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Synopsis

Let X be a set with infinite cardinality m and let B be the Baer-Levi semigroup, consisting of all
one-one mappings a: X — X for which [X\Xe|=m. Let K_,=(B 'B), the inverse subsemigroup of
the symmetric inverse semigroup #(X) generated by all products B~ 'y, with B, y & B. Then K, ={(N,),
where N, is the subset of #(X) consisting of all nilpotent elements of index 2. Moreover, K, has 2-
nilpotent-depth 3, in the sense that N, UN3< K =N,UN2ZUNZ.

Let Py, be the ideal {a € K,: |dom a|<m} in K, and let L,, be the Rees quotient K, /P,.. Then L,
is a O-bisimple, 2-nilpotent-generated inverse semigroup with 2-nilpotent-depth 3. The minimum
non-trivial homomorphic image L7 of L,, also has these properties and is congruence-free.

1. Introduction and background

In previous papers [4, 7], attention has been focused on certain subsemigroups of
an infinite full transformation semigroup, and some interesting examples of (0-)
bisimple idempotent-generated congruence-free semigroups have been obtained.

If one looks for an analogue in inverse semigroups, it is clear that ‘idempotent-
generated’ is not an appropriate restriction, since in any inverse semigroup, the
idempotents form a subsemigroup. However, a symmetric inverse semigroup
#(X) contains a zero (the empty subset of X x X, but usually denoted by 0) and it
is reasonable to look instead at elements that are products of nilpotent elements.
In this paper, we examine, for infinite $(X), the inverse subsemigroup generated
by all elements « of #(X) which are nilpotent of index 2 (i.e. for which a#0,
a”=0). In the end, we describe, for each infinite cardinal number m, an inverse
semigroup L of cardinality 2™ which is 0-bisimple, congruence-free, and gener-
ated by the set N, consisting of its nilpotent elements of index 2. Moreover,
N,UN2ZcL¥=N,UNZUN3.

2. Preliminaries

For undefined terms in semigroup theory see [3].
Let X be a set of infinite cardinality m. For an element « of the symmetric
inverse semigroup .#(X), we denote the domain by dom « and the range by ran a.
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It is convenient also to define the gap and the defect of a by
gap a = X\dom e, def a =X\rana.
Then the Baer-Levi semigroup B (of type (m, m)) is defined as
B={ac$(X): gap o =, |def a| =m}. (2.1)

(See [1]; also [2, Section 8.1].) It is easy to see that B is a subsemigroup of $(X).
It is not an inverse semigroup, however: indeed « € B if and only if «'eBY,
where

B !'={a e H(X): |gap a|=m, def o = T}. (2.2)

Then B! is also a subsemigroup (but not an inverse subsemigroup) of $(X).
From [2], we know that B is right cancellative, right simple and has no idempo-
tents. Hence, from the obvious anti-isomorphism e+« ' from B to B™', we
have that B™! is left cancellative, left simple and has no idempotents.

Tueorem 2.3. If B, B~ are as defined in (2.1) and (2.2), then BB ' = $(X).
Proof. Let a € $(X). Write doma =P, rana = Q, and let Ry, Rs, R, be pair-
wise disjoint subsets of x such that
|IR{|=|R;|=|Rs|=m, X=R;UR;UR;.
Certainly |P|=m and |X\P|=m; hence there are injections
8:P— R,, ¢:X\P — R,.

Define 8 €.%(X) by
" _{xﬂ if xeP,
B= x¢p if xeX\P.

