
A Filter Inexact-Restoration Method for
Nonlinear Programming

Cândida Elisa P. Silva∗ M. Teresa T. Monteiro†

January 5, 2009

Abstract

A new iterative algorithm based on the inexact-restoration (IR)
approach combined with the filter strategy to solve nonlinear con-
strained optimization problems is presented. The high level algorithm
is suggested by Gonzaga et al. [7] but not yet implemented - the
internal algorithms are not proposed. The filter, a new concept intro-
duced by Fletcher and Leyffer [3], replaces the merit function avoiding
the penalty parameter estimation and the difficulties related to the
nondifferentiability. In the IR approach two independent phases are
performed in each iteration - the feasibility and the optimality phases.
The line search filter is combined with the first one phase to generate
a “more feasible” point and then it is used in the optimality phase to
reach an “optimal” point.

Numerical experiences with a collection of AMPL problems and a
performance comparison with IPOPT are provided.

Keywords: Filter Method, Inexact-Restoration, Line Search.

1 Introduction
The inexact-restoration method introduced by Martínez [9] and also used in
[8] treats feasibility and optimality as two independent phases. Each iteration
of the method proceeds in two phases. In the first phase, feasibility of the
current iterate is improved (a “more feasible” point is computed with respect

∗Management and Industrial School, Polytechnic Institute of Porto, Portugal
candidasilva@eseig.ipp.pt

†University of Minho, Portugal tm@dps.uminho.pt

1

to the current point). In the second phase the objective function value is
reduced (an “optimal” point is calculated) in an approximate feasible set.
The point that results from the second phase is compared with the current
point using a merit function that combines feasibility and optimality.

Recently, Fletcher and Leyffer [3] have proposed a filter method as an
alternative to the merit functions. These authors presented a SQP algorithm
with trust-region technique to solve nonlinear constrained optimization prob-
lems. The motivation given by these authors for the development of the filter
method is to avoid the necessity to determine a suitable value of the penalty
parameter in the merit function. In constrained optimization, the two com-
peting aims, minimization of the objective function and the satisfaction of the
constraints, are combined into a single minimization problem, using a merit
function. In the filter strategy two separated aims are considered instead of
a combination of both.

Wächter and Biegler proposed a line search filter method for nonlinear
programming introducing second order correction steps [11, 12]. They proved
that the proposed method does not suffer from Maratos effect, so that fast
local convergence to second order sufficient local solutions is achieved. Their
work, a primal-dual interior-point algorithm with filter line search method
[13], is implemented in the IPOPT code.

This work presents an algorithm to solve nonlinear constrained optimiza-
tion problems, combining the IR approach with the filter method. A similar
idea was suggested by Gonzaga et al. [7] where no methods are specified
for the IR phases. In each phase of the IR method a filter scheme with line
search technique is used instead of a merit function.

This paper is organized as follows. The next section defines the problem
to solve. The inexact-restoration approach is presented in Section 3. Section
4 presents some concepts related to the filter method in the trust region
and line search context. The new algorithm with its internal algorithms
specifications is introduced in Section 5 and some convergence topics are
mentioned. Finally in Section 6, numerical experiences, comparison with
IPOPT solver and conclusions are reported.

2 Problem definition
The general nonlinear constrained optimization problem is defined by

min f(x)
s.t. lbx ≤ x ≤ ubx

lbc ≤ c(x) ≤ ubc,
(NLP)

2

where f(x) : IRn → IR is a nonlinear function, x ∈ IRn and lbx, ubx ∈
IRn are the lower and the upper bounds of the variable x, respectively, and
c(x) : IRn → IRm is a set of m general constraints whose lower and upper
bounds are lbc and ubc, respectively. The set of all constraints defines the
feasible region. Note that equality constraints are included in the above
formulation by setting the lower bound equal to the upper bound for the
relevant constraint. Likewise it is possible to include one-sided constraints
by setting the lower bound to −∞ or the upper bound to ∞, depending on
which bound is required.

3 Inexact-Restoration approach (IR)
The point of view of IR approach is that feasibility is an important feature
of the problem that must be controlled independently of optimality. So, the
methods based on IR consider feasibility and optimality at different phases
of a single iteration. A well known drawback of feasible methods is their
inability to follow very curved domains, which causes that very short steps
might be computed far from the solution. IR methodology tries to avoid
this inconvenient using procedures that automatically decrease the tolerance
of infeasibility as the solution is approximated. In this way, large steps on
an enlarged feasible region are computed at the beginning of the process.
An essential feature of this methodology is that one is free to choose differ-
ent algorithms both for the feasibility and for the optimality phase, so that
problem characteristics can be exploited. It is shown [8] that the use of the
Lagrangian function in the optimality phase favors practical fast convergence
near the solution.

