
Spherically symmetric elasticity in Relativity

J Carot1?, I Brito2 and E G L R Vaz3

1 Departament de F́ısica, Universitat de les Illes Balears, Cra Valldemossa pk 7.5, E-07122
Palma, Spain
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Abstract. The relativistic theory of elasticity is reviewed within the spherically symmetric
context with a view towards the modelling of star interiors possessing elastic properties such as
the ones expected in neutron stars. Emphasis is placed on generality in the main sections of the
paper, and the results are then applied to specific examples. Along the way, a few general results
for spacetimes admitting isometries are deduced, and their consequences are fully exploited in
the case of spherical symmetry relating them next to the the case in which the material content
of the spacetime is some elastic material. This paper extends and generalizes the pioneering
work by Magli and Kijowski [1], Magli [2] and [3], and complements, in a sense, that by Karlovini
and Samuelsson in their interesting series of papers [4], [5] and [6].

1. Introduction. Relativistic elasticity revisited
Let (M, g) be a spacetime, M then being a 4-dimensional Hausdorff, simply connected manifold
of class C2 at least, and g a Lorentz metric of signature (−,+,+,+). The material space X is
a 3-dimensional manifold endowed with a Riemannian metric γ, the material metric; points in
X can then be thought of as the particles of which the material is made of. Coordinates in M
will be denoted as xa for a = 0, 1, 2, 3, and coordinates in X as yA, A = 1, 2, 3. The material
metric γ is not a dynamical quantity of the theory, but it is frozen in the material, and it roughly
describes distances between neighbouring particles in the relaxed state of the material.

The spacetime configuration of the material is said to be completely specified whenever a
submersion ψ : M → X is given; if one chooses coordinate charts in M and X as above, the
coordinate representative of ψ is given by three fields yA = yA(xb), A = 1, 2, 3 and the physical
laws describing the mechanical properties of the material can then be expressed in terms of
a hyperbolic second order system of PDE. The differential map ψ∗ : TpM → Tψ(p)X is then

represented in the above charts by the rank 3 matrix
(
yAb

)
p
, yAb = ∂by

A A = 1, 2, 3, b =

0, 1, 2, 3 which is sometimes called relativistic deformation gradient. Since ψ∗ has maximal rank
3, its kernel is spanned at each point by a single timelike vector which we may take as normalized
to unity, the resulting vector field, say ~u = ua∂a, satisfies then yAbu

b = 0, uaua = −1, u0 > 0,
the last condition stating that we choose it future oriented; ~u is called the velocity field of the
matter, and in the above picture in which the points in X are material points, it turns out that
the spacetime manifold M (or, to be precise, an open submanifold of it) is then made up by the
worldlines of the material particles, whose tangent vector is precisely ~u.
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The material space is said to be in a locally relaxed state at p ∈ M if, at p, it holds
kab ≡ (ψ∗γ)ab = hab where hab = gab + uaub. Otherwise, it is said to be strained, and a
measurement of the difference between kab and hab is the strain, whose definition varies in the
literature. We shall follow the convention in [3] and use

Kab ≡ kab − uaub (1)

The strain tensor determines the elastic energy stored in an infinitesimal volume element of the
material space (or energy per particle). That energy will be a scalar function of Kab called
constitutive equation of the material, and its specification amounts to specifying the material.
We shall denote it as v = v(I1, I2, I3), where I1, I2, I3 are any suitably chosen set of scalar
invariants associated with and characterizing Kab completely. Following [3] we choose

I1 =
1
2

(TrK − 4) , I2 =
1
4

[
TrK2 − (TrK)2

]
+ 3, I3 =

1
2

(detK − 1) (2)

Notice that for Kab = gab (equivalently kab = hab) the induced metric on the rest frame of an
observer moving with four-velocity ~u, h, coincides with the material metric γ (its pull-back by
ψ) describing the relaxed state of the material; thus it makes sense to have zero elastic energy
stored and it is immediate to see that I1 = I2 = I3 = 0.

