Nilpotents and congruences on semigroups of transformations with fixed rank

M. Paula O. Marques-Smith

Departamento de Matematica, Universidade do Minho, 4700 Braga,

R. P. Sullivan

WA 6009, Australia Department of Mathematics, University of Western Australia, Nedlands,

In 1988, Howe and Marques-Smith studied P_m , a Rees quotient semigroup of transformations associated with a regular cardinal m and described the elements which can be written as a product of nilpotent is n_{L-1} . In 1981, Marques proved that if Δ_m denotes the Maleev congruence P_m , then P_m/Δ_m is congruence-free for any infinite m. In this paper, we describe the produces of P_m when m is n of the regular, and determine all the congruences on P_m when m is an arbitrary infinite cardinal. We also investigate when a inlipotent is a product of idempotents.

1. Introduction

and terminology for semigroup theory will be from [1] and [3] unless specified otherwise, and [6] and [9] will be our authorities for advanced set theory. If $\mathcal{F}(X)$ is the full transformation semigroup on X and $\alpha \in \mathcal{F}(X)$, we put Throughout this paper, X will denote an infinite set with cardinal m. All notation

$$Z(\alpha) = X \setminus X\alpha,$$
 $d(\alpha) = |Z(\alpha)|,$

$$S(\alpha) = \{x \in X : x\alpha \neq x\}, \qquad s(\alpha) = |S(\alpha)|$$

 $C(\alpha) = \bigcup \{y\alpha^{-1} : |y\alpha^{-1}| \ge 2\}, \quad c(\alpha) = |C(\alpha)|$

that the set and the collapse of α and were used by Howie [2] to characterise those $\alpha \in \mathcal{F}(X)$ which are the products of idempotents in $\mathcal{F}(X)$. In particular, he later showed [4] The cardinal numbers $d(\alpha)$, $s(\alpha)$ and $c(\alpha)$ are called, respectively, the defect, the shift

$$Q_m = \{ \alpha \in \mathcal{F}(X) : d(\alpha) = s(\alpha) = c(\alpha) = m \}$$

is a regular subsemigroup of $\mathcal{F}(X)$ generated by the idempotents in Q_m .

Let $r(\alpha)$ denote the rank of α (that is, $|X\alpha|$) and note that $I_m = \{\alpha \in \widehat{Q}_m : r(\alpha) < m\}$ is an ideal of Q_m . We let P_m denote the Rees quotient semigroup Q_m/I_m and identify this with $J_m \cup \{0\}$, where $J_m - \{\alpha \in Q_m : r(\alpha) = m\}$ and the product of two elements of J_m equals 0 if it lies in J_m . In [5], Howie and Marques-Smith showed that if m is a

M. Paula O. Marques-Smith and R. P. Sullivan

regular cardinal then the set

$$K_m = \{\alpha \in P_m : |y\alpha^{-1}| = m \text{ for some } y \in X\} \cup \{0\}$$

nilpotents in P_m . In Section 2, we show that if m is singular (that is, nonregular) then is a regular subsemigroup of P_m and comprises all $\alpha \in P_m$ which are products of

$$L_m = \{\alpha \in P_m: \text{ for each } p < m, \text{ there exists } y \in X \text{ such that } |y\alpha^{-1}| > p\} \cup \{0\}$$

is a 0-bisimple regular subsemigroup of P_m and consists of all $\alpha \in P_m$ which are products of nilpotents in P_m . In Section 3, we characterise the nilpotents in L_m with index 2 that equal a product of two or of three idempotents in L_m

 $\alpha, \beta \in J_m$ and we let of 4 or fewer idempotents and that 4 is best possible. In addition, she proved that if In [8], Marques showed that for any infinite m, every element of P_m is a product

$$D(\alpha, \beta) = \{x \in X : x\alpha \neq x\beta\}, \quad dr(\alpha, \beta) = \max \{|D(\alpha, \beta)\alpha|, |D(\alpha, \beta)\beta|\},$$
$$\Delta_m = \{(\alpha, \beta) \in P_m \times P_m : dr(\alpha, \beta) < m\},$$

for any m. then P_m/Δ_m is congruence-free. In Section 4, we describe all the congruences on P_m

2. Nilpotents as generators

We adopt the convention introduced in [1, vol. 2, p. 241]: namely, if $\alpha \in \mathcal{F}(X)$, then

$$\alpha = \begin{pmatrix} A_i \\ x_i \end{pmatrix}$$

and take it as understood that the subscript *i* belongs to some (unmentioned) index set *I*, that the abbreviation $\{x_i\}$ denotes $\{x_i: i \in I\}$ and that $X\alpha = \{x_i\}$ and $A_i = x_i\alpha^{-1}$. Our first result bears comparison with [8, Lemmas 3.1–3.3] and with [5,

Theorem 2.1. If m is singular then L_m is a 0-bisimple regular semigroup.

Proof. If $\alpha, \beta \in J_m$ and p < m, choose $y \in X\alpha$ such that $|y\alpha^{-1}| > p$ and let $z = y\beta$.

$$y\alpha^{-1} \subseteq (z\beta^{-1} \cap X\alpha)\alpha^{-1} = z(\alpha\beta)^{-1}$$

regular and so, for each $\alpha \in L_m$, there exists $\beta \in P_m$ such that $\alpha = \alpha \beta \alpha$. Let $z \in X \setminus X \alpha$ and define $\beta' \in \mathcal{F}(X)$ by putting $x\beta' = x\beta$ for all $x \in X \alpha$ and $y\beta' = z$ for all $y \in X \setminus X \alpha$. and so $|z(x\beta)^{-1}| > p$: that is, L_m is a semigroup. By [8, Lemma 3.1] we know P_m is Since $d(\alpha) = m$, we have $c(\beta') = s(\beta') = m$. In addition, $X\beta' \subseteq X\beta \cup z$ implies $d(\beta') = s(\beta') = m$.

show that L_m is 0-bisimple it will suffice to show that any two idempotents in L_m are \mathscr{D} -equivalent. For this, let δ , ε be idempotents in L_m and let $\theta: X/\ker \delta \to X\varepsilon$ be a bijection. Define $\alpha \in \mathscr{T}(X)$ by putting $x\alpha = (x\delta\delta^{-1})\theta$ for each $x \in X$. Clearly, $X\alpha = (x\delta\delta^{-1})\theta$ for each $x \in X$. m, and $\alpha\beta \neq 0$ implies $r(\beta') = m$. That is, $\beta' \in L_m$ and clearly $\alpha = \alpha\beta'\alpha$. Since every element in a regular semigroup is \mathscr{D} -equivalent to an idempotent, to