4 Filter Method
In the constrained optimization problem two conflicting criteria are always
present, the minimization of the objective function, f(x), and the satisfaction
of the constraints, c(x). All the constraints defined in (NLP) will be handled
like c(x) ≤ 0 and the optimization problem is formulated in its minimiza-
tion form. A merit function combines these aims into a single minimization
problem. These two competing aims can be written as two minimization
problems

min
x∈IRn

f(x) and min
x∈IRn

h(x), (1)

3

where

h(x) :=
∥∥c+(x)

∥∥
1

:=
m∑

j=1

c+
j (x),

with c+
j (x) = max(0, cj(x)) is the sum of constraints violation.

A filter is defined as a set of pairs (f(xk), h(xk)) so that no pair dominates
any other. The dominance concept comes from multi-objective optimization
and establishes that (f(xk), h(xk)) dominates (f(xk+1), h(xk+1)) if and only
if both f(xk)≤f(xk+1) and h(xk)≤h(xk+1) are verified. The filter, in Figure
1, can be represented in IR2 as a set of pairs (f, h), defining the forbidden and
allowed regions as well as the envelope that defines the sufficient reduction
imposed in the filter acceptance. When a point xk is accepted by the filter,
which means that it belongs to the allowed region, the corresponding pair
(f(xk), h(xk)) is introduced in the filter. All the pairs dominated by it will
be removed from the filter.

Fletcher and Leyffer [3] introduce the concept of filter in an SQP algo-
rithm with trust-region technique. The filter SQP algorithm starts with an
initial point, the solution of the current QP subproblem, which produces a
trial step, and with it the new trial point is determined. If it is accepted
by the filter, this will be the new point, otherwise the step will be rejected,
the trust-region radius is reduced and a new QP subproblem must be solved
again. With this algorithm the usual descent criterion in the penalty func-
tion is replaced by the requirement that the new point is accepted by the
filter. A more feasible and/or optimal point is achieved by the adjustment
of the trust-region along the iterations of the algorithm. The idea is to use
the filter as a criterion for accepting or rejecting a step.

Antunes and Monteiro [1] presented a SQP algorithm based on Fletcher
and Leyffer idea where the trust-region is replaced by the line search tech-
nique. The main difference is that instead of using the trust-region to deter-
mine a trial point, uses line search method. The combination of line search
technique with the filter method determines the step length acceptance. First
the search direction is computed from a given initial point, solution of the
current QP subproblem, and with it a trial point xk+1 = xk + αdk is com-
puted. Then this point will be checked by the filter and if it is accepted,
it is introduced. Otherwise, α is divided by two and the trial point xk+1 is
updated and checked again by the filter, without solving another QP sub-
problem. This technique is represented in Figure 2.

4

h(x)

f(x)
Forbidden

Region

Sufficient

Decrease

Allowed

Region

h(x)

f(x)
Forbidden

Region

Sufficient

Decrease

Allowed

Region

h(x)

f(x)

h(x)

f(x)
Forbidden

Region

Sufficient

Decrease

Allowed

Region

Figure 1: Filter with sufficient de-
crease

Figure 2: Line search scheme

5 Filter IR with Line Search
This section presents the developed algorithm, whose flowchart, without im-
plementation details, is in Figure 4. It has two independent phases - the
feasibility and the optimality phase. The goal in the first phase is, from a
given point xk, to reach a “more feasible” point zk. In the optimality phase,
an “optimal” point xk+1, performed in zk, is computed. Both phases have
incorporated the filter method with line search technique. This procedure is
represented in Figure 3, where dfea and dopt are the step in feasibility and
optimality phase, respectively.

Figure 3: IR technique

5.1 Feasibility phase internal algorithm

The algorithm starts in the feasibility phase whose goal is to minimize the
sum of all the constraints violation in the feasible set - if the point is feasible
the algorithm will not perform this phase. From the initial trial point xk the
aim is to reach a more feasible point zk. This point is obtained by solving
the following LP subproblem:

min
d∈IRn

∑
i∈J

Ak
i d

s.t. Ak
i d + ck

i ≤ 0, i ∈ J⊥
(LP)

5

Figure 4: Filter IR flowchart

where Ak = ∇c(xk)T is the Jacobian matrix of the constraints and, J and J⊥

are the sets of violated and satisfied constraints, respectively. The solution
of this (LP) subproblem is the search direction dfeak (denoted by d in (LP)).
The intermediate point zk = xk+α dfeak is obtained by line search technique
using the filter, where α ∈ IR is the step length.

