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In 1988, Howic and Marques-Smith studied P, a Rees quolient semigroup of
transformations associated with a regular eardinal m, and described the elements which can
be written as a product of nilpatents in £,,. o 1981, Marques proved that if A, denctes the
Malcey congruence on B, then P, /A, is congruence-frec for any infinite s [n 1his paper, we
describe the products of nilpotents in P,, when m is nonregular, and determing all the
congruences on F,, when m is an arbitrary infinite cardinal. We also investigate when a
nilpotent is a product of idempotents.

1. Larroduction

Throughout this paper, X will denote an infinite set with cardinal m. All notation
and terminology [or semigroup theory will be from [1] and [37 unless specified
otherwise, and [6] and [9] will be our authorities for advanced set theory. If 7(X)
is the full transfermation sermigroup on X and x € F(X), we put

Zlx)= X\ Xu, dlo) = | Z (2],
St)={xe X:xa#x}, s(a) = | S(w)],
Clw)=Ulpa™:ya"" 122}, efz)=|C)].

The cardinal numbers d(x), s(x) and c(«) are called, respectively, the defect, the shift
and the collapse of @ and were used by Howie [2] to characterise those we F(X)
which are the products of idempotents in Z(X}. In particular, he later showed [4]
that the set

Q,, = {oe T{X): din) = s(o)) = elet) = m)

is a regular subsemigroup of &7 (X) gensrated by the idempotents in Q,,.

Let r(e) denote the rank of o (that is, | Xe|) and note that I, = fx e Q,.: r(2) < m}
is an ideal of @,,. We let P,, denote the Rees quotient semigroup Q,,/1,, and identify
this with J,,w {0}, where J,, — {& Q,,: r(x) = m} and the product of two elements of
J,. equals 0 il it lies in /. In [5], Howie and Marques-Smith showed that if m is a
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regular cardinal then the set
K,=1{ze P, |yt Y =mfor some y X} L {0}
1s a regular subsemigroup of P,, and comprises all 2 & B,, which are preducts of

nilpotents in P,,. In Section 2, we show that if mn is singular {that is, nonregular) then
the set

L, = {@& P,: for each p <m, there exists v € X such that {ye™ | > p} |0}

is a O-bisimple regular subsemigroup of P,, and consists of all x e P,, which are
products of nilpotents in P,. In Section 3, we characterise the nilpotents in L, with
index 2 that equal a product of lwo or of three idempotents in L,,.

In [8], Marques showed that for any infinite m, every element of P, is a product
of 4 or fewer idempotents and that 4 is best possible. In addition, she proved that if
o, f e, and we let

Dia, f)={xe X:xa#xpl, drle, B)=max (|D(x, B)=|, | Dz, B)BI),
A= B ePF,x P, dru )< m),

then P, /A, is congruence-free. In Section 4, we describe all the congruences o P,
for any m.

2. Nilpotents as generators

We adopt the convention introduced in [ 1, vol. 2, p. 2417: namely, if # € 7(X), then

we write
A,
o=
X5

and 1ake it as understood that the subscript i belongs to some (unmentioned) index
set f, thal the abbreviation {x;} denotes [x;:i e[} and that Xe = {3;] and A4; = xa™

Our first result bears comparison with [8, Lemmas 3.1-3.3] and with [5,
Proposition 2.17,

TrEOREM 2.1, If m is singular then L, is a 0-bisimple regular semigroup.

Proof. If %, feJ, and p<um, choose ye X such that |yz™![>p and let z = yf.
Then

ya e (zf ' nXeu = z(af) !

and so |z{xf) "' > p: that is, L,, is a semigroup. By [8, Lemma 3,1] we know P,, is
regular and so, [or each we L, there exists fi e P, such that o = ofiz. Let ze X\ Xz
and define "€ 7(X) by putting xf' = xf for all x € Xx and y§’ ==z for all ye X\ X=x
Since d(x) = m, we have ¢(f') = s(f") = m. In addition, X' = Xfuz implies d( ") =
m, and «f # 0 implies r{f’) = m, That is, "¢ L,, and clearly « = of'«.