The energy density ρ will then be the particle number density ε times the constitutive
equation, that is

ρ = εv(I1, I2, I3) = ε0
√

detK v(I1, I2, I3) (3)

where ε0 is the particle number density as measured in the material space, or rather, with respect
to the volume form associated with kab = (ψ∗γ)ab, and ε is that with respect to hab; see [7].

In the case of elastic matter, the energy-momentum tensor is obtained from the Lagrangian
Λ =

√
−gρ, which depends on yA, yAa and xa, and performing the standard decomposition w.r.t.

~u, the velocity of the matter, it follows:

Tab = ρuaub + phab + Pab, (4)

where hab = gab + uaub, Pab = hma h
n
b(Tmn − 3phmn), ρ = Tabu

aub, p = 1
3h

abTab; and the
heat flux vanishes: qa = −Tabub + ρua = 0. The quantities ρ, p, Pab are respectively the
energy density, isotropic pressure and anisotropic pressure tensor that a family of observers
comoving with the matter would measure at each point in the spacetime. The resulting tensor
is of the diagonal Segre type {1, 111} or any of its degeneracies, ~u being its (unit) timelike
eigenvector (see [8]), and it then follows that an orthonormal tetrad exists, {ua, xa, ya, za} (with
−uaua = xaxa = yaya = zaza = 1 and the mixed products zero) with respect to which Tab may
be written as

Tab = ρuaub + p1xaxb + p2yayb + p3zazb, p =
1
3

(p1 + p2 + p3),

hab = xaxb + yayb + zazb, etc. (5)

The Dominant Energy Condition (DEC), see for instance [8], is fulfilled if and only if ρ ≥
0, |pA| ≤ ρ, forA = 1, 2, 3.

2. Elasticity in spherical symmetry
Let us now consider in more detail the problem of elasticity in a spherically symmetric spacetime
(M, ḡ) with associated material space (X, γ). The results given in this section generalize those
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in [3] in the sense that here we consider a non flat material metric γ. The reader is also referred
to [9] and [10] for other related, interesting developments.

We demand that the submersion ψ : M −→ X preserves the KVs, that is: ψ∗(~ξA) = ~ηA
are also KVs on X. This implies that the metric γ is also spherically symmetric and therefore
coordinates yA = (y, θ̃, φ̃) exist with y = y(t, r), θ̃ = θ and φ̃ = φ, and are such that ~ηA = ~ξA
are KVs of the metric γ̄. Thus, the line elements of g and γ may be written as:

ds2 = −a(t, r)dt2 + b(t, r)dr2 + r2dθ2 + r2sin2θdφ2 (6)

dΣ2 = f2(y)(dy2 + y2dθ2 + y2sin2θdφ2), (7)

Notice that this last expression is completely general, as any 3-dimensional spherically symmetric
metric is necessarily conformally flat. The results in [3] correspond to f(y) = 1.

The velocity field of the matter takes then the form ~u = ut(t, r)∂t+ur(t, r)∂r, as follows from
uayAa = 0, and ut and ur can be easily derived from gabū

aūb = −1 and ū0 > 0. Now, much
clarity is gained by making use of the comoving coordinates adapted to ~u: it is easy to show
that it is always possible to perform a coordinate change in the t, r plane so that, in the new
coordinates one has:

ds2 = −a(r, t)dt2 + b(r, t)dr2 + Y 2(r, t)
(
dθ2 + sin2 θdφ2

)
, ua =

(
a−1/2, 0, 0, 0

)
(8)

hence, for the material space (M,γ) there exist coordinates yA = (y, θ̃, φ̃) such that y = y(r),
θ̃ = θ and φ̃ = φ, as follows from the condition yAa u

a = 0 and the requirement that
ψ∗(~ξA) = ~ηA are KVs of the metric γ̄. Further, and since the line element of the material
space is dσ2 = f2(y)

[
dy2 + y2

(
dθ2 + sin2 θdφ2

)]
, with y = y(r), no generality is lost if we set

y = r, as this amounts to a redefinition of the r coordinate in spacetime which leaves unchanged
the form of the metric and that of ~u in (8). We shall do that in the sequel.