The Filter IR management is quite different from the one used by Fletcher
and Leyffer [3] and Antunes and Monteiro [1]. In the Filter IR a temporary
pair (f(xk), h(xk)), corresponding to xk, is used to evaluate the next trial
point xk+1.

The intermediate point zk is accepted by the filter if the corresponding
pair (f(zk), h(zk)) is not dominated by any other pair in the filter. The filter
sufficient decrease acceptance condition is

h < βh(xl) or f < f(xl)− γh (2)

for all pairs (f(xl), h(xl)) in the filter, where β and γ are parameters such
that 0 < γ < β < 1, with β close to one and γ close to zero. Then it is also

6

verified if this pair causes a sufficient decrease in h when compared to the
temporary pair (f(xk), h(xk)):

h(zk) ≤ (1− γ)h(xk). (3)

If this condition (3) is not satisfied then the intermediate point zk is rejected
and α is divided by two until the point is accepted or α is smaller than a
tolerance. If the intermediate point zk is a Kuhn-Tucker point and is feasible
(h(zk) ≤ ε, ε is a sufficiently small positive tolerance), then the algorithm
terminates with success, otherwise the next phase will be performed.

5.2 Optimality phase internal algorithm

The goal of the optimality phase is to reduce the objective function from
the zk point. The corresponding QP subproblem is an approximation to the
original problem (NLP):

min
d∈IRn

1

2
dT W kd + dT gk

s.t. Akd + ck ≤ 0,

(QP)

where gk = ∇f(xk) is the gradient of the objective function, Ak = ∇c(xk)T

is the Jacobian matrix of general constraints c(xk) and W k = ∇2L(xk, λk)
is the Hessian matrix of the Lagrangian function. The solution of this QP
subproblem is the search direction doptk (denoted by d in (QP)). With this
direction the new trial point xk+1 = zk +αdoptk is obtained. Then this point
is tested by the filter, which is a similar procedure to the one described in
previous phase and it is compared to the intermediate point zk:

f(xk+1) ≤ (1− γ)f(zk). (4)

If this condition is verified xk+1 is the next point. Finally, if the following
condition

f(xk+1) ≥ f(xk)−min(h(xk)2, ω) (5)

is verified then the temporary pair (f(xk), h(xk)) is inserted into the filter
and the dominated pairs are removed (ω in (5) is a small positive constant).

The algorithm terminates when a Kuhn-Tucker point is found and the fea-
sibility is reached (h(xk) ≤ ε). The corresponding algorithm can be written
as follows:

7

ALGORITHM: Filter IR line search
Given x0 and λ0, set k = 0; Let (f(x0), h(x0)) be a temporary pair;
REPEAT

Feasibility Phase:
Solve (LP) at xk to obtain dfeak;
Set α = 1 and set Accept = FALSE;
REPEAT
Set zk = xk + α dfeak;
IF (f(zk), h(zk)) is accepted by the filter

AND h(zk) ≤ (1− γ)h(xk) THEN
Accept zk; Set Accept = TRUE;

ELSE
Reject zk;
Set α =

α

2
;

ENDIF;
UNTIL Accept = TRUE OR α ≤ TolAlpha;

IF zk is a KKT point and h(zk) ≤ ε THEN STOP with success.
ELSE

Optimality Phase:
Solve (QP) at zk to obtain doptk;
Set α = 1, Accept = FALSE;
REPEAT
Set xk+1 = zk + α doptk;
IF (f(xk+1), h(xk+1)) is accepted by the filter

AND f(xk+1) ≤ (1− γ)f(zk) THEN
Accept xk+1; Set Accept = TRUE;

ELSE
Reject xk+1;
Set α =

α

2
;

ENDIF;
UNTIL Accept = TRUE OR α ≤ TolAlpha;

ENDIF;
Filter update:
IF (f(xk+1), h(xk+1)) is accepted by the filter

AND f(xk+1) ≥ f(xk)−min(h(xk)2, ω) THEN
Add temporary pair (f(xk), h(xk)) to the filter;
Remove points dominated by (f(xk), h(xk)) from the filter;

ENDIF;
Set k = k + 1, xk = xk+1;

UNTIL xk is a KKT point and h(xk) ≤ ε.

