Inverse semigroups generated by nilpotent transformations

John M. Howie

Mathematical Institute, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS

and

M. Paula O. Marques-Smith

Area de Matematica, Universidade do Minho, 4700 Braga, Portugal

Synopsis

Let X be a set with infinite cardinality \mathbf{m} and let B be the Baer-Levi semigroup, consisting of all one-one mappings $\alpha\colon X\to X$ for which $|X\setminus X\alpha|=\mathbf{m}$. Let $K_{\mathbf{m}}=\langle B^{-1}B\rangle$, the inverse subsemigroup of the symmetric inverse semigroup $\mathscr{I}(X)$ generated by all products $\beta^{-1}\gamma$, with $\beta,\gamma\in B$. Then $K_{\mathbf{m}}=\langle N_2\rangle$, where N_2 is the subset of $\mathscr{I}(X)$ consisting of all nilpotent elements of index 2. Moreover, $K_{\mathbf{m}}$ has 2-nilpotent-depth 3, in the sense that $N_2\cup N_2^2\subset K_{\mathbf{m}}=N_2\cup N_2^2\cup N_2^3$.

where N_2 is the subset of $\mathcal{F}(A)$ consisting of an impotent elements of index 2. Moreover, $K_{\mathbf{m}}$ has 2-nilpotent-depth 3, in the sense that $N_2 \cup N_2^2 \subset K_{\mathbf{m}} = N_2 \cup N_2^2 \cup N_2^3$. Let $P_{\mathbf{m}}$ be the ideal $\{\alpha \in K_{\mathbf{m}} : |\text{dom } \alpha| < \mathbf{m}\}$ in $K_{\mathbf{m}}$ and let $L_{\mathbf{m}}$ be the Rees quotient $K_{\mathbf{m}}/P_{\mathbf{m}}$. Then $L_{\mathbf{m}}$ is a 0-bisimple, 2-nilpotent-generated inverse semigroup with 2-nilpotent-depth 3. The minimum non-trivial homomorphic image $L_{\mathbf{m}}^*$ of $L_{\mathbf{m}}$ also has these properties and is congruence-free.

1. Introduction and background

In previous papers [4,7], attention has been focused on certain subsemigroups of an infinite full transformation semigroup, and some interesting examples of (0-) bisimple idempotent-generated congruence-free semigroups have been obtained.

If one looks for an analogue in inverse semigroups, it is clear that 'idempotent-generated' is not an appropriate restriction, since in any inverse semigroup, the idempotents form a subsemigroup. However, a symmetric inverse semigroup $\mathcal{I}(X)$ contains a zero (the empty subset of $X \times X$, but usually denoted by 0) and it is reasonable to look instead at elements that are products of *nilpotent* elements. In this paper, we examine, for infinite $\mathcal{I}(X)$, the inverse subsemigroup generated by all elements α of $\mathcal{I}(X)$ which are *nilpotent* of index 2 (i.e. for which $\alpha \neq 0$, $\alpha^2 = 0$). In the end, we describe, for each infinite cardinal number \mathbf{m} , an inverse semigroup $L^*_{\mathbf{m}}$ of cardinality $2^{\mathbf{m}}$ which is 0-bisimple, congruence-free, and generated by the set N_2 consisting of its nilpotent elements of index 2. Moreover, $N_2 \cup N_2^2 \subset L^*_{\mathbf{m}} = N_2 \cup N_2^2 \cup N_2^3$.

2. Preliminaries

For undefined terms in semigroup theory see [3].

Let X be a set of infinite cardinality \mathbf{m} . For an element α of the symmetric inverse semigroup $\mathcal{I}(X)$, we denote the domain by dom α and the range by ran α .

It is convenient also to define the gap and the defect of α by

gap
$$\alpha = X \setminus \text{dom } \alpha$$
, def $\alpha = X \setminus \text{ran } \alpha$.

Then the Baer-Levi semigroup B (of type (\mathbf{m}, \mathbf{m})) is defined as

$$B = \{ \alpha \in \mathcal{J}(X) : \text{gap } \alpha = \emptyset, |\text{def } \alpha| = \mathbf{m} \}.$$
 (2.1)

(See [1]; also [2, Section 8.1].) It is easy to see that B is a subsemigroup of $\mathcal{I}(X)$. It is not an inverse semigroup, however: indeed $\alpha \in B$ if and only if $\alpha^{-1} \in B^{-1}$, where

$$B^{-1} = \{ \alpha \in \mathcal{J}(X) : |\operatorname{gap} \alpha| = \mathbf{m}, \operatorname{def} \alpha = \emptyset \}.$$
 (2.2)

Then B^{-1} is also a subsemigroup (but not an inverse subsemigroup) of $\mathcal{I}(X)$. From [2], we know that B is right cancellative, right simple and has no idempotents. Hence, from the obvious anti-isomorphism $\alpha \mapsto \alpha^{-1}$ from B to B^{-1} , we have that B^{-1} is left cancellative, left simple and has no idempotents.

THEOREM 2.3. If B, B^{-1} are as defined in (2.1) and (2.2), then $BB^{-1} = \mathcal{J}(X)$.