 $X\varepsilon$ and $\ker \alpha = \ker \delta$, and so $\delta \mathscr{B}\alpha$ and $\alpha \mathscr{L}\varepsilon$. Moreover, $d(\alpha) = d(\varepsilon)$ and $C(\alpha) = C(\delta)$, and so $\alpha = L_m$. \square

In [5]. Howie and Marques-Smith showed that if m is regular, the subsemigroup of P_m generated by the nilpotents of P_m equals the set

$$K_m = \{ \alpha \in P_m : |y\alpha^{-1}| = m \text{ for some } y \in X \} \cup \{0\}.$$

In fact, they showed that every element of K_m is a product of 3 or lewer nilpotents in P_m with index 2 (that is, $\lambda \in J_m$ and $\lambda^2 = 0$) and that 3 is best possible. We now solve the corresponding problem for the case when m is singular. We begin with the following generalisation of [5, Proposition 2.4].

Lemma 2.2. Suppose m is any infinite cardinal. Let $\alpha \in P_m$ and $X\alpha = \{x_i\}$, $A_i = x_i\alpha^{-1}$ for each $i \in I$. Then α is a product of two nilpotents with index 2 if and only if there exists $J \subseteq I$ such that |J| < m and $|\{UA_j\} \cap (X \setminus X\alpha)| = m$.

Proof. Suppose the condition holds and let $K = \Gamma \backslash J$, so that |K| = m (since r(x) = m). Choose distinct b_j , $c_k \in (Ud_j) \cap (X \backslash Xa)$ and $z \in Xa$, and put

$$\lambda_1 = \begin{pmatrix} A_j & A_k \\ b_j & c_k \end{pmatrix}$$
 and $\lambda_2 = \begin{pmatrix} b_j & c_k & X \setminus \{b_j, c_k\} \\ x_j & x_k & z \end{pmatrix}$

Then $\alpha = \lambda_1 \lambda_2$, $UA_k \subseteq X \setminus XA_1$, and $X\alpha \subseteq X \setminus \{b_j, c_k\}$. Also, $c(\lambda_1) = c(z) = m$ implies $s(\lambda_1) = m$, and clearly $d(\lambda_2) = d(z)$. So, $\lambda_1, \lambda_2 \in P_m$ and each is nilpotent with index 2. Conversely, suppose $\alpha = \lambda_H$ for nilpotents $\lambda_L \mu$ with index 2. By [5, Lemma 2.5] and its dual we can assume $\alpha = \lambda_H$ where $\{a \in \lambda_L \in ker \alpha\}$ and $\lambda_L = \lambda_L = \lambda_L$. In addition, for contradiction, we suppose that for all $J \subseteq I$, if J = m then $\{UA_L\} \cap \{X, \lambda_L\} < m$. In this case, put $A_L \lambda_L = c_1$ and let $J = \{i \in I: X\lambda \cap A_L \neq \emptyset\}$ and $K = I \setminus J$. Then

$$\lambda = \begin{pmatrix} A_j & A_k \\ c_j & c_k \end{pmatrix},$$

where $(UA_k) \cap X\lambda = \emptyset$ If |J| = m then for each j there exists z_j such that $z_j\lambda = A_j$ and $z_j\lambda^2 = A_j\lambda = c_j$; that is, $\lambda^2 \neq 0$ in P_m . Therefore, |J| < m and so |K| = m since $r(\lambda) = m$. But $\{c_k\} \subseteq UA_j$ and so $|UA_j| = m$. In addition, by our supposition, $|(UA_j) \cap (X \setminus Xx)| < m$. As in Figure 2.1, put

$$Z = \bigcup A_j,$$

$$B = (\bigcup A_j) \cap X i \cap X \alpha,$$

$$C = [(\bigcup A_j) \cap X \lambda] \setminus B,$$

$$D = (X i \cap X \alpha) \setminus B,$$

$$E = [(\bigcup A_j) \cap (X \setminus X \alpha)] \setminus C.$$

Then $|B \cup C| = m$ and $|C \cup E| < m$ imply that |C| < m and hence that |B| = m. Thus, $|B \cup D| = m$. that is, $|X \hat{\lambda} \cap X \alpha| = m$. But, since $\ker \alpha = \ker \lambda$, μ is one-to-one on $X \hat{\lambda}$ and so $|(X \hat{\lambda} \cap X \alpha)\mu| = m$. Consequently, $X \mu^2 = (X x)\mu \supseteq (X \hat{\lambda} \cap X \alpha)\mu$ implies that $\mu^2 \neq 0$ in P_m , a contradiction as required. \square

The next result shows that, when m is singular, L_m is a subset of $\langle N \rangle$, the semigroup

M. Paula O. Marques-Smith and R. P. Sullivan

Figure 21.

generated by the set N of all nilpotents in P_m ; part of its proof follows the basic idea of [10, p. 340].

Theorem 2.3. Each element of L_m is a product of 3 or fewer nilpotents with index 2.

Proof. First suppose that there exists some z such that $|z\alpha^{-1}| = m$. By Lemma 2.2 (with J|=1) we can also suppose that $|(X \setminus X\alpha) \cap Y| < m$ where $Y = z\alpha^{-1}$, in which case $|X\alpha \cap Y| = m$. Put $|X\alpha \setminus z| = \{x_i\}$, $|A_i = x_i\alpha^{-1}|$ and choose $|c_i| \in (X\alpha \setminus z) \cap Y$, $|d_i| \in (X \setminus X\alpha) \setminus z$. Put

$$\begin{split} \lambda_1 &= \begin{pmatrix} Y & A_1 \\ z & c_1 \end{pmatrix}, \\ \lambda_2 &= \begin{pmatrix} z & c_i & X \setminus \{z, c_i\} \\ z & d_i & X \setminus \{z, d_i\} \end{pmatrix}, \\ \lambda_3 &= \begin{pmatrix} z & d_i & X \setminus \{z, d_i\} \\ z & X_i & z \end{pmatrix}. \end{split}$$