8

5.3 Some implementation details

In the implementation of the algorithm some interesting problems occur re-
lated to the Lagrange multipliers estimation and to the formulation of the
(LP) subproblem. In order to solve the subproblems (LP) and (QP) of the
feasibility and optimality phases, respectively, and also to calculate the stop
criterium, it is necessary the Lagrangian multipliers estimation. The (LP)
and (QP) subproblems are solved by LSSOL subroutine [5] from the NPSOL
solver [6]. The Lagrange multiplier vector is estimated using the correspond-
ing output of the LSSOL subroutine (resolution of the (QP)). For its initial-
ization, several initial values were tested being the unitary vector the most
suitable. Other decision is related to the formulation of the (LP) subprob-
lem. The objective function of this subproblem considers all the violated
constraints of the original problem. The set of the constraints is composed
by all the satisfied constraints of the original problem. The LSSOL subrou-
tine needs at least one constraint to be solved successfully. When all the
constraints of the original problem are violated we decided to include the
constraint that has less violation into the set of constraints. This constraint
is not considered into the objective function. In this way, LSSOL subroutine
is successfully solved.

5.4 Convergence Assumptions

The global convergence was studied by Gonzaga et al. [7], where it is proved
that this method is independent of the internal algorithms used in each it-
eration, since these algorithms satisfy some requirements in their efficiency.
It is shown that, under some assumptions, for a filter with a minimal size,
the algorithm generates a stationary accumulation point and that for bigger
filters, all the accumulation points are stationary.

The general hypotheses are:

H1: xk and zk remain in a convex compact domain X ⊂ IRn.

H2: The objective and constraints functions (f(x) and c(x)) are Lipschitz
continuously differentiable in an open set containing X.

H3: All feasible accumulation points x ∈ X of xk satisfy the Mangasarian-
Fromovitz (M-F) constraints qualification, namely, the gradients of
equality constraints are linearly independent, and there exists a di-
rection d ∈ IRn such that AE(x)d = 0 and AI(x)d < 0, where I =
{i ∈ I| ci(x) = 0} (AE(.) and AI(.) are the Jacobian matrix of equality
constraints and active inequality constraints, respectively).

9

There are two more assumptions related to the internal algorithms, H4 and
H5, concerning to the feasibility phase and optimality phase algorithms,
respectively.

H4: At all iterations k ∈ IN, the feasibility step must satisfy
h(zk) < (1− α)h(xk) and zk can not belong to the forbidden region.

H5: Given a feasible non-stationary point x ∈ X, there exists a neighbor-
hood V of x such that for any iterate xk ∈ V ,
f0(x

k+1) ≤ f0(z
k) and xk+1 can not belong to the forbidden region.

6 Numerical experiences
This section presents the numerical experiences performed to test the algo-
rithm. The computational experiences were made on a centrino with 504MB
of RAM. The algorithm was implemented in C language for Windows oper-
ating system.

The 235 problems tested are in AMPL language [4], so the program was
interfaced with this modelling language to read the problems automatically.

The first computational experience uses the IR algorithm to test all the
problems in order to evaluate the algorithm robustness. These results are
reported in the Tables 1, 2 and 3. The tables show the problem name, its
dimension - n is the number of variables and m is the number of general
constraints -, #it is the iteration counts, #f and #g are the function and
gradient evaluation counts, respectively. The note is dedicated to remarks.
The maximum iterations allowed was fixed in 1000. Two relevant remarks
were found - some problems, denoted by a), suffer from Marato’s effect, which
means that the solution is obtained in few iterations but the algorithm does
not converge, and in two problems the failure is related to the existence
of a stationary point x with h(x) > ε. The last remark had been already
mentioned by Gonzaga et al. [7] in the convergence proof.