Proof. Let $\alpha \in \mathcal{I}(X)$. Write dom $\alpha = P$, ran $\alpha = Q$, and let R_1, R_2, R_3 be pairwise disjoint subsets of x such that

$$|R_1| = |R_2| = |R_3| = \mathbf{m}, \quad X = R_1 \cup R_2 \cup R_3.$$

Certainly $|P| \leq \mathbf{m}$ and $|X \setminus P| \leq \mathbf{m}$; hence there are injections

$$\theta: P \to R_1, \quad \phi: X \backslash P \to R_2.$$

Define $\beta \in \mathcal{I}(X)$ by

$$x\beta = \begin{cases} x\theta & \text{if } x \in P, \\ x\phi & \text{if } x \in X \setminus P. \end{cases}$$

Then gap $\beta = \emptyset$, def $\beta \supseteq R_3$ and so $\beta \in B$.

Again, $|X \setminus Q| \le m$ and so we have an injection $\psi: X \setminus Q \to R_3$. Define $\gamma \in \mathcal{I}(X)$ by

$$x\gamma = \begin{cases} x\theta^{-1}\alpha & \text{if} & x \in P\theta, \\ x\psi^{-1} & \text{if} & x \in (X \setminus Q)\psi. \end{cases}$$

Then ran $\gamma = X$ and gap $\gamma \supseteq R_2$; hence $\gamma \in B^{-1}$. It is now easy to verify that

$$\operatorname{dom} \beta \gamma = (\operatorname{ran} \beta \cap \operatorname{dom} \gamma)\beta^{-1} = P = \operatorname{dom} \alpha,$$

$$ran \beta \gamma = (ran \beta \cap dom \gamma) \gamma = Q = ran \alpha$$

and that $x\beta y = x\alpha$ for all x in P. This completes the proof.

By contrast, the product $B^{-1}B$ is not even a subsemigroup of $\mathcal{I}(X)$. This will be easy to demonstrate when we have established

THEOREM 2.4. If B, B^{-1} are as defined in (2.1), (2.2), then

$$B^{-1}B = \{\alpha \in \mathcal{J}(X) : |\operatorname{dom} \alpha| = |\operatorname{ran} \alpha| = |\operatorname{gap} \alpha| = |\operatorname{def} \alpha| = \mathbf{m}\}.$$

Proof. Let $\beta \in B^{-1}$, $\gamma \in B$. Then ran $\beta = \text{dom } \gamma = X$ and so

$$\operatorname{dom} \beta \gamma = (\operatorname{ran} \beta \cap \operatorname{dom} \gamma)\beta^{-1} = X\beta^{-1} = \operatorname{dom} \beta.$$

Similarly,

$$ran \beta \gamma = ran \gamma$$
.

It now follows that

$$|\operatorname{dom} \beta \gamma| = |\operatorname{dom} \beta| = \mathbf{m}, \quad |\operatorname{gap} \beta \gamma| = |\operatorname{gap} \beta| = \mathbf{m},$$

 $|\operatorname{ran} \beta \gamma| = |\operatorname{ran} \gamma| = \mathbf{m}, \quad |\operatorname{def} \beta \gamma| = |\operatorname{def} \gamma| = \mathbf{m}.$

Conversely, let α be an element of $\mathcal{I}(X)$ such that

$$|\operatorname{dom} \alpha| = |\operatorname{ran} \alpha| = |\operatorname{gap} \alpha| = |\operatorname{def} \alpha| = \mathbf{m}$$

and let β : dom $\alpha \to X$ be a bijection. Then define $\gamma: X \to \operatorname{ran} \alpha$ by the rule that

$$x\gamma = x\beta^{-1}\alpha \quad (x \in X).$$

Then $\beta \in B^{-1}$, $\gamma \in B$ and $\beta \gamma = \alpha$.

It is now clear that $B^{-1}B$ is not a subsemigroup of $\mathcal{I}(X)$: for example, if $X = Y \cup Z$, with $|Y| = |Z| = \mathbf{m}$ and $Y \cap Z = \emptyset$, then 1_Y , 1_Z are both in $B^{-1}B$, but $1_Y 1_Z = 0$. We can, however, fairly easily describe $\langle B^{-1}B \rangle$, the subsemigroup of $\mathcal{I}(X)$ generated by $B^{-1}B$.

THEOREM 2.5. If B, B^{-1} are as defined in (2.1), (2.2), then

$$\langle B^{-1}B\rangle = \{\alpha \in \mathcal{I}(X) : |\text{gap }\alpha| = |\text{def }\alpha| = \mathbf{m}\}.$$

Proof. Let us write

$$K_{\mathbf{m}} = \{ \alpha \in \mathcal{I}(X) : |\text{gap } \alpha| = |\text{def } \alpha| = \mathbf{m} \}.$$
 (2.6)

For all α , β in $\mathcal{I}(X)$, we have dom $\alpha\beta \subseteq \text{dom } \alpha$, ran $\alpha\beta \subseteq \text{ran } \beta$. Hence, gap $\alpha\beta \supseteq \text{gap } \alpha$, def $\alpha\beta \supseteq \text{def } \beta$. It now readily follows that if α , $\beta \in K_{\mathbf{m}}$ then $\alpha\beta \in K_{\mathbf{m}}$. Thus $K_{\mathbf{m}}$, being a subsemigroup of $\mathcal{I}(X)$ containing $B^{-1}B$, must contain $\langle B^{-1}B \rangle$.