Then $\alpha = \lambda_1 \lambda_2 \lambda_3$ and each $\lambda_i \in L_m$ and is nilpotent with index 2. We now suppose that $|z\alpha^{-1}| < m$ for all $z \in X$ and write

$$\alpha = \begin{pmatrix} Y_j & u_p \\ x_j & v_p \end{pmatrix},$$

where $m > |Y_j| \ge 2$ and $|J \cup P| = m$. If |J| = m, we form a disjoint union: $\{x_j\} = \{x_k\} \cup \{x_n\}$, where |K| = m, |M| = e'[m] and $|U|Y_i| = m$: this is possible since m is singular and so is the sum of a strictly increasing sequence of g'[m] cardinals $m_n < m$ [6, pp. 26–7] and, since $\alpha \in L_m$, for each $n \in N$ there exists $Y_n \in \{Y_j\}$ such that $|Y_j| > m_n$. Now, fix $z \in X\alpha$ and write UY_n as a disjoint union: $UY_n = \{a_k\} \cup \{a_n\} \cup \{a_n\}$ and put

$$\lambda = \begin{pmatrix} Y_k & Y_n & u_p \\ a_k & a_n & a_p \end{pmatrix} \text{ and } \mu = \begin{pmatrix} a_k & u_n & a_p & X \setminus \{a_k, a_n, a_p\} \\ X_k & X_n & v_p \end{pmatrix}.$$

Then $z = \lambda \mu$ and λ , $\mu \in L_m$ since $\bigcup Y_k \subseteq X \setminus X \lambda$ and $z\mu^{-1} = (\bigcup Y_k) \cup \{u_p\}$ where $\bigcup \bigcup Y_k | = m$. Also, $\lambda^2 = 0$ in P_m since $oldsymbol{g}(m) < m$. Now, $|z\mu^{-1}| = m$ and $X\mu = X\alpha$ and so, if $|z\mu^{-1} - (X \setminus X\mu)| = m$, then Lemma 2.2 (with |J| = 1) implies that μ is a product of two nilpotents with index 2 and the result follows. On the other hand, if $|z\mu^{-1} - (X \setminus X\mu)| < m$ then $|(\bigcup Y_n) - (X \setminus X\alpha)| = m$ since $d(\alpha) = m$. But, in this case, |N| = c(m) < m and so Lemma 2.2 implies that α is itself a product of two nilpotents with index 2.

If |J| < m then |P| = m and we can write $\bigcup Y_j = \{b_j\} \cup \{\iota_p\}$. Let $z \in X\alpha$ and put

$$\hat{\lambda} = \begin{pmatrix} Y_j & u_p \\ b_j & c_p \end{pmatrix}$$
 and $\mu = \begin{pmatrix} b_j & c_p & X \setminus \{b_j, c_p\} \\ x_j & b_p & z \end{pmatrix}$

Then $\alpha = \lambda \mu$, $\{u_p\} \subseteq X \setminus X\lambda$, $\{u_p\} \subseteq X \setminus \{b_p, c_p\}$ and $X\mu = Xz$, and hence λ , $\mu \in L_m$ where $\lambda^2 = 0$ since |J| < m. Also, $|z_{\mu}|^{-1} |= m$ and so, if $|z_{\mu}|^{-1} \cap (X \setminus X\mu)| = m$, the result follows as before. If, however, $|z_{\mu}|^{-1} \cap (X \setminus X\mu)| < m$ then $|\{u_p\} \cap (X \setminus X\mu)| < m$ and so $|\{U_p\} \cap (X \setminus X\mu)| = m$ since $d[\alpha] = m$. But |J| < m and another application of Lemma 2.2 completes the proof. \square

The next result shows that $N \subseteq L_m$ and so, by Theorem 2.1, $\langle N \rangle \subseteq L_m$, Thus, by Theorem 2.3, L_m is precisely the subsemigroup of P_m generated by the nilpotents of P_m .

Proposition 2.4. If m is singular then every nilpotent of P_m is contained in L_m .

Proof. Suppose there exists $z \in P_m$ with $\alpha' = 0$ and $\alpha'^{-1} \neq 0$ but $\alpha \notin L_m$. Then $|Xx'^{-1} \cap [X \setminus C(\alpha)]| < m$ and so $|Xx'^{-1} \cap C(\alpha)| = m$. Let $C(\alpha) = \{A_i\}$ and put $J = \{i \in I: Xx'^{-1} \cap A_i \neq \emptyset\}$. Since $\alpha \notin L_m$, there exists p < m such that $|A_i| \leq p$ for all $i \in I$. Hence, if |J| < m, we have

$$|\mathsf{U}(Xx^{r-1}\cap A_j)|\leq p\cdot |J|< m,$$

which is a contradiction. Hence, |J|=m and so $[X\alpha'^{-1}\cap(UA_f)]\alpha$ has cardinal m, contradicting $\alpha'=0$. Therefore, every nilpotent of P_m lies in L_m . \square

We have now shown that every element of L_m is a product of 3 or fewer nilpotents with index 2, and we have characterised when $\alpha \in P_m$ is a product of two nilpotents with index 2. It remains to show that there are elements of L_m which cannot be expressed as a product of two nilpotents with index 2: that 3 is best possible. For this, consider the disjoint union $X = \{u_i\} \cup \{v_i\} \cup z$, where |I| = m. Put $A = \{v_i\} \cup z$ and write

$$\alpha = \begin{pmatrix} A & u_i \\ z & p_i \end{pmatrix}.$$

Then $n \in L_m$ but x does not satisfy the condition of Lemma 2.2 since $X \setminus X\alpha = \{u_i\}$. Before leaving this section we remark that both K_m and L_m can be defined for any infinite cardinal. Moreover, it can be readily checked from the proofs of [5, Proposition 2.1] and Theorem 2.1 above that in this general setting both K_m and L_m are still 0-bisimple regular semigroups such that $K_m \subseteq L_m$. To characterise when they are equal, we let n' denote the successor of an infinite cardinal n (that is, the least cardinal greater than n). Recall that n' is always a regular cardinal [9, Corollary 21.14].

M. Paula O. Marques-Smith and R. P. Sullivan

PROPOSITION 2.5. If m is an infinite cardinal, $K_m = L_m$ if and only if m = n' for some cardinal n.