Then gap B =3, def B2 R; and so BB.
Again, | X\Q|=m and so we have an injection ¥ X\Q — R;. Define vy #(X)
by
: ﬂ_{xﬁ’]a if xeP8,
YTl i xe(X\Q)W
Then ran-y=X and gap v = R;; hence ye B, It is now easy to verify that
dom By =(ran B Ndom vy)B ' =P =doma,
ran By =(ran 3 Ndom y)y=0Q=ran«

and that xBy=xa for all x in P. This completes the proof.
By contrast, the product B 'B is not even a subsemigroup of #(X). This will
be easy to demonstrate when we have established

TueoREM 2.4. If B, B™" are as defined in (2.1), (2.2), then
B B ={a c.#(X): |dom a|=|ran «| = |gap «|= |def | =m}.
Proof. Let BeB™", yeB. Then ran g =dom y=X and so
dom By = (ran B Ndom y)B ' = XB ™' =dom B.
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Similarly,
ran By =ran-.
It now follows that

|dom By|=|dom B|=m, |gap By|=|gap 8|=m,
Iran By|=|[ran y|=m, |def By|=|def y|=m.

Conversely, let o be an element of .$(X) such that
|dom | =|ran a|=|gap «|=|def | =m
and let B: dom @ — X be a bijection. Then define y: X — ran a by the rule that
xy=xB8""a (xeX).

Then BB}, yeB and By=a.

It is now clear that B™'B is not a subsemigroup of #(X): for example, if
X=YUZ, with |Y|=|Z|=m and YNZ =, then 1y, 1, are both in BB, but
1y1z=0. We can, however, fairly easily describe (B~'B), the subsemigroup of
F(X) generated by B™'B.

THEOREM 2.5. If B, B™' are as defined in (2.1), (2.2), then

(B7'B)={a € #(X): |gap a|=|def o'| = m}.
Proof. Let us write
K, ={ac#(X): |gap «|=|def o| =m}. (2.6)

For all a, B in #(X), we have dom «f =dom a, ran o Sran 8. Hence, gap o8
gap a, def o8 2def B. It now readily follows that if o, 8 € K., then aB € K. Thus
K., being a subsemigroup of .#(X) containing B~'B, must contain (B~'B).

Now let « € K,,, and write

gapa=ZUT, defa=PUQ,

where ZNT=PNQ =, |Z|=|T|=|P|=|Q|=m. Let 9: Z— P be a bijection,
and define

B=0Ua: ZUdoma — PUran c.

Then domB=2Z, gapB =T, ran B 2P, def B 2Q and so, by Theorem 2.4, B e
B™'B. Equally, if v is the identity mapping on QUran & then vy B™!B. Since
ran B Ndom y=ran«, it is now clear that By=« and hence ae(B'B)’c
(B7'B).

Notice that in proving Theorem 2.5 we have proved incidentally that

(B™'B)=(B'B)*.
Notice also that while (B™'B) is defined merely as the subsemigroup generated by

B™'B, it does in fact turn out to be an inverse subsemigroup, as is clear from
Theorem 2.5 and the observations that gap a ' =def «, def @' =gap a.
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3. A nilpotent-generated inverse semigroup

In this section, we examine some of the properties of the inverse semigroup Kg,
defined by (2.6). Notice that 0€ K,,, since gap 0 =def 0 =X

In a semigroup S with zero, let N, be the set of all nilpotent elements of index
2, i.e. the set of all non-zero s in S for which s2=0. If S§={(N,) then either the
ascent

N, cN,UNZeN,UNGUNZ ...
continues infinitely, or there exists a least k=1 such that
N,UN3U...UN5=S.

In the former case we write A,(S) = and in the latter case we write A(S)=k.
We describe S as 2-nilpotent-generated and refer to A,(S) as its 2-nilpotent-depth.
We note in passing that

N,=N3;
tor if @ €N, then e 'eN, and a =aa 'a. It follows that
N,UNZUN3=N3UN3.
It is clear that in $(X), an element « is nilpotent of index 2 if and only if
doma# @, domaNrana=2. (3.1)

THEOREM 3.2. Let $(X) be the symmetric inverse semigroup on a set X of
cardinality m, let K, be as defined in (2.6), and let N, be the set of all nilpotent
elements of index 2 in $(X). Then K, =(N,), and A (K =3.