Since every element in a regular semigroup is 9-equivalent to an idempotent, to
show that L, is O-bisimple it will suffice to show that any two idempotents in L,
are @-equivalent. For this, let §, & be idempotents in L, and let 0: X/ker § - X35 be
4 bijection. Define ¢ € F(X) by putting xo = (x85 "*)6 for each x € X Clearly, Xu=



Nilpotents and congruences on semigroups

X and ker oo =ker 8. and 50 5%« and a$c. Moreover, d(z) = d(c) and Clo) = ().
and so = £,. O

In [5], Howie and Marques-Smith showed that if s is regular, the subsemigroup
of £, generaled by the nilpotents of P, equals the set

Ku={ae P, |ya™ | =mfor some ye X} w0}

In fact, they showed that every element of K., is a product of 3 or fewer nilpotents
in B, with index 2 (that is, A€ J,, and 4% =0) and that 3 is best possible. We now
solve the corresponding problem for the case when m is singular. We begin with the
following generalisation of [5, Proposition 24].

Lemma 2.2, Suppose mt is any infinite cardinal, Let = ¢ Ppoand Xo={x}, 4;=xu !
Jor each i€ L Then o is a product of vwo nilpotents with index 2 if and oniv if there
exists J = such that |J1 < mt and [(UA;}0 (X \X )] = .

Proof. Suppese the condition holds and let K = INJ, so that |K|=m (since r{x) =
). Choose distinet by, ¢; € (U4;)n(X\Xa) and z e Xz, and put

h

\LHALM lxu snd m.»“ﬁ ;o X\[by, mn_v.
by oy X X z
Then =44, Udy € X\X4,, and Xac X\ ). Also, (i) = cfz) = mr implies
s(2,) = m, and clearly d(4;) = d(a). So, 2,, 4, € P,, and each is nilpotent with index 2.

Conversely. suppose o = iy for nilpotents 4 u wilh index 2. By (5, Lemma 2.57
and its dual we can assume « = iy where ker 4 =ker « and Xp= X% In addition,
for contradiction, we suppose that for all J < I, il |J] < m then HUA ) N (X8 X)) < m.
[n this case, put 4, =, and let J=(ie ]: Xind; # @} and K = I\J. Then

o m& L,v
4] €y !

where (UA;) X2 = 5 If [J] = then for each j there exists z; such that z;/ = 4,
and &.\.‘“ =A;.=c; thatis, 220 in P,. Therelore, |[J1<m and so |K]=m since
r(A)=m. But lgtcs Ud; and so |U4;l=wm. In additon, by our supposition,
HUA AL X o) < me As in Figare 2.1, put

Z=U4;,
B=(UA)nXinXs

€ = [(U4,)n X2)\B,
D=(XirnXa)\B,

E = [{UA ) (X \Xo)NC.

Then |[BUC|=m and |CuE| <m imply that | €] <m and hence that |B| =m. Thus,
|BuD]=m. that is, | Xin Xa| =m. But, since ker oo = ker 7, It is one-to-one on X7
and so [(Xin Xe)pu]=m Consequently, X ={(X2)p=2(X/n Xa)p implies that
#* #0in P, a contradiclion as required. ]

~

The next result shows that, when mis singular, L, is a subset of ¢ V'), the semigroup
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Figure 2.1.

generated by the set N of all nilpotents in P,: parl of its proof follows the basic idea
of [ 10, p. 3407,

THECREM 2.3. Eaclr element of L,, is a product of 3 or fewer nilpotents with index 2.
Proof. First suppose that there exists some z such that [z¢”!| =m. By Lemma .u...m
(with J| = 1) we can also suppose that |(X\Xu)n Y| < m where ¥ =za ™", in which
case |XanY|=m Puat Xe\z=1{x;), A =xu"' and choose ¢ e(Xa\z)nY,
d, e (X\Xa)\z. Put