Now let $\alpha \in K_m$, and write

gap
$$\alpha = Z \cup T$$
, def $\alpha = P \cup Q$,

where $Z \cap T = P \cap Q = \emptyset$, $|Z| = |T| = |P| = |Q| = \mathbf{m}$. Let $\theta: Z \to P$ be a bijection, and define

$$\beta = \theta \cup \alpha : Z \cup \text{dom } \alpha \rightarrow P \cup \text{ran } \alpha.$$

Then dom $\beta \supseteq Z$, gap $\beta \supseteq T$, ran $\beta \supseteq P$, def $\beta \supseteq Q$ and so, by Theorem 2.4, $\beta \in B^{-1}B$. Equally, if γ is the identity mapping on $Q \cup \operatorname{ran} \alpha$ then $\gamma \in B^{-1}B$. Since ran $\beta \cap \operatorname{dom} \gamma = \operatorname{ran} \alpha$, it is now clear that $\beta \gamma = \alpha$ and hence $\alpha \in (B^{-1}B)^2 \subseteq \langle B^{-1}B \rangle$.

Notice that in proving Theorem 2.5 we have proved incidentally that

$$\langle B^{-1}B\rangle = (B^{-1}B)^2$$
.

Notice also that while $\langle B^{-1}B\rangle$ is defined merely as the *subsemigroup* generated by $B^{-1}B$, it does in fact turn out to be an *inverse subsemigroup*, as is clear from Theorem 2.5 and the observations that gap $\alpha^{-1} = \text{def } \alpha$, $\text{def } \alpha^{-1} = \text{gap } \alpha$.

3. A nilpotent-generated inverse semigroup

In this section, we examine some of the properties of the inverse semigroup $K_{\mathbf{m}}$ defined by (2.6). Notice that $0 \in K_{\mathbf{m}}$, since gap 0 = def 0 = X.

In a semigroup S with zero, let N_2 be the set of all nilpotent elements of index 2, i.e. the set of all non-zero s in S for which $s^2 = 0$. If $S = \langle N_2 \rangle$ then either the ascent

$$N_2 \subset N_2 \cup N_2^2 \subset N_2 \cup N_2^2 \cup N_2^3 \subset \dots$$

continues infinitely, or there exists a least $k \ge 1$ such that

$$N_2 \cup N_2^2 \cup \ldots \cup N_2^k = S$$
.

In the former case we write $\Delta_2(S) = \infty$ and in the latter case we write $\Delta_2(S) = k$. We describe S as 2-nilpotent-generated and refer to $\Delta_2(S)$ as its 2-nilpotent-depth. We note in passing that

$$N_2 \subseteq N_2^3$$
;

for if $\alpha \in \mathbb{N}_2$ then $\alpha^{-1} \in \mathbb{N}_2$ and $\alpha = \alpha \alpha^{-1} \alpha$. It follows that

$$N_2 \cup N_2^2 \cup N_2^3 = N_2^2 \cup N_2^3$$
.

It is clear that in $\mathcal{I}(X)$, an element α is nilpotent of index 2 if and only if

$$\operatorname{dom} \alpha \neq \emptyset, \quad \operatorname{dom} \alpha \cap \operatorname{ran} \alpha = \emptyset. \tag{3.1}$$

THEOREM 3.2. Let $\mathcal{J}(X)$ be the symmetric inverse semigroup on a set X of cardinality \mathbf{m} , let $K_{\mathbf{m}}$ be as defined in (2.6), and let N_2 be the set of all nilpotent elements of index 2 in $\mathcal{J}(X)$. Then $K_{\mathbf{m}} = \langle N_2 \rangle$, and $\Delta_2(K_{\mathbf{m}}) = 3$.

Proof. We begin by showing that $N_2 \subseteq K_{\mathbf{m}}$. Let $\alpha \in N_2$. Then α satisfies (3.1) and so dom $\alpha \subseteq \text{def } \alpha$, ran $\alpha \subseteq \text{gap } \alpha$. If $|\text{dom } \alpha| = |\text{ran } \alpha| = \mathbf{m}$ this implies that $|\text{def } \alpha| = |\text{gap } \alpha| = \mathbf{m}$, i.e. that $\alpha \in K_{\mathbf{m}}$.

Suppose therefore that $|dom \alpha| = |ran \alpha| < m$. But then it is clear from the statements

$$|\operatorname{dom} \alpha| + |\operatorname{gap} \alpha| = \mathbf{m}, \quad |\operatorname{ran} \alpha| + |\operatorname{def} \alpha| = \mathbf{m}$$

that $|gap \alpha| = |def \alpha| = m$. Hence again $\alpha \in K_m$. Thus $N_2 \subseteq K_m$, from which it follows that

$$N_2 \cup N_2^2 \cup N_2^3 \subseteq K_{\mathbf{m}}$$
.

Next, we notice that for an element α of K_m , we may have either

$$|\operatorname{gap} \alpha \cap \operatorname{def} \alpha| = \mathbf{m}$$
 or $|\operatorname{gap} \alpha \cap \operatorname{def} \alpha| < \mathbf{m}$.