Proof. Suppose m=n' and let $\alpha\in L_m$. By the definition of L_m , some yz^{-1} has cardinal greater than n but at most m=n'; that is, $|yx^{-1}|=m$ and so $\alpha\in K_m$. Conversely, suppose $m\neq n'$ for any cardinal n. If there exists n< m for which there is no cardinal strictly between n and m, we have a contradiction. So, from the supposition, we deduce that for every n< m there exists a cardinal K_n such that $n< K_n < m$. For each n< m, we let Y_n be a set with cardinal k_n ; clearly, we may assume the Y_n are pairwise disjoint. We assert that $|UY_n|=m$. For, if $|UY_n|=p< m$ then $Y_n\subseteq UY_n$ and we have

$$k_p = |Y_p| \le |\bigcup Y_n| = p < k_p$$

a contradiction. Since $\bigcup Y_n$ and X therefore have the same cardinal, we may suppose the Y_n form a partition of X. We now define $\alpha \in \mathcal{F}(X)$ by writing $\bigcup Y_n = \{y_n\} \cup \{z_n\}$ and putting

Clearly, $r(\alpha)=c(\alpha)=s(\alpha)=m$ and, since $X\setminus X\alpha$ contains $\{z_n\}$, we also have $d(\alpha)=m$. That is, α is in L_m but not in K_m . \square

3. Nilpotents as products of idempotents

In [8, Theorem 3.7] Marques proved that every element of P_m is a product of 4 or fewer idempotents in P_m : it would be interesting to know whether K_m and L_m are also generated by their idempotents. In view of Theorem 2.3, one approach to this problem would be to show that every nilpotent in L_m with index 2 is a product of idempotents in L_m . As a first step in this direction, we now characterise when a nilpotent with index 2 can be written as a product of two or of three idempotents, and we do this for each of the semigroups P_m , L_m and K_m : in what follows, S denotes any one of these latter semigroups.

PROPOSITION 3.1. Let $\alpha \in S$ be any nilpotent with index 2. Then α is a product of three idempotents in S if and only if $|C(\alpha)\backslash X\alpha|=m$.

Proof. Suppose α is a product of three idempotents in S and for convenience write $U = C(\alpha)$, $V = X \setminus U$. Then, by [8], Lemma 3.6], $|U \setminus X\alpha| = m$ or $|V \cap V\alpha| = m$ or $|V \cap V\alpha| = m$ on that the second possibility cannot occur since α is nilpotent with index 2. If the third possibility occurs then $|U\alpha \cap U| = m$ and hence $|U\alpha| = m$. In this case, let $C(\alpha) = \{A_1\}$, $J = \{i \in I: X\alpha \cap A_1 \neq \emptyset\}$ and $K = I \setminus J$. Now, |J| < m since α is nilpotent with index 2, and so |K| = m. Hence, $|UA_2| = m$ where $(UA_k) \cap X\alpha = \emptyset$, and so $|U \setminus X\alpha| = m$. This proves necessity.

For the converse, suppose $|U\backslash X\alpha|=m$ and write

$$\alpha = \begin{pmatrix} A_i & u_p \\ x_i & v_p \end{pmatrix}$$

If |I| < m, we choose $a_i \in A_i$ and distinct b_i , $c_p \in (U \setminus Xa) \setminus \{a_i\}$, a set that has cardinal

m, and put

$$\begin{split} & \delta_1 = \begin{pmatrix} u_p & A_I \\ u_p & a_I \end{pmatrix}, \\ & \delta_2 = \begin{pmatrix} \{u_p, c_p\} & \{a_i, b_I\} & Y \\ c_p & b_I & Y \end{pmatrix}, \\ & \delta_3 = \begin{pmatrix} \{c_p, e_p\} & \{b_i, x_I\} & Z \\ v_p & x_I & z \end{pmatrix}. \end{split}$$

where $Y = X \setminus \{u_p, c_p, a_i, b_i\}$, $Z = X \setminus \{c_p, v_p, b_i, x_i\}$ and $y \in Y$, $z \in Z$. Note that $\ker \delta_i = \ker \alpha_i$ and both $c(\delta_i)$ and $c(\delta_i)$ are at least $|P \cup I|$ and this equals m since r(z) = m. It is therefore clear that each δ_i is an idempotent in S and that $\alpha = \delta_i \delta_j \delta_j$. If instead |I| = m, we let $J = \{i \in I: X \times \cap A_i \neq \emptyset\}$ and $K = I \setminus J$. Then, as before,

 $a_j \in A_j$ and distinct a_k , $b_k \in A_k$ (possible since each $|A_k| \ge 2$) and then choose disjoint that the following transformations are the required idempotents in this case: sets $\{b_j\}$ and $\{c_p\}$ in $\{b_k\}$. An argument similar to that in the last paragraph shows |J| < m and |K| = m. Hence, $|UA_k| = m$ where $(UA_k) \cap X\alpha = \emptyset$. In this case, choose

$$\begin{split} \delta_1 &= \begin{pmatrix} u_p & A_j & A_k \\ u_p & a_j & a_k \end{pmatrix}, \\ \delta_2 &= \begin{pmatrix} \{u_p, c_p\} & \{a_p, b_j\} & a_k & X \setminus \{u_p, c_p, a_j, b_j, a_k\} \\ c_p & b_j & a_k & y \\ \delta_3 &= \begin{pmatrix} \{c_p, v_p\} & \{b_j, x_j\} & \{a_1, x_i\} & X \setminus \{c_p, v_p, b_j, x_j, a_k, x_i\} \\ v_p & x_j & x_k & z \end{pmatrix}, \end{split}$$

when a nilpotent in S with index 2 is a product of two idempotents in S. The next result should be compared with [5, Lemma 2.5]: we use it to characterise

Lemma 3.2. Let T be a regular semigroup with a zero 0. If $a \in T$, $a^2 = 0$ and $a = x_1$ for some idempotents x, y in T, then $a = x_1y_1$ for some idempotents x_1, y_1 in T such that $x_1 \# a$ and $y_1 \# a$.

Proof. Put $x_1 = aa'x$ and $y_1 = ya'a$ where a' is any inverse of a in T. It is then easy to check that x_1 and y_1 are idempotents in T with the desired properties. \Box

their proofs] hold almost verbatim for the Rees quotient semigroup: The characterisations of \mathcal{L} and \mathcal{R} on $\mathcal{T}(X)$ given in [1, Lemmas 2.5 and 2.6 and

$$D_m = \mathcal{T}(X)/\{\alpha \in \mathcal{T}(X) \colon r(\alpha) < m\}$$

That is, for nonzero α , $\beta \in D_m$ we have: $\alpha \not \subset \beta$ if and only if $X\alpha = X\beta$, and $\alpha \not \subset \beta$ if and only if $\ker \alpha = \ker \beta$. Since each of P_m , L_m and K_m are regular subsemigroups of D_m , we may apply [3, Proposition II.4.5] to conclude that the same characterisations hold for each of P_m , L_m and K_m

PROPOSITION 3.3. Suppose α is a nilpotent in S with index 2 and write $\ker x = |A_i|$. Then α is a product of two idempotents in S if and only if:

(a) $|C(x)\setminus X\alpha|=m$, and

M. Paula O. Marques-Smith and R. P. Sullivan

(b) for each $i \in I$, $A_i \alpha \in A_i$ or $A_i \cap (X \setminus X \alpha) \neq \emptyset$.