10

Table 1: General numerical results of the Filter IR algorithm
Problem n m #it #f #g feasibility note

alsotame 2 1 3 31 6 Y
biggsc4 4 7 2 4 3 Y
bqp1var 1 0 1 1 1 N
branin 2 0 5 26 7 Y
camel6 2 0 8 9 9 Y
cantilvr 5 1 1000 19962 1000 N
cb2 3 3 1000 19981 1000 N
cb3 3 3 1000 19981 1000 N
chaconn1 3 3 1000 19962 1000 N
chaconn2 3 3 1000 19962 1000 N
chi 2 0 5 8 6 Y
congigmz 3 5 16 243 16 N
dembo7 16 20 1000 20013 1010 N a)
dipigri 7 4 1000 19941 1000 N a)
dixmaana 15 1 1 1 1 N
dixmaanc 15 1 1 5 1 N
dixmaane 15 1 1 5 1 N
dixmaanf 15 1 1 5 1 N
dixmaang 15 1 1 5 1 N
dixmaanh 15 1 1 5 1 N
dixmaani 15 1 1 5 1 N
dixmaanj 15 1 1 6 1 N
dixmaank 15 1 1 6 1 N
dixmaanl 15 1 1 5 1 N
engval1 2 1 15 15 15 N
engval4 5 1 9 47 9 N
explin 120 1 20 58 22 Y
expquad 120 1 1 1 1 N
fermat_socp_eps 5 3 1000 20000 1000 N
fir_convex 11 243 1000 20000 1000 N a)
fir_exp 12 244 1 2 2 Y
fir_linear 11 243 1 2 2 Y
fir_socp 12 244 4 26 6 Y
fletcher 4 4 1000 39980 1999 N
gigomez2 3 3 1000 19981 1000 N a)
gigomez3 3 3 1000 19981 1000 N a)
goffin 51 50 3 41 3 N
harkerp2 100 1 18 18 18 N
hatfldb 4 0 11 128 13 Y
hatfldc 4 0 12 13 12 Y
hatfldh 4 7 8 256 9 Y
himmelp1 2 0 6 26 6 Y
himmelp2 2 1 6 7 6 Y
himmelp3 2 2 4 4 4 N
himmelp4 2 3 3 22 3 Y
himmelp5 2 3 3 3 3 Y
himmelp6 2 4 4 5 4 Y
hs001 2 0 24 33 25 N
hs002 2 0 1000 19887 1001 N a)
hs003 2 0 1 1 2 N
hs004 2 0 2 1 3 N
hs005 2 0 4 25 5 Y
hs011 2 1 1000 16256 1000 N
hs012 2 1 1000 17966 1000 N
hs015 2 2 1 1 2 Y
hs016 2 2 4 5 5 Y
hs017 2 2 20 138 21 Y
hs018 2 2 15 15 3 Y
hs019 2 2 2 19 1 N
hs020 2 3 5 6 6 Y
hs021 2 1 1 2 2 Y
hs022 2 2 9 126 10 N
hs023 2 5 13 51 14 Y
hs024 2 2 3 4 4 Y
hs025 3 0 25 45 26 Y
hs029 3 1 1000 1 1001 N
hs030 3 1 2 12 3 Y
hs031 3 1 7 8 8 Y
hs033 3 2 7 8 8 Y
hs034 3 2 1000 38742 1001 N
hs035 3 1 1 1 2 N
hs036 3 1 2 1 3 N
hs037 3 1 1000 10919 1001 N
hs038 4 0 23 27 24 Y
hs043 4 3 1000 16953 1001 N
hs044 4 6 6 8 7 N
hs045 5 0 3 2 4 N
hs059 2 3 7 8 8 Y

11

Table 2: General numerical results of the Filter IR algorithm
Problem n m #it #f #g feasibility note

