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Abstract. The task of global optimization is to find a point where the objective function obtains its most extreme value.
Differential evolution (DE) is a population-based heuristic approach thatcreates new candidate solutions by combining several
points of the same population. The algorithm has three parameters: amplification factor of the differential variation, crossover
control parameter and population size. It is reported that DE is sensitiveto the choice of these parameters. To improve
the quality of the solution, in this paper, we propose a modified differential evolution introducing self-adaptive parameters,
modified mutation and the inversion operator. We test our method with a set of nonlinear continuous optimization problems
with simple bounds.
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INTRODUCTION

Problems involving global optimization over continuous spaces are ubiquitous throughout the scientific community.
In optimization, the task is to optimize certain propertiesof a system by pertinently choosing the system parameters
called variables. In general, a variety of actual optimization problems are formulated as large-scale mathematical
programming problems involving continuous variables withnonlinear objective function.

Generally, the nonlinear continuous optimization problems with simple bounds on variables are formulated as

min
x∈Ω

f (x) (1)

where f : R
n −→ R with Ω = {x ∈ R

n : lb j ≤ x j ≤ ubj , j = 1, . . . ,n}. The task of global optimization in (1) is to
find a solution where the objective function obtains its mostextreme value, the global minimum. When the objective
function has a huge number of local minima, local optimization techniques are likely to get stuck before the global
minimum is reached, and some kind of global search is needed to find the global minimum with some reliability.

In the last decades, depending on the nature of objective function involved many solution methods have been
proposed to solve (1). In these methods, algorithms for solving global minimization problem can be classified into
deterministic methods that guarantee to find a global optimum with a required accuracy and stochastic methods that
find the global minimum only with high probability. In deterministic methods, the values of the objective function
are assumed to be exact, and the computation is completely determined by the values sampled so far. A number of
deterministic methods [5, 8, 9] are present to solve global optimization problems of kind (1). Stochastic methods
involve function evaluations at a suitably chosen random sample of solutions and subsequent manipulation of the
sample to find good local (and hopefully global) minima. The stochastic methods can be classified as point-to-point
search technique and population based search technique. For solving those problems, a number of stochastic methods
[1, 4, 6, 7, 10, 12, 13] are present.

A local search algorithm starts from a candidate solution and then iteratively moves to a neighbor solution.
Typically, every candidate solution has more than one neighbor solutions and the choice of movement depends only
on information about the solutions in the neighborhood of the current one. Differential evolution (DE) proposed by
Storn and Price [13] is a population-based heuristic approach that is very efficient when solving derivative-free global
optimization problems. DE has only three parameters and according to Storn and Price is sensitive to these parameters.
To improve the local search and quality of the solution, in this paper, we propose a modified differential evolution



(mDE) introducing self-adaptive parameters, modified mutation and the inversion operator for nonlinear continuous
optimization problems with simple bounds.

DIFFERENTIAL EVOLUTION

Differential evolution is a simple yet powerful evolutionary algorithm for global optimization problems. It is a floating-
point encoding for global optimization over continuous spaces. It creates new candidate solutions by combining the
parent individual and several other individuals of the samepopulation. A candidate replaces the parent only if it has
better or equal fitness. DE’s three parameters are amplification factor of the difference vectorF , crossover control
parameterCR, and population sizeNP. DE is a direct search method which utilizesNP n-dimensional component
points. The target points are defined byxi,t = (xi1,t ,xi2,t , . . . ,xin,t) wheret is the index of generation andi = 1,2, . . . ,NP.
NP does not change during the optimization process. The initial population is chosen randomly and should cover
the entire solution space. As a rule, it is assumed a uniform probability distribution for all random decisions unless
otherwise stated. DE’s operations are outlined briefly in the following.
Mutation : For each target pointxi,t , i = 1,2,3, . . . ,NP, a mutant point is created according to

vi,t+1 = xr1,t +F(xr2,t −xr3,t) (2)

with uniformly chosen random indicesr1, r2, r3 from the set{1,2, . . . ,NP}, mutually different andF > 0. The indices
r1, r2 andr3 are also chosen to be different from the running indexi, so thatNP must be greater or equal to four to
allow for this condition.F is a real and constant parameter∈ [0,2] which controls the amplification of the differential
variation(xr2,t −xr3,t). Here,xr1,t is called the base point. Differential mutation is DE’s exploration operator.
Crossover: In order to increase the diversity of the perturbed component points, crossover is introduced. To this end,
the trial pointui,t+1 is formed, where

ui j ,t+1 =

{

vi j ,t+1 if (r j ≤CR) or j = zi
xi j ,t if (r j > CR) and j 6= zi

,

j = 1,2, . . . ,n.

(3)

In (3), the random numberr j ∼ U[0,1] performs the mixing ofjth component of points,CR∈ [0,1] is a constant
parameter for crossover which has to be determined by the user and the uniformly chosen integer random indexzi
from the set{1,2, . . . ,n} ensures thatui,t+1 gets at least one component fromvi,t+1.
Selection: To decide whether or not it should become a member of generation t +1, the trial pointui,t+1 is compared
to the target pointxi,t using the greedy criterion in the following way

xi,t+1 =

{

ui,t+1 if f (ui,t+1) ≤ f (xi,t)
xi,t otherwise.