Proof. We begin by showing that N;= K. Let a €N,. Then « satisfies (3.1)
and so dom a def @, rana =gap a. If |dom a|=|ran «|=m this implies that
|def a| =|gap «| =m, i.e. that a € Ky,

Suppose therefore that |dom a|=|ran«|<m. But then it is clear from the
statements

|dom ! +|gap «|=m, [|rana|+|def a|=m

that |gap c|=|def a|=m. Hence again a€K,. Thus N,<K,, from which it
follows that

N,UNSUN3SK,,.
Next, we notice that for an element « of K, we may have either
|gap @ Ndef «|=m or |gap o Ndef a|<m.

For an example of the first kind of element, consider a = 1y, where X=YUZ,
YNZ=@,|Y|=|Z=m; here gap a =def a = Z. To find an example not in N, of
the second kind of element, partition X into three mutually disjoint subsets Y,
Z, T, with | Y|=|Z| =|T|=m. Let 6: Z— T be a bijection and let

a=0Uly: YUZ— YUT.
Then aéNs, gapa =T, defa =2Z.
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The following lemma identifies those elements of K, that lie in N2.
Lemma 3.3. Let a € K,,. Then a € N3 if and only if |gap @ Ndef | =m.
Proof. Let o € K, be such that

|gap o Ndef o) =m.

Write gap a« Ndef « = ZU T, with |Z|=|T|=m and ZNT=¢. Let B: dom a —
Z be an injection. Then Be N, by (3.1). If v=p 'a then

dom y =(ran " 'Ndom &)B =ran B
(since ran B~ =dom B =dom «) and similarly
ran y =ran .
Since ran = Z < gap « Ndef o, we have dom y Nran y= & and so y e N,. Also,
By=BB 'a=gq,

since dom 3 =dom e, and so « € N3.
Conversely, let «=fy, with B,veN, and suppose first that
|dom a| (=|ran «|) =m. Then,

m = ran a| =|(ran 8 Ndom y)y|=|ran B Ndom v|. (3.4)
Now dom a =dom B8 and so
(ran B Ndom y)Ndom a <ran 8 Ndom 3 =&
(since 8 € N,); hence,
ran 8 MNdom y S gap «.
Similarly, since ran e Zran v, we have

(ran B Ndom y) Nran & = dom y Nran y = &
and so
ran 8 Ndom v = def a.
Thus,
gap e Ndef « =ran g Ndom vy

and so by (3.4), |gap @ Ndef a|=m.
Suppose now that |[dom «| (= |ran «|)<m. Then |dom & Uran «|<m and so

|gap a Ndef a| =|X\(dom & Uran a)| =m.

Thus Lemma 3.3 is proved. It follows from the existence of elements a¢ N, such
that |gap & Ndef ¢| <m that N, UN2#K,,.
To complete the proof of Theorem 3.2, we establish

LemMma 3.5. Let a € K, be such that |gap o Ndef a|<m; then a € N3.

Proof. Since a€K,, we have |gapa|=|defa|=m. Hence, denoting
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gap o Ndef ¢ by Y, we see that
lgap o\ Y|=|def a\ Y| =m.
Since
gapa\Ycrana and defa\Ycdomaea,
we must therefore have that
|dom «|=|ran «| =m.

Let 8:doma — gap a\Y, v: gap a\Y —def &\'Y be bijections. Then B, ye N..
Let

5=v"'Bla:defa\Y — rana.

Then again 8€N,, and it is clear that o =pvy8. This completes the proof of
Lemma 3.5, and thereby the proof of Theorem 3.2.

4. A class of nilpotent-generated congruence-free inverse semigroups

It is a routine matter to verify that for each cardinal number k=m, the set

P, ={a e K,:|dom a| (=|ran a|) <k} (4.1)
is a two-sided ideal of K,. We define
Ly =Ku/Pu, (4.2)

the Rees quotient of K,, by the ideal P,. By Theorem 2.4, we have that
K_\P,,=B™'B, and we frequently find it convenient to identify L,, with B'BU

{0}

THEOREM 4.3. The inverse semigroup L, defined by (4.2) is O-bisimple. It is
2-nilpotent generated, and Ax(L,)=3.