Proof. Suppose (a) and (b) hold and write

$$\alpha = \begin{pmatrix} B_r & B_t & u_p & u_q \\ b_t & x_t & u_p & v_q \end{pmatrix},$$

where B_r , B_r contain at least two elements, $b_r \in B_r$, $x_r \notin B_r$, and $u_q \notin X\alpha$. Note that both R and P have cardinal less than m since α is nilpotent with index 2. Also, either |T| = m or |Q| = m (or both) since $r(\alpha) = m$. By (b) we can choose $b_t \in B_t \cap (X \setminus X x)$

$$\begin{split} \varepsilon_1 &= \begin{pmatrix} B_r & B_t & u_p & u_q \\ b_r & b_t & u_p & u_q \end{pmatrix}, \\ \varepsilon_2 &= \begin{pmatrix} b_r & \{b_r, \chi_i\} & u_p & \{u_q, v_q\} & Y \\ b_r & \chi_i & u_p & v_q & Y \end{pmatrix}, \end{split}$$

where $Y = X \setminus [X\alpha \cup \{b\} \cup (u_q)]$, $y \in Y$, $\{b_i\} \cap \{x_i\} = \emptyset$, $\{u_q\} \cap \{v_q\} = \emptyset$, and $X \setminus X_{i_2} = X \setminus X_{i_3} = X_i \setminus X_{i_4}$. Also, note that $X \setminus X_{i_4}$ contains $\{x_i\} \cup (\mathcal{Y}_{B_i})_{b_i}\}$. If |T| = m, put $J = R \cup T$ and $K = \{j \in J: X\alpha \cap B_j \neq \emptyset\}$. Then, since x is a nilpotent with index 2. |X| < m and this implies $|J \setminus K| = m$ and $|U(B_j: j \in J \setminus K)| = m$. But $|U(B_j: j \in J \setminus K) \cap Xz = \emptyset$ and $|U(B_j: j \in J \setminus K) \cap Xz = \emptyset$. Therefore, $|U(B_j: j \in J \setminus K) \cap Xz = \emptyset$ and so |Y| = m. If, on the other hand, |T| < m, we use (a) and $|T| \subseteq [C(\alpha) \setminus X\alpha] \setminus \{b_i\}$ to conclude that |Y| = m. Hence, $\delta_1, \delta_2 \in S$, and sufficiency of these sets of the sets of

Conversely, suppose $\alpha = e_i e_2$ and $X\alpha = \{x_i\}$, $A_i = x_i \alpha^{-1}$. By Lemma 3.2, we can also suppose $\ker e_i = \ker \alpha$ and $Xe_2 = X\alpha$, in which case we have, for each $i \in I$, $A_i e_i = a_i$, some element of A_i . Suppose $A_i \alpha = x_i \notin A_i$ and $A_i \cap (X \setminus X\alpha) = \emptyset$. Then $A_i \subseteq X\alpha$ and so each a_i equals some x_i ; that is, $a_i = a_i \alpha$ where $j \neq i$ by the last supposition, But

$$A_j\alpha = A_j\varepsilon_1\varepsilon_2 = a_j\varepsilon_2 = x_j = a_i$$

then gives a contradiction. Hence, (b) holds and, since $\alpha=e_1e_2e_3$ is a product of three idempotents, (a) follows from Proposition 3.1. \Box

It remains to note that the transformation α defined immediately after the proof of Proposition 2.2 is a nilpotent in S with index 2 and has the property that $|C(\alpha)\backslash X\alpha| < m$: consequently, by Propositions 3.1 and 3.2, it cannot be written as the product of two or of three idempotents in S.

4. Congruences

The congruences on $\mathcal{F}(X)$ were determined by Malcev [7], with an alternative account being given in [1, section 10.8]. An important type of congruence on $\mathcal{F}(X)$, the so-called *Malcev congruence*, induces a congruence on P_m as follows. For each $\alpha, \beta \in P_m$, put

 $D(\alpha, \beta) = \{x \in X : x\alpha \neq x\beta\}, \quad dr(\alpha, \beta) = \max\{|D(\alpha, \beta)\alpha|, |D(\alpha, \beta)\beta\}\}$

and for each n such that $\aleph_0 \le n \le m$, let

$$\Delta_n = \{(\alpha, \beta) \in P_m \times P_m : dr(\alpha, \beta) < n\}.$$

Then each Δ_n is a congruence on P_m (compare [1, Lemma 10.6]) and in [8] Marques showed that P_m/Δ_m is congruence-free for any infinite cardinal m. We now show that the proper (that is, nonuniversal) congruences on P_m are precisely the Δ_n together with the identity congruence; in fact, by making an obvious adjustment to the definition of Δ_n we shall prove the same thing for K_m and I_m : in what follows, S will denote any one of P_m , I_m and K_m , and Δ_n will denote the corresponding congruence on S.

We begin with a simple but useful result it was first observed by Professor G. B. Preston in lectures at Monash University in 1966. Note that since P_m , L_m and K_m are 0-bisimple regular semigroups, they are also 0-simple.

LEMMA 4.1. Every proper congruence ρ on a 0-simple semigroup T is 0-restricted (that is, $\{0\}$ is a ρ -class).

To describe the congruences on S, we need a result which is analogous to [1, Theorem 10.69(ii)].

Lemma 4.2. If ρ is a congruence on S and there exist $(\alpha, \beta) \in \rho$ such that $1 \le dr(\alpha, \beta) = \xi < \aleph_0$, then $\Delta_{\aleph_0} \in \rho$.