: hu C; k./?ﬁni/v

z d; z
ol 5?3&
,~.|hu x z ’

Then & = 47,4, and each A, € L, and is nilpotent with index 2.
We now suppose that [zz~'| < for all ze X and wrile

Y, u
(7 %)
X; U,

where m>[¥] 22 and [JuP|=m. Il J]=m, we form a n_.E.om_.: .:aom._” {x;) =
{x,twix,), where [K|=um, |N|=¢f(m) and |UY,| =m: this is H.Smm__u_.m since a1 is
singular and so is the sum of a strictly increasing sequence of ¢f(m) cardinals a, <m
[6, pp. 26-7] and, since xe L,. for each ne N there exists ¥, e {¥;} such that
|Y,| = m,. Now, fix z € X& and write U ¥, as a disjoinl union: LY, = {ag}u {a,) Ui,

and put
Y. ¥ ou o dy, a, X\lag,a,a,}
\u.uﬁr " J and _:Hm o ).

@ a4, d,/ Xy Xy Uy &
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Then x=/Apand 4, pe L, since UV, € X\Xdand 2~ ' = (UY, ) {1} where [UY,] =
m. Also, A*=0 in P, since ¢f(m) <m. Now, [z¢7'|=m and Xp= X« and so, if
[z (X \X )| = m, then Lemma 2.2 (with |J| = 1) implies that g is a product of
two nilpotents with index 2 and the result follows. On the other hand, if
lzp ™" A (X\Xu)| < then [(UE) A (X \ Xa)] =t since d(z) = . But, In this case, |N|=
cf(m) <m and so Lemma 2.2 implies that « is itself a product of two nilpotents
with index 2.
TF|J| < p1 then |[P| = and we can write UY; = (b} U ic,). Let ze Xo and put

mnﬁx :_,u and tuﬁF v k/:c.nxu.

b; ¢, X; b, %
Then x= A, .n:L < XNXZ, {u,} < X\{by,¢,} and Xp= Xz, and hence 4, e Ly
where * = O since |J| <. Also, 1zp ™! = mand so, if |z ™' n(X\ X )| = m, the result

fallows as before. If, however, [zp~ (X \X 1] < nr then | [,k V(X\Xa)| < m and so
HUY)A(X\Xa)|=m since dlw}=m. Bul |J|<m and another application of
Lemma 2.2 completes the proof. TJ

The next result shows that N = L, and so, by Theorem 2.1, (N3 < L,,. Thus, by
Theorem 2.3, L,, is precisely the subsemigroup of P,, generated by the nilpotents of P,,.

Prorostrion 2.4 If m is singular then every nilpotent of P,, is comained in L,,.

Progf. Suppose there exists s P, with «"=0 and « " '#0 but a¢L,. Then
[Xa" *n[X\Clw)]| < m and so | X "IN Clw)f =rme. Let () =14,} and put J=
fiel; X2 'nd,# O} Since ag L, lhere exists p<m such that [41£p for all
ie I. Hence, if |J| <um, we have

JUXa  nd)isp- T <m,

which is a contradiction, Henee. |J| =m and so [Xo” "' (UA;)]z has cardmal m,
contradicting o = 0. Therelore. every nilpoteat of B, lies in L,,. ]

We have now shown that every element of L, is a product of 3 or fewer milpotents
with index 2, und we have characterised when o & P,, is a product of two nilpotents
with index 2. It remains to show that there are elements of L,, which cannot be
expressed as a product of two nilpotents with index 2: that is. that 3 is best possible.
For this. consider the disjoint union X = [}l uz, where [Ij=m Pal A=

te; vz and write
Ax_ :._v
o 5

Then # € L,, but % does not satisfy the condition of Lermma 2.2 since X\ Xo = {i,}.

