differential evolution (mDE), proposed in this papgncludes the modifications proposed by Brest et al. [2]
for the control parametefs andCR New control parameters for next generatigp, ;1 andCR 1 are calculated as

E B F|+)\1><Fu, if A <11
Wl = Fit, otherwise

N Ag, if /\4 <T2
CRi1 = CRy, otherwise

(®)



whereA, ~ U[0,1],k=1,...,4 and1; = 17, = 0.1 represent probabilities to adjust paramekgiandCR, respectively.

R =0.1 andF, = 0.9, so the new ;; takes a value fronf0.1,1.0] in a random manner and the n&R 1 takes

a value from[0,1]. F 111 andCR ¢4 are obtained before the mutation is performed. So, theyentla the mutation,
crossover and selection operations of the new pgint; .

Modification of Mutation : Sometimes it is required to improve local search in DE, tiEnmcludes the modification
proposed by Kaelo and Ali [11] for selecting the best poiteathoosing three random points as a base point in
(2). Further, we introduce modification in the selection lod base point in the mutation operation. After evBry
generations the best point found so far is used as the basegmoi two randomly chosen points are used in differential
variation in (2). These modifications allow mDE to maintagdxploratory feature as well as explore the region around
each best point for each mutant point and at the same timelggfke convergence.

Inversion: We also implement inversion in mDE. In biology, an inversie a chromosome rearrangement in which
a segment of a chromosome is reversed end to end. Since in @intehasn-dimensional real number components,
inversion can easily be applicable. An illustrative exaengd inversion is shown in Figure 1.

Ih K
Uip =| Uizt | Uizg | Uit [ Uiag | Uisg [ Uiet | Uize | Uist |

]
|h K
Uy = Uirt [ Uizt | Uit | Uist | Uiat [ Uizt [ Uizt | Uist |

FIGURE 1. Inversion used in mDE

Bounds Check To generate the mutant point by using (2) and to performkersion, some components of point
can be generated outside of the dom@inSo, in this paper, for mDE after inversion the bounds of eamhponent
are checked with the following projection of bounds:

. if 1 .
Ib; if U 10 <IDj
/ . i / .
Uijt41= U/bJ if Ujj 1 > uby (6)
Uj 41 Otherwise.

Termination Condition: Suppose and Gmax are the current and maximum generations, respectively, faggd:
and fmin, + are the maximum and minimum objective function values ategationt. The mDE terminates it >
Gmax OF (fmaxt — fmint) < €, wheree is a very small positive number.

EXPERIMENTAL RESULTS

We code some variants including our modified variant of DE ifTfe name of the solvers are: (i) DE_Original, (ii)
DE_Kaelo, (i) DE_Brest, (iv) mDE1 (without inversion) drfv) mDE2. We seNP = min(100,10n) ande = 106
for all solvers. We also sét = 0.5 andCR= 0.9 for solvers DE_Original and DE_Kaelo ampg, = 0.05 for solver
mDE2. We set other parameter values discussed so far fagrsdDE_Brest, mDE1 and mDE2. We &t 10 for
solvers mDE1 and mDE2.

For a fair comparison among different solvers of DE, we tdissa@vers on a set of 64 nonlinear continuous
optimization problems with simple bounds and use same t&tioin condition. We run all solvers 30 times for each
problem. We use performance profile proposed by Dolan and&NBjrto evaluate and compare the performance of
different solvers. Figure 2(a) shows the performance @rédil different solvers after 30 runs. In this figure it is stmow
that solvers mDE1 and mDE2 win over the other DE. Again, fogda value oft our mDE have greater values of
ps(T) meaning that with respect to robustness of solvers our mB&win over others DE.

Finally here, we compare mDE2 with other solution methods.\se two deterministic solvers DIRECT [5] and
MCS [9] and three stochastic solvers ASA [10], PSwarm [14] @MA-ES [6]. We think that for a fair comparison
among different solvers, the number of objective functigal@ations should be used. A comparison based on the
number of iteration does not seem to give a reliable measerause the amount of work done in each iteration is
completely different among solvers, since some are papuléiased and other are single point based. In Figure 2(b),
it is shown that whem = 1 MCS wins over the other solvers, followed by DIRECT and mD&@r mDE2 outperforms
the other stochastic solvers.
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FIGURE 2. Performance profile of,, for different solvers

CONCLUSIONS

In this paper, to make the DE more efficient, a modified diffiéieg¢ evolution algorithm has been proposed. The
modifications focus on self adaptive control parametersanibdified mutation. Inversion operator has also been
implemented in the proposed mDE. A set of 64 test problemssaetved and compared. It has been shown that mDE
is rather competitive and effective in solving nonlineantiouous optimization problems with simple bounds.
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