For an example of the first kind of element, consider $\alpha = 1_Y$, where $X = Y \cup Z$, $Y \cap Z = \emptyset$, $|Y| = |Z| = \mathbf{m}$; here gap $\alpha = \text{def } \alpha = Z$. To find an example not in N_2 of the second kind of element, partition X into three mutually disjoint subsets Y, Z, T, with $|Y| = |Z| = |T| = \mathbf{m}$. Let $\theta: Z \to T$ be a bijection and let

$$\alpha = \theta \cup 1_Y : Y \cup Z \rightarrow Y \cup T.$$

Then $\alpha \notin N_2$, gap $\alpha = T$, def $\alpha = Z$.

Inverse semigroups

The following lemma identifies those elements of $K_{\mathbf{m}}$ that lie in N_2^2 .

LEMMA 3.3. Let $\alpha \in K_{\mathbf{m}}$. Then $\alpha \in N_2^2$ if and only if $|\text{gap } \alpha \cap \text{def } \alpha| = \mathbf{m}$.

Proof. Let $\alpha \in K_{\mathbf{m}}$ be such that

$$|gap \alpha \cap def \alpha| = \mathbf{m}.$$

Write gap $\alpha \cap \text{def } \alpha = Z \cup T$, with $|Z| = |T| = \mathbf{m}$ and $Z \cap T = \emptyset$. Let $\beta : \text{dom } \alpha \to Z$ be an injection. Then $\beta \in N_2$ by (3.1). If $\gamma = \beta^{-1}\alpha$ then

$$\operatorname{dom} \gamma = (\operatorname{ran} \beta^{-1} \cap \operatorname{dom} \alpha)\beta = \operatorname{ran} \beta$$

(since ran $\beta^{-1} = \text{dom } \beta = \text{dom } \alpha$) and similarly

$$ran \gamma = ran \alpha$$
.

Since ran $\beta \subseteq Z \subseteq \text{gap } \alpha \cap \text{def } \alpha$, we have dom $\gamma \cap \text{ran } \gamma = \emptyset$ and so $\gamma \in N_2$. Also,

$$\beta \gamma = \beta \beta^{-1} \alpha = \alpha$$
,

since dom $\beta = \text{dom } \alpha$, and so $\alpha \in \mathbb{N}_2^2$.

Conversely, let $\alpha = \beta \gamma$, with $\beta, \gamma \in N_2$, and suppose first that $|\text{dom } \alpha| (= |\text{ran } \alpha|) = \mathbf{m}$. Then,

$$\mathbf{m} = |\operatorname{ran} \alpha| = |(\operatorname{ran} \beta \cap \operatorname{dom} \gamma)\gamma| = |\operatorname{ran} \beta \cap \operatorname{dom} \gamma|. \tag{3.4}$$

Now dom $\alpha \subseteq \text{dom } \beta$ and so

$$(\operatorname{ran} \beta \cap \operatorname{dom} \gamma) \cap \operatorname{dom} \alpha \subseteq \operatorname{ran} \beta \cap \operatorname{dom} \beta = \emptyset$$

(since $\beta \in N_2$); hence,

$$ran \beta \cap dom \gamma \subseteq gap \alpha$$
.

Similarly, since ran $\alpha \subseteq ran \gamma$, we have

$$(\operatorname{ran} \beta \cap \operatorname{dom} \gamma) \cap \operatorname{ran} \alpha \subseteq \operatorname{dom} \gamma \cap \operatorname{ran} \gamma = \emptyset$$

and so

ran
$$\beta \cap \text{dom } \gamma \subseteq \text{def } \alpha$$
.

Thus,

gap
$$\alpha \cap \operatorname{def} \alpha \supseteq \operatorname{ran} \beta \cap \operatorname{dom} \gamma$$

and so by (3.4), $|\text{gap }\alpha \cap \text{def }\alpha| = \mathbf{m}$.

Suppose now that $|\operatorname{dom} \alpha| (= |\operatorname{ran} \alpha|) < \mathbf{m}$. Then $|\operatorname{dom} \alpha \cup \operatorname{ran} \alpha| < \mathbf{m}$ and so

$$|\text{gap }\alpha\cap \text{def }\alpha|=|X\setminus (\text{dom }\alpha\cup \text{ran }\alpha)|=\mathbf{m}.$$

Thus Lemma 3.3 is proved. It follows from the existence of elements $\alpha \notin N_2$ such that $|\text{gap } \alpha \cap \text{def } \alpha| < \mathbf{m}$ that $N_2 \cup N_2^2 \neq K_{\mathbf{m}}$.

To complete the proof of Theorem 3.2, we establish

LEMMA 3.5. Let $\alpha \in K_{\mathbf{m}}$ be such that $|\text{gap } \alpha \cap \text{def } \alpha| < \mathbf{m}$; then $\alpha \in N_2^3$.