Before leaving this section we remark that both £, and L,, can be defined for any
infinite cardinal. Morcover, 1t can be readily checked from the proofs of [5.
Proposition 2.1] and Theorem 2.1 above that in this general setting both K, and
L,, are still O-bisimple regular semigroups such that K,,< L, To characterise when
they are equul, we let i denote the successor of an infinite cardinal # (that is, the
least cardinal greater than n). Recall that # is always a regular cardinal [9.
Corollary 21.147.
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PropoSITION 2.5. [f m is an infinite cardinal, K, = L, if and only if m=n' for some
cardinal n.

Proof. Suppose m = n' and let w e L. By the definition of L,,, some yz~* has cardinal
greater than x but at most m ==n" that is, Jya"'[=m and so « e K,,. Conversely,
suppose m # n' for any cardinal . If there exists # < m for which there is no cardinal
stricily between n and m, we have a contradiction. So, from the suppositicn, we
deduce that for every ur < m there exists a cardinal &, such that # < &, < m. For each
n<m, welet ¥, be aset with cardinal k,: clearly, we may assume the Y, are pairwise
disjoint. We assert that |UY,| = m. For, if |UY,; =p <m then ¥, < UY, and we have

k=% SIUY| =p <k,

a contradiction. Since UY, and X therefore have the same cardinal, we may suppose
the ¥, form a partition of .X. We now define a € 7(X) by writing UY, = {y,} wiz,}

and putling
()
o= .
V.a

Clearly, r{z) = ¢(2) = s{z) = m and, since X\ Xz contains {z,}. we also have d(x) = m.
Thatis, « isin L, butnot in X,,. U

3. Nilpotents as products of idempotents

In [8, Theorem 3.7] Marques proved that every element of P, is a product of 4 or
fewer idempotents in P,: it would be interesting to know whether K, and L, are
also generated by their idempotents, In view of Theorem 2.3, one approach to this
problem would be to show that every nilpotent in L, with index 2 is a product of
idempolents in L,,. As a first step in this direction, we now characterise when a
nilpotent with index 2 can be wrilten as a preduct of two or of three idenipotents,
and we do this for each of the semigroups P,,, L, and K,,: in what [ollows, § denotes
any one of these latter semigroups.

PROPOSITION 3.1. Let « € § be any nilpotent with index 2. Then o is a product of three
idempatents in 8 if and only if [Cla\Xa| = m.

Proof. Suppose « 15 & product of three idempotents in § and for convenience wrile
U=Ca), ¥=X\U. Then, by [8 Lemma 3.6], |{U\Xx|l=m or |[VnVul=m or
|Usn P < m. Note that the second possibility cannot cceur since e is nilpotent with
index 2, If the third possibility occurs then | Uon U] =m and hence |Ua| = m. In this
case, let Cla) = {4,}, J=tie ! Xan 4;# &) and K =I\J. Now, |J| < ns since « 1§
nilpotent with index 2, and so |K|=m. Hence, |UA,| = m where (UA )0 Xa= 25,
and so |U\X#|=m. This proves necessity.
For the converse, suppose | U\Xa|=m and write

A
RIA :.uu.
X U,

If |1} < r1, we choose a; € A, and distinet by, ¢, e (U\NXa)\{a;}, a set that has cardinal
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m, and put

{m, by} u...v

by ¥y
thy, x;} Nv
X /)

where Y= X\{w,c, a, b}, Z=X\{c,,v,.b;,x;) and veY, zeZ WNote that
ker &, =ker «, and both ¢(d,) and c(8,) are at least [PuI| and this equals m since
r(@) = m. It is therefore clear that each §; is an idempotent in S and that & = §,8,6;.

IMinstead [[{=m, welet J={icl: Xz d, # 2} and K = I\J. Then, as before,
|/ <mrand |K|=m. Hence, |UAz| =t where (U4, )Xo = 2. In this case. choose
4; £ A; and dislinct a, b, € A, (possible since each |4, 2 2) and then choose disjoint
sels {b;} and {c,} in {b,}. An argument similar to that in the last paragraph shows
that the following transformations are the required idempotents in this case:

m_nmu,u 4 \ru‘

u, a; a,

5ym (el {ap b} ay ki:?ﬁ..s,x.ﬁ_v,
#iy F dy W

_ﬁnm??ﬁ.m {hix} danx) X\ep.v,. b,

iy Xy X z

The next result should be compared with [5, Lemma 2.5]: we use il 10 charactense
when a nilpotent in § with index 2 is a product of two idempotents in §.