Proof. We begin by closely following the ideas of [1, vol. 2, p. 244]. Let $D=D(\alpha,\beta)$ and, without loss of generality, suppose $|D\alpha|=\overline{c}$, $C=D\alpha\cup D\beta=\{c_i\}$, $X\alpha\setminus C=X\beta\setminus C=\{c_i\}$, $M_i=c_i\alpha^{-1}$, $N_i=c_i\beta^{-1}$, and $R_j=c_j\alpha^{-1}=c_j\beta^{-1}$. Note that possibly one (but not both) of M_i,N_i is empty but nonetheless $UM_i=UN_i$ and this set contains D. We therefore have:

$$\alpha = \begin{pmatrix} M_i & R_j \\ c_i & e_j \end{pmatrix} \sim \beta = \begin{pmatrix} N_i & R_j \\ c_i & e_j \end{pmatrix}, \tag{4.1}$$

where $\alpha \sim \beta$ denotes that α, β are ρ -equivalent. Again without loss of generality, suppose some $c_0 = \alpha \alpha \neq \alpha \beta$ where $\alpha \in M_0$. Then, since $\bigcup M_i = \bigcup N_i$, $\alpha \in N_i$ for some index $1 \in I$ different from 0. Note that I is finite and so |J| = m since $r(\alpha) = m$. We can therefore write $\{R_j\} = \{R_p\} \cup \{R_q\}$ where |P| = |Q| = m and, for some fixed index $2 \in P$, choose $b \in R_2$ as well as $r_q \in R_q$. Put $A = [(\bigcup M_i) \setminus \alpha] \cup \bigcup R_p$ and let

$$\varphi_1 = \begin{pmatrix} a & A & R_q \\ a & b & r_q \end{pmatrix}.$$

Note, that |A| = m and $X \setminus X \varphi_1 \supseteq \{r_p\} \setminus b$. Thus, φ_1 is an element of S and we have:

$$\varphi_1 \varkappa = \begin{pmatrix} a & A & R_q \\ \epsilon_0 & e_2 & e_q \end{pmatrix} \sim \varphi_1 \beta = \begin{pmatrix} a & A & R_q \\ c_1 & e_2 & e_q \end{pmatrix}$$

Now put $Y = X \setminus \{\{c_0, c_1, e_2\} \cup \{e_q\}\}$ and let

$$\varphi_2 = \begin{pmatrix} c_0 & \{c_1, e_2\} \cup Y & e_q \\ a & b & r_q \end{pmatrix}.$$

Note that Y has cardinal m since it contains $X \setminus X\alpha$, and $X \setminus X\phi_2$ contains $\{r_p\} \setminus b$

M. Paula O. Marques-Smith and R. P. Sullivan

Thus, φ_2 is an element of S and we have:

$$\varphi_1\alpha\varphi_2 = \begin{pmatrix} a & A & R_q \\ a & b & r_q \end{pmatrix} \sim \varphi_1\beta\varphi_2 = \begin{pmatrix} a \cup A & R_q \\ b & r_q \end{pmatrix}.$$

Distinguish R_1, \ldots, R_n in $\{R_q\}$ and choose $r_i \in R_i$ for $i = 1, \ldots, n$. Write $T = Q \setminus \{1, \ldots, n\}$ and put

$$\psi = \begin{pmatrix} a & R_1 & \dots & R_n & A & R_t \\ r_1 & r_2 & \dots & a & b & r_t \end{pmatrix}.$$

Once again, note that |A| = m and $X \setminus X \psi$ contains $\{r_p\} \setminus b$. Thus, ψ is an element of S and we have:

$$\varphi_1\alpha\varphi_2\psi = \begin{pmatrix} a & R_1 & \dots & R_n & A & R_r \\ r_1 & r_2 & \dots & a & b & r_r \end{pmatrix} \sim \varphi_1\beta\varphi_2\psi = \begin{pmatrix} a \cup A & R_1 & \dots & R_n & R_1 \\ b & r_2 & \dots & a & r_t \end{pmatrix}.$$

Now observe that if $\lambda = \varphi_1 \alpha \varphi_2 \psi$ and $\mu = \varphi_1 \beta \varphi_2 \psi$ then we have:

$$l^{n+1} = \begin{pmatrix} a & R_1 & \dots & R_n & A & R_t \\ a & r_1 & \dots & r_n & b & r_t \end{pmatrix} \sim \mu^{n+1} = \begin{pmatrix} a \cup A \cup R_1 \cup \dots \cup R_n & R_t \\ b & r_t \end{pmatrix}, \quad (4.2)$$

where n is any positive integer and |T|=m. Finally, let σ_t t be any two distinct elements of S such that $dr(\sigma_t$ t) = $n < \aleph_0$ and write

$$\sigma = \begin{pmatrix} G_k & W_t \\ u_k & v_t \end{pmatrix} \text{ and } \tau = \begin{pmatrix} H_k & W_t \\ u_k & v_t \end{pmatrix}$$

in the same way as we did for α , β in (4.1): that is, possibly one (but not both) of G_k , H_k is empty but in any case $\bigcup G_k = \bigcup H_k$; and |T| = m since t(c) = m and we may suppose, without loss of generality, that |K| = n. Then, using the notation in (4.2), we define

$$\omega_1 = \begin{pmatrix} G_1 & \dots & G_n & W_1 \\ r_1 & \dots & r_n & r_t \end{pmatrix}$$

and note that $\ker \omega_1 = \ker \sigma$ and $X \setminus X \omega_1$ contains $\{r_p\} \setminus b$. Hence, $\omega_1 \in S$ and, premultiplying (4.2) by ω_1 , we obtain

$$\begin{pmatrix} G_1 & \dots & G_n & W_t \\ P_1 & \dots & P_n & P_t \end{pmatrix} \sim \begin{pmatrix} \bigcup G_k & W_t \\ b & P_t \end{pmatrix}. \tag{4.3}$$

Now put $Z = X \setminus \{\{r_k\} \cup \{r_i\}\}\$, choose $c \in Z$, and let

$$\omega_2 = \begin{pmatrix} r_1 & \dots & r_n & r_t & Z \\ u_1 & \dots & u_n & v_t & c \end{pmatrix}.$$

Note that this is well-defined even if $c \in X\sigma$. In addition, $Z \supseteq \{r_p\}$ and $X \setminus X\omega_2$ contains $(X \setminus X\sigma) \setminus c$, so $\omega_2 \in S$. Hence, since $b \in \{r_p\}$, after postmultiplying (4.3) by ω_2 , we obtain:

$$\sigma \sim \begin{pmatrix} \cup G_k & P_t \\ c & p_t \end{pmatrix}$$
.