Proof. Since $\alpha \in K_{\mathbf{m}}$, we have $|\text{gap } \alpha| = |\text{def } \alpha| = \mathbf{m}$. Hence, denoting

gap $\alpha \cap \text{def } \alpha$ by Y, we see that

$$|gap \alpha \setminus Y| = |def \alpha \setminus Y| = \mathbf{m}.$$

Since

$$\operatorname{gap} \alpha \backslash Y \subseteq \operatorname{ran} \alpha$$
 and $\operatorname{def} \alpha \backslash Y \subseteq \operatorname{dom} \alpha$,

we must therefore have that

$$|\operatorname{dom} \alpha| = |\operatorname{ran} \alpha| = \mathbf{m}.$$

Let β : dom $\alpha \to \text{gap } \alpha \setminus Y$, γ : gap $\alpha \setminus Y \to \text{def } \alpha \setminus Y$ be bijections. Then $\beta, \gamma \in N_2$. Let

$$\delta = \gamma^{-1} \beta^{-1} \alpha : \operatorname{def} \alpha \setminus Y \to \operatorname{ran} \alpha.$$

Then again $\delta \in N_2$, and it is clear that $\alpha = \beta \gamma \delta$. This completes the proof of Lemma 3.5, and thereby the proof of Theorem 3.2.

4. A class of nilpotent-generated congruence-free inverse semigroups

It is a routine matter to verify that for each cardinal number $k \le m$, the set

$$P_{\mathbf{k}} = \{ \alpha \in K_{\mathbf{m}} : |\text{dom } \alpha| \ (=|\text{ran } \alpha|) < \mathbf{k} \}$$

$$(4.1)$$

is a two-sided ideal of K_m . We define

$$L_{\mathbf{m}} = K_{\mathbf{m}}/P_{\mathbf{m}},\tag{4.2}$$

the Rees quotient of $K_{\mathbf{m}}$, by the ideal $P_{\mathbf{m}}$. By Theorem 2.4, we have that $K_{\mathbf{m}} \setminus P_{\mathbf{m}} = B^{-1}B$, and we frequently find it convenient to identify $L_{\mathbf{m}}$ with $B^{-1}B \cup \{0\}$.

THEOREM 4.3. The inverse semigroup L_m defined by (4.2) is 0-bisimple. It is 2-nilpotent generated, and $\Delta_2(L_m) = 3$.

Proof. Since $L_{\mathbf{m}}$ is a homomorphic image of $K_{\mathbf{m}}$, it follows from Theorem 3.2 that $L_{\mathbf{m}}$ is a 2-nilpotent-generated inverse semigroup and that $\Delta_2(L_{\mathbf{m}}) \leq 3$. To complete the proof, we require to show first that $L_{\mathbf{m}}$ is 0-bisimple and then that $\Delta_2(L_{\mathbf{m}}) > 2$.

Since $L_{\mathbf{m}}$ is regular, it will follow by [3, Proposition II.3.2] that $L_{\mathbf{m}}$ is 0-bisimple if we show that $(\varepsilon, \eta) \in \mathcal{D}$ for every pair ε , η of idempotents in $K_{\mathbf{m}} \backslash P_{\mathbf{m}}$. Accordingly, let

$$\varepsilon = 1_A$$
, $\eta = 1_B$,

where $|A| = |B| = |X \setminus A| = |X \setminus B| = \mathbf{m}$, be idempotent in $K_{\mathbf{m}} \setminus P_{\mathbf{m}}$. Then if $\alpha : A \to B$ is a bijection, it is clear that $\alpha \in K_{\mathbf{m}} \setminus P_{\mathbf{m}}$ and that $(\varepsilon, \alpha) \in \mathcal{R}$, $(\alpha, \eta) \in \mathcal{L}$. Thus $(\varepsilon, \eta) \in \mathcal{D}$ as required.

Let us denote the set of nilpotent elements of index 2 in $L_{\mathbf{m}}$ by T. It is important to realise that in passing from $K_{\mathbf{m}}$ to the Rees quotient $L_{\mathbf{m}}$, we introduce many 'new' nilpotent elements. To be more precise, if we denote by $\alpha \mapsto \bar{\alpha}$ the Rees homomorphism from $K_{\mathbf{m}}$ onto $L_{\mathbf{m}} = K_{\mathbf{m}} \backslash P_{\mathbf{m}}$, then certainly $\alpha^2 = 0$ in $K_{\mathbf{m}}$ implies $\bar{\alpha}^2 = \bar{0}$ in $L_{\mathbf{m}}$. However, $\bar{\alpha}^2 = \bar{0}$ in $L_{\mathbf{m}}$ implies only that $\alpha^2 \in P_{\mathbf{m}}$ in

 $K_{\mathbf{m}}$. Thus, to show that $T \cup T^2$ is properly contained in $L_{\mathbf{m}}$, we must show that there exists α in $K_{\mathbf{m}} \backslash P_{\mathbf{m}}$ such that $\alpha^2 \in K_{\mathbf{m}} \backslash P_{\mathbf{m}}$ and which cannot be expressed as a product $\beta \gamma$ with β , $\gamma \in K_{\mathbf{m}} \backslash P_{\mathbf{m}}$, β^2 , $\gamma^2 \in P_{\mathbf{m}}$. Now to say that β^2 , $\gamma^2 \in P_{\mathbf{m}}$ is to say that

$$|\operatorname{dom} \beta \cap \operatorname{ran} \beta| < \mathbf{m}, |\operatorname{dom} \gamma \cap \operatorname{ran} \gamma| < \mathbf{m}.$$

Thus, in view of the existence of elements α in $K_{\mathbf{m}} \backslash P_{\mathbf{m}}$ for which $|\text{gap } \alpha \cap \text{def } \alpha| < \mathbf{m}$, the following lemma completes the proof of the theorem. It is a generalisation of part of Lemma 3.3.