Levma 3.2, Let T he a regular semigroup with a zero 0. If ae T. a* =0 and a = Xy
Jor some idempotents x, p m T. then a= X3y for some idempotents x,, y, in T such
that x,9%a and y, ¥ a.

Proof. Put x, = aa'x and y, — ya'a where a' is any inverse of @ m T. It is then causy
to check that x, and y, arc idempotents in T with the desired properties. O

The characterisations of & and # on Z(X) given in [1. Lemmas 2.5 and 2.6 and
their proofs] hold almost verbatim for the Rees quotient semigroup:

D, =7 (X){xe T(X): o) <m).

Thal is, for nonzero «. fie D,, we have: ¢ if and only il Xa = Xf. and o:#§ if and
only if ker « = ker f. Since cach of 7,,, L, and K,, are regular subsemigroups of B,,,
we may apply [3, Proposition 11.4.3] to conclude that the same characterisations
hold for each of P, L,, and X,,.

PROPOSITION 3.3 Suppose o is a mtiporenr w § with mdex 2 and wrire ker g = |
Their o is « praduct of twe dempotents in § 1f vad only i
() 1O\ X! =, anyd
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(b) for eachie I, Ajwe A; or A4;n(X\Xaj# &
Proof. Suppose (a) and (b) hold and write

AP B u, u v

o= ,

AN A

where B,. B, contain al least two elements, b, € B,, x, ¢ B,, and u, ¢ X« Note that

both R and P have cardinal less than m since x is nilpotent with index 2. Also, either
[T =m or |Q] = m {or both) since r(a) = m. By (b) we can choose b, e B,n(X\Xz)

and put
Am‘ B, up, :.u
g = s
b, b u, u,

B b, xd ow, fuw) ¥
b

i X, u, v,

where Y=X\[Xau{bjulu)l, veV, (Binix)=@, (winiyi=¢, and
X\Xez = X\ Xa, Also, note that X\ Xz, contains {x,} G U{B\D} Il | T| =m, put J =
RUT and K= {jeJ: XunB;# @}. Then, since z is a nilpotent with index 2,
[Kl<m and this  implies [J\K|=m and JU{B;:je\K}|=m But
(U{B;: je NK)nXa= @ and (U{B;: je JNK ) {h,} = @, Therefore,
UiB;: jeJAK) ¥ and so [Y|=wm. If, on the other hand, |T| < m, we use (a) and
Y= [CleXal\{h,} to conclude that |Y|=um Hence, &,,&,€5, and sufficiency
follows.

Conversely, suppose o = g,5, and Xo = {x;}, 4;=x,2"" By Lemma 3.2, we can
ako suppese ker s, —ker x and Xs, = Xa, in which case we have, for each iel,
Ag; = ;. some element of 4, Suppose Ao =x;¢4; and 4,N(X\X¢) = @. Then
A;= Xz and so each g; equals some x;: that is, a;=a,c where j#i by the last
supposition. But

E=

A= Az ey = a6, =

then gives a contradiction. Hence, (b) holds and, since u=g¢,5, is a product of
three idempotents, (a) lollows from Proposition 3.1. (3

It remains 1o note that the transformation a defined immediately after the proof
ol Proposition 2.2 is a nilpotent in § with index 2 and has the property that
| Cle)\ Xa| < e consequently, by Propositions 3.1 and 3.2, il cannot be written as
the product of two or of three idempotents in §.