Proof. Since L, is a homomorphic image of K, it follows from Theorem 3.2
that L, is a 2-nilpotent-generated inverse semigroup and that A;(L,)=<3. To
complete the proof, we require to show first that L, is O-bisimple and then that
AL )> 2.

Since L, is regular, it will follow by [3, Proposition I1.3.2] that L, is O-bisimple
if we show that (g, m)e@ for every pair & m of idempotents in K,\Pp.
Accordingly, let

8=1A, n=1B:

where |A|=|B|=|X\A|=|X\B|=m, be idempotent in K,\P,,. Thenif a: A - B
is a bijection, it is clear that a € K,\Py, and that (g, a)eR, (a, n)eZL. Thus
(e, m) €D as required.

Let us denote the set of nilpotent elements of index 2 in L, by T. It is
important to realise that in passing from K, to the Rees quotient L, we
introduce many ‘new’ nilpotent elements. To be more precise, if we denote by
« —> @ the Rees homomorphism from K, onto L, = K\ Py, then certainly «®=0
in K, implies &>=0 in L, However, @ =0 in L, implies only that &€ P, in
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K, Thus, to show that TU T? is properly contained in L., we must show that
there exists « in K,\P,, such that o® € K\ P, and which cannot be expressed as a
product By with B, v € Ku\Py, B, ¥°€ Py, Now to say that 82, y>€P,, is to say
that

|dom 8 Nran B|<m, |dom yNrany|<m.

"Thus, in view of the existence of elements « in K,,\P,, for which |gap o Ndef a|<
m, the following lemma completes the proof of the theorem. It is a generalisation
of part of Lemma 3.3.

Lemma 4.4. Let o, o€ K,\P,, and suppose that « =y, where (3, yeK\P,
and

|[dom B Nran B|<m, |domyNrany|<m.
Then |gap a Ndef | =m.
Proof. Suppose, by way of contradiction, that
lgap @ Ndef a|<m.
By assumption, since a®e K \P,,, we have
|dom a Nran a|=m.

doma | gapa

ran o Ay Ay
def o A21 A22

Diagrammatically, we have
|Axp|<m, |A,|=m. (4.5)
Since def a@ =|A5, UA,,|=m and gap & =|A,UA,,|=m, we must have
|A 12l =]As|=m.
Now from By =, we deduce that dom a = dom . Hence,
|dom & Nran B|=<|dom B Nran B|<m. (4.6)
Now write
Q =(dom «)B = (ran @)y~ " =ran 3 Ndom 7.
Then |Q|=m. Since
Q=(QNdoma)U(QNA;)U(QNA,,),
it now follows from (4.5) and (4.6) that
[QNA,=m.
Hence certainly [dom y N A ,|=m. But

ApCranecrany
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and so it now follows that
|dom yNran y|=m,

contrary to hypothesis. This completes the proof of Lemma 4.4 and hence also of
Theorem 4.3.

The semigroup L, being 0-bisimple, has no proper ideals. It is not, however,
congruence-free. To see this, we invoke a result due to Liber [5], which implies
that for each cardinal p<m, the relation

8 ={(a, B) € Ky X K2 [(\B) U (B\ )| <p} (4.7

is a congruence on K,. Here we are interested only in §,,, and remark that
(e, B) €8, if and only if

|dom a\dom B|<m, |dom B8\dom a|<m
and
|D(e, B)|<m,
where
D(a, B) ={x e dom « Ndom B: xa # xB} (4.8)

From our point of view, the crucial (and easily verified) property of &8, is that
08,,= P,,; i.e. any a in K, satisfies (&, 0) € 8, if and only if |dom o| <m. Thus, if
we denote the Rees congruence

(P, X Py U{(e, @): @ € K\ P}

by o, we have o ©§,, and so there is a commutative diagram

Km == Kp/0m

17

Lm

showing that K_/8,, is a homomorphic image of L,,. We denote it by LX. Tt is
clear that L is a O-bisimple inverse semigroup.

LemMa 4.9. LE is congruence free.