Lemma 4.4. Let α , $\alpha^2 \in K_{\mathbf{m}} \backslash P_{\mathbf{m}}$ and suppose that $\alpha = \beta \gamma$, where β , $\gamma \in K_{\mathbf{m}} \backslash P_{\mathbf{m}}$ and

$$|\operatorname{dom} \beta \cap \operatorname{ran} \beta| < \mathbf{m}, |\operatorname{dom} \gamma \cap \operatorname{ran} \gamma| < \mathbf{m}.$$

Then $|\text{gap }\alpha \cap \text{def }\alpha| = \mathbf{m}$.

Proof. Suppose, by way of contradiction, that

$$|gap \alpha \cap def \alpha| < m$$
.

By assumption, since $\alpha^2 \in K_{\mathbf{m}} \setminus P_{\mathbf{m}}$, we have

 $|\operatorname{dom} \alpha \cap \operatorname{ran} \alpha| = \mathbf{m}$.

	dom a	gap α
$ran \alpha$	A_{11}	A ₁₂
$def \alpha$	A_{21}	A_{22}
	A CONTRACTOR OF THE PARTY OF TH	

Diagrammatically, we have

$$|A_{22}| < \mathbf{m}, |A_{11}| = \mathbf{m}.$$
 (4.5)

Since def $\alpha = |A_{21} \cup A_{22}| = \mathbf{m}$ and gap $\alpha = |A_{12} \cup A_{22}| = \mathbf{m}$, we must have

$$|A_{12}| = |A_{21}| = \mathbf{m}$$
.

Now from $\beta \gamma = \alpha$, we deduce that dom $\alpha \subseteq \text{dom } \beta$. Hence,

$$|\operatorname{dom} \alpha \cap \operatorname{ran} \beta| \leq |\operatorname{dom} \beta \cap \operatorname{ran} \beta| < \mathbf{m}.$$
 (4.6)

Now write

$$Q = (\operatorname{dom} \alpha)\beta = (\operatorname{ran} \alpha)\gamma^{-1} = \operatorname{ran} \beta \cap \operatorname{dom} \gamma$$
.

Then $|Q| = \mathbf{m}$. Since

$$Q = (Q \cap \operatorname{dom} \alpha) \cup (Q \cap A_{12}) \cup (Q \cap A_{22}),$$

it now follows from (4.5) and (4.6) that

$$|Q\cap A_{12}|=\mathbf{m}.$$

Hence certainly $|\text{dom } \gamma \cap A_{12}| = \mathbf{m}$. But

$$A_{12} \subseteq \operatorname{ran} \alpha \subseteq \operatorname{ran} \gamma$$

and so it now follows that

$$|\operatorname{dom} \gamma \cap \operatorname{ran} \gamma| = \mathbf{m},$$

contrary to hypothesis. This completes the proof of Lemma 4.4 and hence also of Theorem 4.3.

The semigroup $L_{\mathbf{m}}$, being 0-bisimple, has no proper ideals. It is not, however, congruence-free. To see this, we invoke a result due to Liber [5], which implies that for each cardinal $\mathbf{p} < \mathbf{m}$, the relation

$$\delta_{\mathbf{p}} = \{ (\alpha, \beta) \in K_{\mathbf{m}} \times K_{\mathbf{m}} : |(\alpha \setminus \beta) \cup (\beta \setminus \alpha)| < \mathbf{p} \}$$
(4.7)

is a congruence on $K_{\mathbf{m}}$. Here we are interested only in $\delta_{\mathbf{m}}$, and remark that $(\alpha, \beta) \in \delta_{\mathbf{m}}$ if and only if

 $|\operatorname{dom} \alpha \setminus \operatorname{dom} \beta| < \mathbf{m}, |\operatorname{dom} \beta \setminus \operatorname{dom} \alpha| < \mathbf{m}$

and

$$|D(\alpha,\beta)| < \mathbf{m}$$
,

where

$$D(\alpha, \beta) = \{ x \in \text{dom } \alpha \cap \text{dom } \beta \colon x\alpha \neq x\beta \}$$
 (4.8)

From our point of view, the crucial (and easily verified) property of $\delta_{\mathbf{m}}$ is that $0\delta_{\mathbf{m}} = P_{\mathbf{m}}$; i.e. any α in $K_{\mathbf{m}}$ satisfies $(\alpha, 0) \in \delta_{\mathbf{m}}$ if and only if $|\mathrm{dom} \, \alpha| < \mathbf{m}$. Thus, if we denote the Rees congruence

$$(P_{\mathbf{m}} \times P_{\mathbf{m}}) \cup \{(\alpha, \alpha) : \alpha \in K_{\mathbf{m}} \setminus P_{\mathbf{m}}\}$$

by σ , we have $\sigma \subset \delta_m$ and so there is a commutative diagram

$$K_{\mathbf{m}} \xrightarrow{\delta_{\mathbf{m}}^{\natural}} K_{\mathbf{m}}/\delta_{\mathbf{m}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

showing that $K_{\mathbf{m}}/\delta_{\mathbf{m}}$ is a homomorphic image of $L_{\mathbf{m}}$. We denote it by $L_{\mathbf{m}}^*$. It is clear that $L_{\mathbf{m}}^*$ is a 0-bisimple inverse semigroup.