In a similar way, we can show that

$$t \sim \begin{pmatrix} c & b' \\ W' & W' \end{pmatrix}$$

and so, by the transitivity of ρ , we conclude that $(\sigma, \tau) \in \rho$ as required. \square

We now aim to prove a result corresponding to [1, Theorem 10.69(i)] and need a version of [1, Lemma 10.73]. For the latter, we slightly modify [8, Lemma 3.10]. Lemma 4.3. If $\alpha, \beta \in S$ and $dr(\alpha, \beta) = \xi \geq \aleph_0$, then there exists $Y \subseteq D(\alpha, \beta)$ such that $Y\alpha \cap Y\beta = \emptyset$ and $\max(|Y\alpha|, |Y\beta|) = \xi$.

Proof. Suppose, without loss of generality, that $|Dx| = \xi$ where $D = D(\alpha, \beta)$. Put $Y = (D\alpha \setminus D\beta)\alpha^{-1} \cap D$ and note that $\forall \alpha = D\alpha \setminus D\beta$ and $Y\beta \subseteq D\beta$, so $\forall \alpha \cap Y\beta = \emptyset$. If $|D\beta| < \xi$ then $|\forall \alpha| = \xi$ and max $(|\forall \alpha|, |Y\beta|) = \xi$, and the result follows. If, on the other hand, $|D\beta| = \xi$ we let

$$\mathcal{F} = \{Z \subseteq D \colon Z\alpha \cap Z\beta = \emptyset\}$$

and note that \mathcal{F} is nonempty since it contains ξ singletons. Moreover, Zorn's Lemma cn be applied to choose a maximal Z in \mathcal{F} , and then $Z\alpha \cap Z\beta = \emptyset$ where $|Z\beta| \le \xi$ since $Z \subseteq D$ and $|D\beta| = \xi$. If now $|Z\beta| = \xi$, the result follows (and the same conclusion holds if $|Z\alpha| = \xi$). So, we suppose both $Z\alpha$ and $Z\beta$ have cardinal less than ξ . Then, $D\backslash Z \neq \emptyset$ (otherwise, D = Z and so $|D\alpha| < \xi$, contradicting our initial supposition). Since Z is maximal in \mathcal{F} , we have:

$$(Z \cup d)x \cap (Z \cup d)\beta \neq \emptyset$$

for each $d \in D \setminus Z$, and hence $d\alpha \in Z\beta$ or $d\beta \in Z\alpha$. Put

$$D_1 = \{d \in D \setminus Z : d\beta \in Z\alpha\} \text{ and } D_2 = \{d \in D \setminus Z : d\alpha \in Z\beta\}$$

and note that $D \setminus Z = D_1 \cup D_2$, $D - D_1 \cup D_2 \cup Z$, $D_1 \beta \subseteq Z \alpha$ and $D_2 \alpha \subseteq Z \beta$. Thus, $D \alpha = D_1 \alpha \cup D_2 \alpha \cup Z \alpha$ where the last two sets on the right have cardinal less than ξ . Hence, $|D_1 \alpha| = \xi$ and $|D_1 \beta| < \xi$, this means we can apply the very first case (with D_1 replacing D), and the proof is complete. \square

We can now prove the following result.

LEMMA 4.4. If ρ is a proper congruence on S and there exists $(\alpha, \beta) \in \rho$ such that $dr(\alpha, \beta) = \xi \ge \aleph_0$ then $\Delta_{\xi'} \subseteq \rho$.

Proof. We adopt the same notation as introduced at and before (4.1), with the proviso that now ξ is infinite. By Lemma 4.2, there exists $Y \subseteq D$ such that $Y \in D$ such that $Y \in D$ such that $Y \in D$ and $Y \in D$ and Y

Case (1), $\xi = m$. Write $\{L_k\} = \{L_r\} \cup \{L_i\}$ where |R| = |T| = m, choose $y_r \in L_r$, $y_r \in L_t$ and $r_j \in R_j$, and let

$$\varphi_1 = \begin{pmatrix} y_r & (\bigcup M_i) \setminus \{y_r\} & R_j \\ y_r & a & r_j \end{pmatrix},$$

M. Paula O. Marques-Smith and R. P. Sullivan

where $a \in \{v_i\} \subseteq (UM_i) \setminus \{v_i\} = A$, say, is chosen so that $a\beta \notin \{c_i\}$ (if necessary, when $a\beta = c_0$ for some index $0 \in R$, we re-index $\{y_i\} \setminus y_0$ and add y_0 to A). Note that |A| = m and $X \setminus X p_0$ contains $\{y_i\}$, so $p_i \in S$. In addition, $ax \notin \{c_i\}$. Therefore, after premultiplying $\{4,1\}$ by p_1 , we obtain:

$$\varphi_1 \alpha = \begin{pmatrix} y_r & A & R_j \\ c_r & a\alpha & e_j \end{pmatrix} \sim \varphi_1 \beta = \begin{pmatrix} y_r & A & R_j \\ y_r \beta & a\beta & e_j \end{pmatrix},$$

where $\{c_r\} \cap \{y_r\beta\} = \emptyset$ by the choice of Y, and the set

$$Q = X \setminus \{\{c_r\} \cup \{c_j\}\} \supseteq \{c_r\} \cup \{y_r \beta\} \cup \{a\alpha, a\beta\}$$

has cardinal m since |T| = m. Put

$$\varphi_2 = \begin{pmatrix} c_i & Q & e_j \\ y_i & a & r_j \end{pmatrix}$$

and note that $X \setminus X \varphi_2 \supseteq \{y_i\}$. Hence, $\varphi_2 \in S$ and we have:

$$\varphi_1 \alpha \varphi_2 = \begin{pmatrix} y_r & A & R_J \\ y_r & a & r_J \end{pmatrix} \sim \varphi_1 \beta \varphi_2 = \begin{pmatrix} \{y_r\} \cup A & R_J \\ a & r_J \end{pmatrix}. \tag{4.4}$$