Proof. From [9] and [10], recall that a regular O-simple semigroup S is
congruence-free if and only if the congruence

o={(a b)eSxS:5(¥, te S"sat =0 <& sbt =0}

is trivial. Thus what we must show is that if «, B in K,\P, are such that
(e, B) & 6, then there exist A, p in K, \ Py, such that Aap e K \P, ABu e Py, (or
A € Py, ABl € K\ Py

Suppose therefore that (@, B)¢8,. Then at least one of |dom o\dom B|,
|dom B\dom | and D(«, B) (see (4.8)) has cardinality m. Suppose first that
|D(a, B)|=m. Then by [6, Lemma 2] there is a subset Y of D(a, 8) such that
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[Y|=m YeNYB=@. Let A=1y, p=1y,. Then A, peK,\P,, Aap=a [Ye
KB MBu—=0EP,,.

To complete the proof of Lemma 4.9, it will suffice to consider the case where
|dom a\dom B|=m. The other case, where |[dom 8\dom a|=m, is identical. Sup-
pose therefore that |[dom a\dom B|=m and let A, p be respectively the identity
mappings on dom a\dom 3 and on (dom a\dom B)a. Then A, u € K \P,,,

Aap =a |[(dom a\dom B) € K, \P,,,
ABu=0€eP,,.

This completes the proof of Lemma 4.9,

We have in fact proved most of the following theorem.

TueoreM 4.10. Let L} =K,./8,,, where K, is defined by (2.6) and 8, by (4.7).
Then L is a 0-bisimple, congruence-free 2-nilpotent-generated inverse semigroup,
and Az(Li’) =3,

Proof. Since L}, is a homomorphic image of L, it is immediate from Theorem
4.3 that it is a O-bisimple inverse semigroup, that it is 2-nilpotent-generated, and
that A,(L)=3. We have already seen that it is congruence-free, and so all that
remains is to show that A,(L¥)>2.

To investigate this, notice first that an element 88, of L} (with ve K_\P,,) is
nilpotent of index 2 in L} if and only if B*>€03,,= P, i.e. if and only if

|dom 8 Nran B|<m.
What we require, therefore, is the following generalization of Lemma 4.4:

Lemma 4.11. Let o, o® € K, \P,, and suppose that (a, By) €8, where B, ve
K \P,, and

|dom g Nran B|<m, |dom yNrany|<m.
Then |gap o Ndef a|=m.
Proof. Notice that the hypotheses of the lemma give that

|dom a\dom Bvy|, |dom By\dom «|,
|ran @\ran By|, |ran By\ran«| (4.12)

are all strictly less than m. We use the same notation as in the proof of Lemma
4.4 and assume by way of contradiction that

| Azl =|gap a Ndef a|<m. (4.13)
Since
dom e =dom Bv U (dom a\dom Bv),
we deduce that

|dom & Nran B|=|dom By Nran B|+|(dom a\dom Bvy) Nran |
=|dom B Nran B|+|(dom a\dom By) Nran B|<m. (4.14)
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Again, as in the proof of Lemma 4.4, let
Q =ran 8 Ndom v.
Then, since By¢ P,,, we have |Q|=m. Since
QO =(QNdoma) U(QNA)UQNA,),
it follows from (4.13) and (4.14) that
|ONA|=m;

hence certainly |[dom v Nran a|=m.
Now, if we write Z =ran « Nran By, we see that

dom v Nran & =(dom v M Z) U (dom vy N (ran a\ran Bvy)).
Hence, |[dom yN Z|=m and so, by (4.12), since
Z<ran Fy<Sranvy,
we have
|dom y Nran y|=m,

contrary to hypothesis.

Since, as already remarked, we can find elements e in K, which are not
nilpotent of index 2 and for which |gap a Ndef a|<m, it follows that there are
elements of L% that cannot be expressed as products of nilpotents of index 2.
Hence Theorem 4.10 is proved.

We remark finally that

|l =L =L | =2™.

The proofs, which are not all quite obvious, may be found in [8].
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