LEMMA 4.9. L_m is congruence free.

Proof. From [9] and [10], recall that a regular 0-simple semigroup S is congruence-free if and only if the congruence

$$\sigma = \{(a, b) \in S \times S : s(\forall, t \in S^1) sat = 0 \Leftrightarrow sbt = 0\}$$

is trivial. Thus what we must show is that if α , β in $K_{\mathbf{m}} \backslash P_{\mathbf{m}}$ are such that $(\alpha, \beta) \notin \delta_{\mathbf{m}}$, then there exist λ , μ in $K_{\mathbf{m}} \backslash P_{\mathbf{m}}$ such that $\lambda \alpha \mu \in K_{\mathbf{m}} \backslash P_{\mathbf{m}}$, $\lambda \beta \mu \in P_{\mathbf{m}}$ (or $\lambda \alpha \mu \in P_{\mathbf{m}}$, $\lambda \beta \mu \in K_{\mathbf{m}} \backslash P_{\mathbf{m}}$).

Suppose therefore that $(\alpha, \beta) \notin \delta_{\mathbf{m}}$. Then at least one of $|\operatorname{dom} \alpha \setminus \operatorname{dom} \beta|$, $|\operatorname{dom} \beta \setminus \operatorname{dom} \alpha|$ and $D(\alpha, \beta)$ (see (4.8)) has cardinality \mathbf{m} . Suppose first that $|D(\alpha, \beta)| = \mathbf{m}$. Then by [6, Lemma 2] there is a subset Y of $D(\alpha, \beta)$ such that

 $|Y| = \mathbf{m} \quad Y\alpha \cap Y\beta = \emptyset$. Let $\lambda = 1_Y$, $\mu = 1_{Y\alpha}$. Then $\lambda, \mu \in K_m \setminus P_m$, $\lambda \alpha \mu = \alpha \mid Y \in K_m \setminus P_m$, $\lambda \beta \mu = 0 \in P_m$.

To complete the proof of Lemma 4.9, it will suffice to consider the case where $|\operatorname{dom} \alpha \setminus \operatorname{dom} \beta| = \mathbf{m}$. The other case, where $|\operatorname{dom} \beta \setminus \operatorname{dom} \alpha| = \mathbf{m}$, is identical. Suppose therefore that $|\operatorname{dom} \alpha \setminus \operatorname{dom} \beta| = \mathbf{m}$ and let λ , μ be respectively the identity mappings on $\operatorname{dom} \alpha \setminus \operatorname{dom} \beta$ and on $(\operatorname{dom} \alpha \setminus \operatorname{dom} \beta)\alpha$. Then λ , $\mu \in K_{\mathbf{m}} \setminus P_{\mathbf{m}}$,

$$\lambda \alpha \mu = \alpha \mid (\operatorname{dom} \alpha \setminus \operatorname{dom} \beta) \in K_{\mathbf{m}} \setminus \dot{P}_{\mathbf{m}},$$

$$\lambda \beta \mu = 0 \in P_{\mathbf{m}}.$$

This completes the proof of Lemma 4.9.

We have in fact proved most of the following theorem.

Theorem 4.10. Let $L_{\mathbf{m}}^* = K_{\mathbf{m}}/\delta_{\mathbf{m}}$, where $K_{\mathbf{m}}$ is defined by (2.6) and $\delta_{\mathbf{m}}$ by (4.7). Then $L_{\mathbf{m}}^*$ is a 0-bisimple, congruence-free 2-nilpotent-generated inverse semigroup, and $\Delta_2(L_{\mathbf{m}}^*) = 3$.

Proof. Since $L_{\mathbf{m}}^*$ is a homomorphic image of $L_{\mathbf{m}}$, it is immediate from Theorem 4.3 that it is a 0-bisimple inverse semigroup, that it is 2-nilpotent-generated, and that $\Delta_2(L_{\mathbf{m}}^*) \leq 3$. We have already seen that it is congruence-free, and so all that remains is to show that $\Delta_2(L_{\mathbf{m}}^*) > 2$.

To investigate this, notice first that an element $\beta \delta_{\mathbf{m}}$ of $L_{\mathbf{m}}^*$ (with $\nu \in K_{\mathbf{m}} \backslash P_{\mathbf{m}}$) is nilpotent of index 2 in $L_{\mathbf{m}}^*$ if and only if $\beta^2 \in 0\delta_{\mathbf{m}} = P_{\mathbf{m}}$, i.e. if and only if

$$|\operatorname{dom} \beta \cap \operatorname{ran} \beta| < \mathbf{m}$$
.

What we require, therefore, is the following generalization of Lemma 4.4:

Lemma 4.11. Let $\alpha, \alpha^2 \in K_m \backslash P_m$ and suppose that $(\alpha, \beta \gamma) \in \delta_m$, where $\beta, \gamma \in K_m \backslash P_m$ and

$$|\operatorname{dom} \beta \cap \operatorname{ran} \beta| < \mathbf{m}, |\operatorname{dom} \gamma \cap \operatorname{ran} \gamma| < \mathbf{m}.$$

Then $|gap \alpha \cap def \alpha| = \mathbf{m}$.