hs064 3 1 1000 19810 1001 N
hs066 3 2 1000 19796 1001 N a)
hs072 4 3 1 1 2 N
hs076 4 3 1 1 2 N
hs083 5 3 4 11 5 N
hs084 5 3 3 4 4 N
hs086 5 6 3 4 4 Y
hs089 3 1 1000 19890 1000 N a)
hs095 6 4 2 3 2 Y
hs096 6 4 4 45 6 Y
hs097 6 3 9 27 9 Y
hs098 6 3 3 5 3 Y
hs100 7 4 1000 19941 1000 N a)
hs100mod 7 4 1000 19951 1000 N a)
hs102 7 6 25 203 49 N
hs103 7 6 17 129 33 N
hs104 8 6 1000 29253 1000 N
hs106 8 6 630 11220 929 Y
hs116 9 13 1000 38335 1965 N
hs117 15 5 11 11 11 N
hs118 15 17 1 2 2 Y
hs15 2 2 3 21 4 N
hs21mod 7 2 8 10 8 N
hs23 2 5 13 51 13 Y
hs268 5 5 1 1 1 N
hs35 3 1 1 1 2 Y
hs35mod 2 1 1 1 1 N
hs3mod 2 0 1 1 1 N
hs44 4 6 6 9 7 Y
hs44new 4 5 3 4 3 Y
hs5 2 0 3 23 4 Y
hs64 3 1 1000 19819 1000 N a)
hubfit 2 1 1 1 1 N
humps 2 1 1 1 1 N
kowalik 4 0 11 33 12 Y
levy3 2 0 4 10 5 Y
liarwhd 36 1 19 19 19 N
liswet10 103 100 1 1 1 N
liswet11 103 100 1 1 1 N
liswet12 103 100 1 1 1 N
liswet2 103 100 1 1 1 N
liswet3 103 100 1 1 1 N
liswet4 103 100 1 1 1 N
liswet5 103 100 1 1 1 N
liswet6 103 100 1 1 1 N
liswet7 103 100 1 1 1 N
liswet8 103 100 1 1 1 N
liswet9 103 100 1 1 1 N
logros 2 1 2 6 2 N
lootsma 3 2 10 145 12 Y
lsqfit 2 1 1 1 1 N
madsen 3 6 1000 19924 1000 N a)
makela1 3 2 1000 1 1000 N a)
makela3 21 20 23 284 23 N
makela4 21 40 2 21 2 N
matrix2 6 2 14 38 14 N
mifflin1 3 2 1000 17966 1000 N
mifflin2 3 2 3 22 3 N
minmaxrb 3 4 2 21 2 N
nondquad 100 1 18 18 19 N
osborne1 5 0 17 78 18 Y
oslbqp 8 0 1 21 2 Y
pfit1 3 1 1 1 1 N
pfit1ls 3 1 1 1 1 N
pfit2 3 1 1 1 1 N
pfit2ls 3 1 1 1 1 N
pfit3 3 1 1 1 1 N
pfit3ls 3 1 1 1 1 N
pfit4 3 1 1 1 1 N
pfit4ls 3 1 1 1 1 N
polak1 3 2 10 104 10 N
polak3 12 10 1000 19905 1000 N a)
powell 4 0 16 19 17 Y
powell20 10 10 1 2 2 Y
power 10 1 15 15 15 N
price 2 0 6 13 7 Y
pspdoc 4 0 5 27 5 N
qrtquad 12 1 15 41 17 Y
qudlin 12 1 42 3 2 N

12

Table 3: General numerical results of the Filter IR algorithm
Problem n m #it #f #g feasibility note

rosenmmx 5 4 1000 17974 1000 N
s215 2 1 3 21 4 N
s218 2 1 14 14 14 N
s221 2 1 19 19 20 N
s222 2 1 61 90 82 Y
s223 2 2 6 10 6 Y
s224 2 2 2 79 4 Y
s225 2 5 8 26 9 N
s226 2 2 2 3 3 Y
s227 2 2 7 101 7 N
s229 2 0 19 28 20 Y
s230 2 2 1000 19963 1001 N
s231 2 2 21 25 22 N
s232 2 2 2 2 3 N
s233 2 1 7 7 8 N
s234 2 1 13 17 14 Y
s236 2 2 2 2 3 Y
s237 2 3 2 21 3 Y
s238 2 3 6 13 7 Y
s239 2 1 2 22 3 Y
s242 3 0 2 2 3 N
s244 3 0 9 31 10 Y
s249 3 0 8 7 8 N
s250 3 1 2 1 3 N
s251 3 1 1000 10919 1001 N
s253 3 1 3 3 4 N
s257 4 0 10 11 10 N
s259 4 0 9 16 9 N
s268 5 5 1 1 2 N
s270 5 1 12 14 13 N
s277 4 4 1000 20000 1000 N
s278 6 6 1000 20000 1000 N
s279 8 8 1000 20000 1000 N
s280 10 10 1000 20000 1000 N
s307 2 0 10 48 11 N
s315 2 3 1000 17985 1000 N
s324 2 2 1000 19962 1000 N a)
s326 2 2 412 539 413 Y
s328 2 0 5 26 6 Y
s329 2 3 120 3452 239 N
s331 2 1 24 44 25 Y
s332 2 1 1000 6643 1525 N
s337 3 1 6 45 7 N
s341 3 1 2 4 3 Y
s342 3 1 3 6 4 Y
s343 3 2 1 2 2 Y
s346 3 2 1 2 2 Y
s354 4 1 1000 19848 1000 N
s357 4 35 6 8 7 Y
s358 5 0 781 9281 782 Y
s359 5 14 1 1 2 0 N
s360 5 2 1000 2000 1000 N
s361 5 6 2 2 3 0 N
s365mod 7 4 1000 61 1000 N
s366 7 14 1000 19875 1010 N
s368 8 0 2 22 3 Y
s372 9 12 1000 19981 1000 N a)
schwefel 5 0 9 10 10 Y
shekel 4 0 13 57 14 Y
simbqp 2 0 1 1 2 N
simpllpa 2 2 2 20 2 N
simpllpb 2 3 2 20 2 N
sineval 2 1 13 25 13 N
sisser 2 1 1 7 2 N
snake 2 2 1 1 1 N
stancim 3 3 1000 19981 1000 N a)
steiner_nonconvex 33 17 1000 19728 1000 N h 6= 0
steiner_socp_eps 33 17 1000 20000 1000 N a)
steiner_socp_vareps 33 17 1000 11111 1000 N a)
tf12 3 100 1000 20000 1000 N a)
tre 2 0 4 5 5 N
vardim 10 1 25 25 26 N
weapon 100 12 11 12 12 Y
womflet 3 3 1 1 2 N
zecevic2 2 2 1 1 2 Y
zecevic3 2 2 1000 2500 1000 Y h 6= 0
zecevic4 2 2 3 4 4 Y
zy2 3 1 5 8 6 Y