4. Congruences

The congruences on .7 (X) were determined by Malcev [7], with an alternative
account being given in [ 1, section 10.8]. An important type of congrueunce on .7 (X),
the so-called Malcer congruence, induces a congruence on P, as [ollows. For each
2, € P,, put

Dix fir={vec X:ovusexft, drie 1= max (| D(x Bial, | Di, B151)
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and for each a such that Ny < n L m, let
Ap=A{l@ fle P, x P driz i) <n.

Then each A, is a congruence on P, (compare [ 1, Lemma 10.6]) and in [8] Marques
showed that P,,/A, is congruence-free for any infinite cardinal . We now show that
the proper {that is, nonuniversal) congruences on P, are precisely the A, together
with the identity congruence; in fact, by making an obvious adjustment to the
definition of A,, we shall prove the same thing for K, and L, in what follows, § will
denote any one of P,,, L,, and K. and A, will denote the corresponding congruence
on §.

We begin with a simple but useful result: it was first observed by Prolessor
G. B. Preston in lectures at Monash University in 1966, Note that since E,. L,and
K., are O-bisimple regular semigroups, they are also Q-simple.

Levma 4.1 Every proper congruence p on a O-simple semigroup 1 is O-restricted {thar
is, {0} is a p-class),

To describe the congruences on S, we need a result which 1 analogous fo {1,
Theorem 10.69(i1)].

Leama 4.2 If p is a congruence on S and there exist (, B) € p such that 1 Zdria =
£ <My, then Ay - p.

Proof. We begin by closely following the ideas of [1, vol. 2, p.2447. Let D =D, By
and. without loss of generality, suppose [Da|=¢, C=DauDfi={¢;}, Xe\C=
XRC={e)). Mi=cia™, Ny=c;ff ', and Ry=eje"' = ¢;f"". Note that passibly
one (but not both} of M, N, is empty but nonetheless UM, = UN; and this sat
contains D. We therefore have:

M; ; N,
uum:. _.jzanm: _J, (4.1)
7 ¢

i i/ v e

where @~ ff denotes that «, § are p-equivalent. Again without loss of generality,
SUppose some ¢q= ax # aff where a € My. Then, since UM, = UN,, a e N, for some
mdex 1 €I different [rom 0. Note that J is fimite and so |J] = s since r{=) =m. We
can therefore write {R;} = {Ry 1w IR, 1 where | P| = (| = m and, for some fixed index
2€ P, choose b e R; as well as », e R,. Put 4 = [(UM,)\a] VUR, and Tet
a A R
we18)
a b o7,
Note. that 4| =sm and X\Xp, = {r,}\b. Thus, ¢, is an clement of § and we have:

a 4 R a 4 RN
s_uum &za_unm %),

oo e, o e e/

Now put ¥=X\(lco, ¢,. ;3 Ule,}) and let

To o, e]u? e
i b T,

Note that Y has cardinal m since it contains X\Xe, and X\Xv, contains {ro1\b

M. Paula 0. Marques-Smith and R. P. Sullivan

Thus, ¢, is an clement of § and we have:

a A R, auA wnv
F&EJ@ 5 :vee_maulﬁ N

Distinguish R,,..., R, in |R,} and choose r,e R, for i=1,

O\{1,...,n} and put
An R, ... R, A4 ?v
Y= s
Fp ryp e @ B

Once again, note thal |4] =ar and X\ Xy contains {1, }\b. Thus, ¥ is an element of
S and we have:

ﬁn Ry ... R, 4 x,u ! ezﬁnri Ry wxs R z_u
e = \ryoFz ...oa b o Gl b P2 ... @ Iy

Now observe that if 2 =g, ap,\ and g =g, Fp.1p then we have:
M.,lnhn R, ... R, 4 ?vl Fi.uh“_.({_r_.“.n_c...Cxi. mv. @
arn ... rn b orn b r.

where n 1s any positive integer and |T|=nm. Finally, let o, t be any lwo distinct
clements of S such that dr(e, ) =n < K, and write