Since $r(\varphi_1 \alpha \varphi_2) = m = |R|$ and ρ is nonuniversal, it follows from (4.4) that |J| = m. Case (2). $\xi < m$. In this case, |J| = m and we can write $\{R_j\} = \{R_p\} \cup \{R_q\}$ where |P| = |Q| = m. As before, choose $j_k \in L_k$, $r_j \in R_j$ and let

$$\varphi_1 = \begin{pmatrix} y_k & ((\bigcup M_i) \setminus \{y_k\}) \cup \bigcup R_p & R_q \\ y_k & b & r_q \end{pmatrix},$$

where b is chosen in R_0 for some index $0 \in P$ such that $b\alpha = e_0 = b\beta \notin \{e_k\}$. Note that $((UM_i)\setminus\{y_k\}) \cup UR_p = B$, say, has cardinal m and $X\setminus X\varphi_1$ contains $\{r_p\}$. Thus, $\varphi_1 \in S$ and we have:

$$\varphi_1\alpha = \begin{pmatrix} y_k & B & R_q \\ c_k & b\alpha & e_q \end{pmatrix} \sim \varphi_1\beta = \begin{pmatrix} y_k & B & R_q \\ y_k\beta & b\beta & e_q \end{pmatrix},$$

where $\{c_k\} \cap \{y_k\beta\} = \emptyset$ by choice of Y, and the set

$$E = X \setminus (\{c_k\} \cup \{e_q\}) \supseteq \{e_p\} \cup \{y_k\beta\} \cup \{e_0\}$$

has cardinal m since |P| = m. Put

$$\varphi_2 = \begin{pmatrix} c_k & E & c_q \\ y_k & b & r_q \end{pmatrix}$$

and note that $X \setminus X \varphi_2 \supseteq \{r_\rho\}$. Hence, $\varphi_2 \in S$ and we have:

$$\varphi_1 \alpha \varphi_2 = \begin{pmatrix} y_1 & B & R_q \\ y_k & b & r_q \end{pmatrix} \sim \varphi_1 \beta \varphi_2 = \begin{pmatrix} \{y_k\} \cup B & R_q \\ b & r_q \end{pmatrix}. \tag{4.5}$$

We have shown that in both cases there are ρ -equivalent elements of S with the form of (4.5); that is, where $|K| = \xi$ and |Q| = m. Now, let σ , τ be any two distinct

elements of S such that $dr(\sigma, \tau) \leq \xi$ and write

$$\sigma = \begin{pmatrix} G_n & W_t \\ u_n & v_t \end{pmatrix} \quad \text{and} \quad \tau = \begin{pmatrix} H_n & W_t \\ u_n & v_t \end{pmatrix}$$

in the same way as we did for α , β in (4.1): that is, possibly one (but not both) of G_n , H_n is empty but in any case $UG_n = UH_n$; and $|N| \le \xi$, $|T| \le m$ (at least one of N, T has cardinal m since $r(\sigma) = m$). Then, using the notation in (4.5), we choose $\{y_n\}\subseteq \{y_k\}, \{r_t\}\subseteq \{r_q\}$ and define

$$\omega_1 = \begin{pmatrix} G_n & W_i \\ y_n & r_i \end{pmatrix}.$$

Note that $\ker \omega_1 = \ker \sigma$, and $X \setminus X \omega_1$ contains B which has cardinal m. Hence, $\omega_1 \in S$ and, premultiplying (4.5) by ω_1 , we obtain

Now put $Z = B \cup [\{y_k\} \setminus \{y_n\}] \cup [(\bigcup R_q) \setminus \{r_k\}]$, a set with cardinal m, and let

$$\omega_2 = \begin{pmatrix} y_n & r_t & Z \\ u_n & v_t & b \end{pmatrix}.$$

Note that $d(\omega_2) = m$ since $d(\sigma) = m$, so $\omega_2 \in S$. Hence, after postmultiplying (4.6) by ω_2 , we obtain:

$$\sigma \sim \begin{pmatrix} UG_{s} \cup B & W_{t} \\ b & v_{t} \end{pmatrix}$$
.

In a similar way, we can show that

$$t \sim \begin{pmatrix} \mathsf{U} H_n \cup B & \mathsf{W}_i \\ b & e_i \end{pmatrix}$$

where $UG_n = UH_n$, and the result follows by the transitivity of ρ . \square

We now use Lemmas 4.2 and 4.4 to obtain our main result.

for some $n \ge \aleph_0$. Theorem 4.5. If ρ is a proper congruence on S different from the identity, then $\rho = \Delta_n$

Proof. Let n equal the least cardinal greater than $dr(\alpha, \beta)$ where $(\alpha, \beta) \in \rho$. By Lemma 4.2. n is infinite and $\rho \subseteq \Delta_n$. Let $(\alpha, \beta) \in \Delta_n$ and suppose $dr(\alpha, \beta) = \xi$. If $dr(\lambda, \mu) < \xi$ for all $(\lambda, \mu) \in \rho$, we contradict the definition of n. Hence, there exists $(\lambda, \mu) \in \rho$ with $dr(\lambda, \mu) \ge \xi$ and then Lemmas 4.2 and 4.4 imply that $\Delta_{\gamma'} \subseteq \rho$ in which case $(\alpha, \beta) \in \rho$: that is, $\rho = \Delta_n$ as required.

Note that Marques' work [8] showing that P_m/Δ_m is congruence-free follows as a consequence of the above theorem. In addition, we have shown that K_m/Δ_m and L_m/Δ_m are congruence-free whenever m is, respectively, regular and singular.

M. Paula O. Marques-Smith and R. P. Sullivan

References

- A. H. Clifford and G. B. Preston. The Algebraic Theory of Semigroups (Providence, RI: American Mathematical Society, Mathematical Surveys, No. 7. vols 1 and 2, 1961 and 1967).
 J. M. Howie. The subsemigroup generated by the idempotents of a full transformation semigroup. A London Math. Soc. 41 (1966), 707–16.
 I. M. Howie. An Introduction to Semigroup Theory (London: Academic Press, 1976).
 I. M. Howie. An Introduction to Semigroup Theory (London: Academic Press, 1976).
 I. M. Howie and M. Paula O. Marques-Smith. A milpotent-generated semigroup associated with a semigroup of full transformations. Proc. Roy. Soc. Edinburgh Sect. A 108 (1983), 181–7.
 Thomas Jech. Ser. Theory (New York: Academic Press, 1978).
 A. I. Maleev. Symmetric groupouts. Mat. Sh. 31 (1923), 136–51 (in Restina); English translation by Heidt. Seemla and 805 Sullivan. Amer. Math. Soc. Trans. 113 (1979), 235–50.
 M. Paulis O. Marques. A congruouse-free semigroup associated with an infinite cardinal number: Proc. Roy. Soc. Edinburgh Sect. A 93 (1983), 245–27.
 J. D. Mole. Introduction to Set Theory (New York: McGraw-Hill, 1969).
 R. P. Sullivan, Semigroups generated by nilpotent transformations. J. Algebra 110 (1987), 324–43.