13

To evaluate the relevance of the feasibility phase, two versions of the
algorithm are tested - the first one, with feasibility and optimality phases
and the second with optimality phase only. The results are in Tables 4 and
5. These tables present two different columns - f , the objective function
value at the solution found and SS to indicate if the same solution for both
versions is reached (Y - yes and N - no).

Table 4: Comparative analysis - with and without feasibility phase
With feasibility phase Without feasibility phase

Problem f #it #f f SS

alsotame 0.082085 1000 19962 9.807.872 N
biggsc4 -24.375 3 3 -24.375 Y
branin 0.397887 5 26 0.397888 Y
camel6 -0.215464 7 26 210.425 N
chi -19.248.788 5 43 279.324.672 N
explin 2.762.383 16 26 3.929.659 N
fir_exp 1.374.301.869 1000 19981 1.046.488 N
fir_linear 0.045342 1000 20000 0.045342 N
fir_socp 10.375 1000 20000 1.046.488 N
hatfldb 0.005573 22 59 0.005573 Y
hatfldc 0 1000 0 14.106.20 N
hatfldh -24.375 1000 4493 -24.5 N
himmelp1 -62.053.869 8 85 81.177.341 N
himmelp2 -62.053.869 8 46 -8.198.032 N
himmelp4 -59.013.124 3 2 -58.013.124 Y
himmelp5 -59.013.124 8 7 -58.013.124 Y
himmelp6 -59.013.124 38 206 -8.198.032 N
hs005 122.837 3 22 222.837 Y
hs015 306.5 4 41 306.5 Y
hs016 23.144.661 5 24 23.144.661 Y
hs017 1.000.002 12 69 1 Y
hs018 5 1000 19962 5 Y
hs020 4.019.873 7 50 4.019.873 Y
hs021 -99.96 1 1 -99.96 Y
hs023 2 1000 19846 9.472.136 N
hs024 -1 2 21 0 N
hs025 0 25 44 0 Y
hs030 1 2 2 1 Y
hs031 6.000.001 6 45 6 Y
hs033 -4.585.786 1000 19772 2 N
hs038 0 19 19 0 Y
hs059 -6.749.505 1000 12862 -7.840.675 N
hs086 -32.348.679 3 3 -32.348.679 N
hs095 974.478 1000 20000 0.015620 N
hs096 0.461579 1000 19926 0.015620 N
hs097 461.629 1000 19981 3.135.809 N
hs098 908.118 1000 19981 3.135.809 N
hs106 2.058.916.567 1000 19887 6.745.848.611 N
hs118 66.482.045 1 1 66.482.045 N
hs23 2 1000 19910 9.472.136 N
hs35 0.111111 1 1 0.111112 Y
hs44 -15 7 12 -14 Y
hs44new -13 6 8 -15 N
hs5 122.837 4 44 306.5 N
kowalik 0.000307 11 13 0.000308 Y
levy3 -23.243.044 2 1 -11.178.666 N
lootsma 1.414.214 1000 19753 8 N
osborne1 0.024518 3 11 1.106.036 N
oslbqp 6.25 1 1 7.25 Y
powell 0 19 19 0 N
powell20 578.125 1000 20000 588.125 Y
price 0 50 73 0 N
qrtquad 0.000071 1000 19830 0 N