Proof. Notice that the hypotheses of the lemma give that

$$|\operatorname{dom} \alpha \setminus \operatorname{dom} \beta \gamma|, \quad |\operatorname{dom} \beta \gamma \setminus \operatorname{dom} \alpha|,$$
 $|\operatorname{ran} \alpha \setminus \operatorname{ran} \beta \gamma|, \quad |\operatorname{ran} \beta \gamma \setminus \operatorname{ran} \alpha|$
(4.12)

are all strictly less than \mathbf{m} . We use the same notation as in the proof of Lemma 4.4 and assume by way of contradiction that

$$|A_{22}| = |\operatorname{gap} \alpha \cap \operatorname{def} \alpha| < \mathbf{m}. \tag{4.13}$$

Since

$$\operatorname{dom} \alpha \subseteq \operatorname{dom} \beta \gamma \cup (\operatorname{dom} \alpha \setminus \operatorname{dom} \beta \gamma),$$

we deduce that

$$|\operatorname{dom} \alpha \cap \operatorname{ran} \beta| \leq |\operatorname{dom} \beta \gamma \cap \operatorname{ran} \beta| + |(\operatorname{dom} \alpha \setminus \operatorname{dom} \beta \gamma) \cap \operatorname{ran} \beta|$$

$$\leq |\operatorname{dom} \beta \cap \operatorname{ran} \beta| + |(\operatorname{dom} \alpha \setminus \operatorname{dom} \beta \gamma) \cap \operatorname{ran} \beta| < \mathbf{m}.$$
(4.14)

Again, as in the proof of Lemma 4.4, let

$$Q = \operatorname{ran} \beta \cap \operatorname{dom} \gamma$$
.

Then, since $\beta \gamma \notin P_{\mathbf{m}}$, we have $|Q| = \mathbf{m}$. Since

$$Q = (Q \cap \operatorname{dom} \alpha) \cup (Q \cap A_{12}) \cup (Q \cap A_{22}),$$

it follows from (4.13) and (4.14) that

$$|Q \cap A_{12}| = \mathbf{m};$$

hence certainly $|\operatorname{dom} \gamma \cap \operatorname{ran} \alpha| = \mathbf{m}$.

Now, if we write $Z = \operatorname{ran} \alpha \cap \operatorname{ran} \beta \gamma$, we see that

$$\operatorname{dom} \gamma \cap \operatorname{ran} \alpha = (\operatorname{dom} \gamma \cap Z) \cup (\operatorname{dom} \gamma \cap (\operatorname{ran} \alpha \setminus \operatorname{ran} \beta \gamma)).$$

Hence, $|\text{dom } \gamma \cap Z| = \mathbf{m}$ and so, by (4.12), since

$$Z \subseteq \operatorname{ran} \beta \gamma \subseteq \operatorname{ran} \gamma$$
,

we have

$$|\operatorname{dom} \gamma \cap \operatorname{ran} \gamma| = \mathbf{m},$$

contrary to hypothesis.

Since, as already remarked, we can find elements α in $K_{\mathbf{m}}$ which are not nilpotent of index 2 and for which $|\text{gap }\alpha\cap \text{def }\alpha|<\mathbf{m}$, it follows that there are elements of $L_{\mathbf{m}}^*$ that cannot be expressed as products of nilpotents of index 2. Hence Theorem 4.10 is proved.

We remark finally that

$$|K_{\mathbf{m}}| = |L_{\mathbf{m}}| = |L_{\mathbf{m}}^*| = 2^{\mathbf{m}}.$$

The proofs, which are not all quite obvious, may be found in [8].

References

- 1 R. Baer and F. Levi. Vollständige irreduzibele Systeme von Gruppenaxiomen. (Beitrage zur Algebra, No. 18) Sitzungsber. Heidelb. Akad. Wiss. Abh. 2 (1932), 1-12.
- 2 A. H. Clifford and G. B. Preston. The algebraic theory of semigroups, vols. 1 and 2 (Providence, R.I.: American Math. Soc., 1961 and 1967).
- 3 J. M. Howie. An introduction to semigroup theory (London: Academic Press, 1976).
- 4 J. M. Howie. A class of bisimple idempotent-generated congruence-free semigroups. Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 169-184.
- 5 A. E. Liber. On symmetric generalized groups. Mat. Sb. 33 (75) (1953), 531-544 (in Russian).
- 6 D. Lindsey and B. Madison. The lattice of congruences on a Baer-Levi semigroup. Semigroup Forum 12 (1976), 63–70.
- 7 M. Paula O. Marques. A congruence-free semigroup associated with an infinite cardinal number. Proc. Roy. Soc. Edinburgh Sect. A 93 (1983), 245–257.
- 8 M. Paula O. Marques. *Infinite transformation semigroups* (Ph.D. Thesis, University of St Andrews, 1983).
- 9 B.M. Schein. Homomorphisms and subdirect decomposition of semigroups. Pacific J. Math. 17 (1966), 529-547.
- 10 P. G. Trotter. Congruence-free regular semigroups with zero. Semigroup Forum 12 (1976), 1–5.

(Issued 17 January 1985)