(4)

OUR MODIFIED DIFFERENTIAL EVOLUTION

According to Storn and Price [13], DE is much more sensitive to the choice ofF than it is to the choice ofCR. The
suggested choices for the three parameters are: (i)F ∈ [0.5,1]; (ii) CR∈ [0.8,1]; and (iii) NP= 10×n. Recall that
n is the dimensionality of the problem. The parameters in DE are kept constant throughout the entire evolutionary
process. However, it is not an easy task to set appropriate parameters since these depend on the nature and size of
the optimization problems. In original DE, three points arechosen randomly for mutation and the base point is then
chosen at random within the three. This has an exploratory effect but it slows down the convergence of DE. In the
following the modified differential evolution (mDE) is outlined.
Modification of F and CR: Since the choice ofF andCRmainly depend on the nature and size of the problems, the
modified differential evolution (mDE), proposed in this paper, includes the modifications proposed by Brest et al. [2]
for the control parametersF andCR. New control parameters for next generationFi,t+1 andCRi,t+1 are calculated as

Fi,t+1 =

{

Fl +λ1×Fu, if λ2 < τ1
Fi,t , otherwise

CRi,t+1 =

{

λ3, if λ4 < τ2
CRi,t , otherwise

(5)



whereλk ∼ U[0,1],k = 1, . . . ,4 andτ1 = τ2 = 0.1 represent probabilities to adjust parametersFi andCRi , respectively.
Fl = 0.1 andFu = 0.9, so the newFi,t+1 takes a value from[0.1,1.0] in a random manner and the newCRi,t+1 takes
a value from[0,1]. Fi,t+1 andCRi,t+1 are obtained before the mutation is performed. So, they influence the mutation,
crossover and selection operations of the new pointxi,t+1.
Modification of Mutation : Sometimes it is required to improve local search in DE, the mDE includes the modification
proposed by Kaelo and Ali [11] for selecting the best point after choosing three random points as a base point in
(2). Further, we introduce modification in the selection of the base point in the mutation operation. After everyB
generations the best point found so far is used as the base point and two randomly chosen points are used in differential
variation in (2). These modifications allow mDE to maintain its exploratory feature as well as explore the region around
each best point for each mutant point and at the same time expedite the convergence.
Inversion: We also implement inversion in mDE. In biology, an inversion is a chromosome rearrangement in which
a segment of a chromosome is reversed end to end. Since in DE, apoint hasn-dimensional real number components,
inversion can easily be applicable. An illustrative example of inversion is shown in Figure 1.

|h k|
ui,t = ui1,t ui2,t ui3,t ui4,t ui5,t ui6,t ui7,t ui8,t

⇓
|h k|

u′
i,t = ui1,t ui2,t ui6,t ui5,t ui4,t ui3,t ui7,t ui8,t

FIGURE 1. Inversion used in mDE

Bounds Check: To generate the mutant point by using (2) and to perform the inversion, some components of point
can be generated outside of the domainΩ. So, in this paper, for mDE after inversion the bounds of eachcomponent
are checked with the following projection of bounds:

u′i j ,t+1 =







lb j if u′i j ,t+1 < lb j

ubj if u′i j ,t+1 > ubj

u′i j ,t+1 otherwise.
(6)

Termination Condition : Supposet and Gmax are the current and maximum generations, respectively, andfmax, t
and fmin, t are the maximum and minimum objective function values at generationt. The mDE terminates ift >

Gmax or ( fmax,t − fmin,t) ≤ ε, whereε is a very small positive number.

EXPERIMENTAL RESULTS

We code some variants including our modified variant of DE in C. The name of the solvers are: (i) DE_Original, (ii)
DE_Kaelo, (iii) DE_Brest, (iv) mDE1 (without inversion) and (v) mDE2. We setNP= min(100,10n) andε = 10−6

for all solvers. We also setF = 0.5 andCR= 0.9 for solvers DE_Original and DE_Kaelo andpinv = 0.05 for solver
mDE2. We set other parameter values discussed so far for solvers DE_Brest, mDE1 and mDE2. We setB = 10 for
solvers mDE1 and mDE2.

For a fair comparison among different solvers of DE, we test all solvers on a set of 64 nonlinear continuous
optimization problems with simple bounds and use same termination condition. We run all solvers 30 times for each
problem. We use performance profile proposed by Dolan and Moré [3] to evaluate and compare the performance of
different solvers. Figure 2(a) shows the performance profile for different solvers after 30 runs. In this figure it is shown
that solvers mDE1 and mDE2 win over the other DE. Again, for larger value ofτ our mDE have greater values of
ρs(τ) meaning that with respect to robustness of solvers our mDE also win over others DE.

Finally here, we compare mDE2 with other solution methods. We use two deterministic solvers DIRECT [5] and
MCS [9] and three stochastic solvers ASA [10], PSwarm [14] and CMA-ES [6]. We think that for a fair comparison
among different solvers, the number of objective function evaluations should be used. A comparison based on the
number of iteration does not seem to give a reliable measure because the amount of work done in each iteration is
completely different among solvers, since some are population based and other are single point based. In Figure 2(b),
it is shown that whenτ = 1 MCS wins over the other solvers, followed by DIRECT and mDE2. Our mDE2 outperforms
the other stochastic solvers.
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CONCLUSIONS

In this paper, to make the DE more efficient, a modified differential evolution algorithm has been proposed. The
modifications focus on self adaptive control parameters anda modified mutation. Inversion operator has also been
implemented in the proposed mDE. A set of 64 test problems wassolved and compared. It has been shown that mDE
is rather competitive and effective in solving nonlinear continuous optimization problems with simple bounds.
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