As an aside, it is interesting to notice that, in spherical symmetry (and in more general
classes of spacetimes, namely type B warped ones), Pab and σab are always proportional (the
latter being the shear tensor of ~u); thus, whenever the velocity flow is non-zero, it is always
possible to interpret (at least formally) elastic matter as a viscous fluid.

The pulled-back material metric k is

kab = diag
(
0, f2(r)b−1, r2f2(r)Y −2, r2f2(r)Y −2

)
. (9)

The operator Ka
b = gackcb−uaub, used to measure the state of strain of the material has one

eigenvalue equal to 1 (corresponding to the eigenvector ~u), while the other eigenvalues η and s
(algebraic multiplicity two) are f2(r)b−1, s = r2f2(r)Y −2, and one can then calculate the three
invariants I1, I2, I3 of K introduced in (2). In [3], the energy-momentum tensor was calculated
from these invariants for a flat material metric. A similar calculation shows that

T ab = ρ δab −
∂ρ

∂I3
detK hab +

(
TrK

∂ρ

∂I2
− ∂ρ

∂I1

)
kab −

∂ρ

∂I2
kac k

c
b. (10)

Thus, Einstein’s Field Equations read

− Ẏ

Y 2a
− Ẏ

Y

ḃ

ab
+

2Y ′′

Y b
+
Y ′2

Y 2b
− Y ′

Y

b′

b2
− 1
Y 2

= εv 8π, 2Ẏ ′ − a′

a
Ẏ − ḃ

b
Y ′ = 0, (11)

− Ẏ 2

Y 2a
+
Ẏ

Y

ȧ

a2
+
Y ′

Y

a′

ab
+
Y ′2

Y 2b
− 2Ÿ
Y a
− 1
Y 2

= −ε 2 η
∂v

∂η
8π, (12)
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1
2
Ẏ

aY

(
ȧ

a
− ḃ

b

)
− 1

4
a′

ab

(
a′

a
+
b′

b

)
+

1
2
Y ′

bY

(
a′

a
− b′

b

)

+
Y ′′

Y b
− Ÿ

Y a
+

1
2ab

(
a′′ − b̈+

ḃ

2

(
ȧ

a
+
ḃ

b

))
= −ε s ∂v

∂s
8π. (13)

3. Shearfree solutions. Examples
We next consider the case of spacetimes with an elastic material content such that the velocity
of the matter is shearfree, in which case, the interpretation as a viscous fluid with kinematical
viscosity is not possible, and therefore the anisotropy in the pressures must be a consequence of
the elastic properties of the material. In the shear-free case, coordinates exist such that

ds2 = −a(r, t)dt2 + Y 2(r, t)
(
dr2 + dθ2 + sin2 θdφ2

)
(14)

and two cases can be distinguished: static or non-static.
In the static case, it is easy to see that solutions with a well posed constitutive equation and

satisfying the DEC do indeed exist, as the following example shows:

ds2 = −e−5r2dt2 + e5r2
(
dr2 + dθ2 + sin2 θdφ2

)
. (15)

One has

ρ = εv =
e−5r2

8π
(25r2 + 9), p1 = −2εη

∂v

∂η
= −e

−5r2

8π
(25r2 + 1), p2 = −εs∂v

∂s
=
e−5r2

8π
25r2

which is obviously well behaved: satisfies the dominant energy condition and is non-singular at
the origin. After some tedious algebra, we get: f(r) = exp(5

2r
2)(75r2 +1)−

1
3 , whence expressions

for η, s and ε = ε0s
√
η can be easily derived, and also: v = F (Σ)

[
(75r2 + 1)(75r2 + 27)12

]− 1
39 ,

where F (Σ(r)) =
(
25r2 + 9

)− 12
39
(
75r2 + 1

)− 1
39 , and r must be the only real solution of

r3 − 75e
3
2

Σr2 − e
3
2

Σ = 0.
Thus we have proven that a solution exists, which is regular at the origin r = 0, satisfies

the dominant energy condition and possesses a constitutive equation that can be given in closed
form.
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