G, W H, W
g= A % .v and t= A N mv
WU e %

in the same way as we did for @, § in (4.1): that is, possibly one (but not both) of
Gy, H, is empty but in any case UG, =UH,; and |T|=m m.Enn rig)=m m:.u .ﬁn may
suppose, without loss of generality, that |K{= n. Then. using the notation in (4.2),

we define
mhp el T &\.V
wy =
rn N S

and note that ker ¢v, =ker & and X\ X, contains {r,}\b. Hence, w, € § and, pre-
multiplying (4.2) by ¢, we obtain

? o Gy E;Acp ! (43)

Ll s T B b [
Now put Z = X\({ryjwir)). choose ce Z, and Jet
By sesas e W 2
. h«: e M, By av.
Note that this is well-defined even if ce Xo. In addition, Z2{r,} and X\Xe,

containg (X4 Xalye, so w; e 5. Hence. since b e {r,}, after postmultiplying {4.3) by

(wy, we obtain:
mcn, Eu
g~ .
[
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In a similar way, we can show that

(" %)

-

¢ o

and so, by the transitivily of p, we conclude that (6. 7) € p as reguired. [

We now aun Lo prove a result corresponding to [1, Theorem 10.69(i)] and need
a version of [1, Lemma 10.73]. For the latter, we slightly modify [8, Lemma 3.10].

Lemma 4.3 I7«, B § and drie, f) = &£ 2 N, then there exists Y < D(x, B such thar
Yo Yl = @& and max (| Yul, | YB|) = .

Proof. Suppose, without loss of generality, that | Da| = & where D = D(z, f). Put ¥ =
(DADPa™ ! A D and note that Yo = Da\Df and YRS Dfi,s0 Yan Y= I|DPl <&
then | Ya| = £ and max {| ¥z|, | YB|) = £, and the result follows. If. on the other hand,
DB} =& we let

FZcD: ZunZfi=@)

and note that F is nonempty since it contains ¢ singletons. Moreover, Zorn's Lemina
¢t be applied to choose a maximal Z in &, and then ZaNZf = & where |Zf| < ¢&
since Z & D and [Df] = & Ifnow {Zf] = ¢, the result follows {and the same conclusion
holds if | Zz{ = £). So, we suppose both Zo and Zf have cardinal less than ¢. Then,
DNZ # (5 (otherwise, D= Z and so |Du| < £, contradicting our initial supposition)
Since Z is maximal in &, we have:

Zudlgn(Zudifi# &
for each d € D\Z, and hence do € Zf8 or dfi e Zz, Put
Dy=idenZ:dfeZu} and D,=lde D\Z:das Zf)

and note that D\Z =Dy uD;. D - D, uD,LZ, D) f = Zoe and Dy = Z. Thus, Do =
DyawDyew Za where the last two sefs on Lhe right have cardinal less than € Hence,
|y 2| = ¢ and | Dy fi| < £: this means we can apply the very first case (with D, replacing

D). and the proof is complete. O
We can now prove the following resuit.

LeMmA 44 If p is a proper congruence nn S and there exists (w f)e p such thar
dr(ee, f) == Wy then Ay < p.

Proof. We adopt the same notation as introduced at and before (4.1}, with the
proviso that now ¢ is infinite. By Lemma 4.2, there exists ¥ < D such that ¥~ Y=
& and max (| Yx|, Yf!) = £ If | YB| =& then Y= D and |Dff} £ & together imply that
|Df| = ¢. Hence, we may assume that | ¥e|= ¢ and let Y = {¢,} < ;! where |Kl=
& Let Ly=cpa™ " note that each L, equals some M, and UL, < UM,. We now
consider lwo cases,

Case (1). é=n. Write {L,} =1{L.}u{L,} where [R|=|T|=um, choose y, €L,
weL and rje R, and let

AF (UMM} wgv
= 3

i a r;
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where ae {1} S (UMO\ v} = A, say, Is chosen so that af ¢ {¢,} (if necessary, when
aff = ¢, for some index 0 & R, we re-index { j;, }\Vp and add y,; to A). Note that 4| =
m and X\Xp, contains {y}. 50 ¢, €S In addition, ax ¢ {c,}. Therelore, after
premultiplying (4.1} by @,, we obtain;

y., A R; Y. A R
s AP ax ﬁv ~uf= Aw.:m aff &v.
where {¢,}n {38} = & by the choice of ¥, and the set
g=X\(erule2{ctvirflviax af}

has cardinal #r since | T} = m. Put

An. a
P2=
Y. @
and note that X\Xg,2 {»}. Hence, p, e 5 and we have:
Y A @v - AEE“ ﬁ ()
P gy = A‘s 8 B o1 Bz a .

Since r(p,ap,)=m = |R| and p is nonuniversal, it follows [rom (4.4) that |J|=m.
Cuse (2). ¢ <m. In this case, |J]=m and we can write {R;} = {R, } U {R,} where
=|Q| =m. As before, choose y, € Ly, r;€ R; and let
(¥ (UMM HUUR, x;v
Py, . it

where b is chosen in R, for some index 0 ¢ P such that bu=e,=bf ¢ {¢,!. Note
that (UM)\{»})UUR, = B, say, has cardinal m and X\Xyp, contains {r,}. Thus,
@ €8 and we have:

¥ B R, w B R,
= ~pfi= .
e bo e wh Bf g
where {c,}n {3 f} = & by choice of ¥, and the set
E=X\{atule )2 le,hwinfivie)
has cardmnal m smice [P =m. Put
(o E p.nv
W= e B Y
and note that X\ Xy, 2 {r,}. Hence, ¢, £ § and we have:
B R iy buB R
PraP; = AS au ~ ¢ fp= ﬁ ~& i (4.5)
W obon e

We have shown that in both cases there are p-equivalent elements of § ,,..E._ .En
form of (4.5): that is, where |K|=¢ and |Q|=m. Now, let ¢. ¢ be any two distinct
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clements of S such that dr(g, 1) < ¢ and write

G, W H,
anﬁa nu il ﬂ‘rm,:\w

w, 1 u, W

in the same way as we did [or o, f in (4.1): that is, possibly one (but not both) of
Gy, H, is empty but in any case UG, = UH,; and [N{< & [T|Sm (at least one of
N, T has cardinal m since r{a) =m). Then, using the nolation in (4.5), we choose
1P} =¥, {r) € {r,) and define

AQ: w,
wy =
Moo 1y

Note that ker @, =kerg, and X\Xw, contains B which has cardinal mr. Hence,
ey € § and, premulliplying (4.5) by t,, we obtain

G, W, UG,wB W
e . (4.6)
Yo Tt \oob Tt
Now put Z = Bu[{y )\ r ) Ju[(URN\Ir1], a set with cardinal m, and let
[ 4

uw, v, b

w, =
Notc that d{aw,) = nr since d(o) = m, 50 > € §. Hence, afler postmultiplying (4.6) by

;. we obtain:
ﬁcm,c B :\_v
a ~ .
A b vy

In a similar way, we can show that

mcFCm _\J
1 b .

where UG, = UH,, and the result follows by the transitivity of p. (1
We now use Lemmas 4.2 and 44 to obtair our main result,

Turorem 4.5, If p is a proper congruence on S different from the identity, then p = A,
for some i 2 Ny,

Proof. Let n cqual the least cardinal greater than dife, ) where (o fie p. By
Lemma 4.2, n is infinite and p< A,. Let (o f)e A, and suppose drix, f) =& If
dr(Z. u)< & for all (4, p)ep, we contradict the definition of n. Hence, there exists
(2 e p with dr(z, ) = £ and then Lemmas 4.2 and 4.4 imply that A= pin which

case (&, f) € p: that is, p = A, as required. O

Note that Marques' work [8] showing that P, /A, is congruence-free follows as
a consequence of the above theorem. Tn addition, we have shown that K, /A,, and
L../A,. are congruence-free whenever m is, respectively, regular and singular.

M. Paula O. Margues-Smith and R, P. Suilivan
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