14

Table 5: Comparative analysis - with and without feasibility phase
With feasibility phase Without feasibility phase

Problem f #it #f f SS

s222 -1.5 1000 17983 -1.662.003 N
s223 0 1000 17983 -1.662.003 N
s224 -304 2 39 -304 N
s226 0 1000 17925 -3.808.642 N
s229 0 21 28 0 Y
s234 -0.8 23 30 0 N
s236 -58.903.436 88 531 -8.197.517 Y
s237 -58.903.436 9 8 -58.903.436 N
s238 -58.903.436 1000 12936 -8.221.491 N
s239 -58.903.436 88 531 -8.197.517 N
s244 0 10 14 0 Y
s270 -1 9 9 0 Y
s326 -79.807.823 1000 13962 -8.112.289 N
s328 1.744.152 11 49 1.744.152 Y
s331 4.258.385 11 49 1.744.152 N
s341 0 1000 14972 -2.296.481 N
s342 0 1000 140 0 N
s343 -0.000000 5 5 -5.684.783 N
s346 -0.000000 5 5 -5.684.783 N
s357 0.358457 6 7 0.358457 Y
s358 0.000055 21 79 0.000055 Y
s368 0 2 21 0 Y
schwefel 0 9 9 0 Y
shekel -2.630.472 8 19 -268.286 N
tre 0 7 8 0 N
weapon -173.556.958 9 9 -173.556.958 Y
zecevic2 -4.125 1 1 -3.125 Y
zecevic3 97.306.951 1000 19887 9.730.945 N
zecevic4 7.557.508 4 4 8.557.508 Y
zy2 2 7 25 3 Y

Without further examination the results of this code seem very encour-
aging, but measuring and comparing software is a very difficult task. Dolan
and Moré [2] present a tool to analyse the relative performance of the opti-
mization codes with respect to a specific metric (number of iterations, CPU
time).

For instances, if the metric is the number of iterations, for every solver
s and every problem p, the ratio of the number of iterations of solver s on
problem p over the fastest solve for problem p is computed and the base 2
logarithm is taken,

log2

(
#iter(s, p)

best_iter(p)

)
. (6)

By sorting these ratios in ascending order for every solver, the resulting plots
can be interpreted as the probability that a given solver solves a problem
within a certain multiple of the fastest solver. An easy interpretation of this
graphic is that for any given metric a solver is the best when its graphic is
tending faster to 1. This comparison is very interesting when the test set has
a large number of problems.

This tool is used to compare the role of the feasibility phase, that is, Filter
IR with and without feasibility phase. The performance metric considered is
the number of iterations. The graphic of performance profiles are presented
in Figure 5 and a log scale is used.

15

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2x

%
 p

ro
bl

em
s

with feasibility phase

without feasibility phase

Figure 5: Iterations performance profiles

From this figure it is clear that Filter IR with feasibility phase has the
highest probability of being the optimal solver for more than 80% of the
problems. A detailed numerical comparison of Filter IR to other NLP solvers,
namely NPSOL and LOQO, is presented in [10].

6.1 Comparison with IPOPT

Wächter and Biegler [13] present the IPOPT code, an implementation of
a primal-dual interior-point algorithm with a filter line search method for
nonlinear programming. In this work a comparison with other interior-point
codes is presented. A detailed numerical study based on 954 problems from
the CUTEr test set is reported. The results can be downloaded fromWächter
home page (http://www.research.ibm.com/people/a/andreasw). Based
on these results we decided to compare the Filter IR code with IPOPT.
Since the 235 test problems are from different databases we have considered
122 problems from CUTEr tested by both codes. The main purpose of the
comparison is to give an idea of the relative performance of the Filter IR.

Our metrics are the number of iterations (Figure 6) and the number of
function evaluations (Figure 7). The iterations performance profile analy-
sis shows that for about 70% of the problems the Filter IR has the highest
probability of being the optimal solver. With respect to the function eval-
uations the Figure 7 shows that in 70% of the problems the performance is
similar but the IPOPT has better performance for the rest of the problems.
The authors [13] say that performing the regular backtracking line search
procedure can be unsuccessful due to rounding errors, and can result in an
unnecessary switch to the restoration phase. In order to prevent this, they

16

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2x

%
 p

ro
bl

em
s

Iterations performance proflie

Filter IR
IPOPT

Figure 6: Iterations performance profiles

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2x

%
 p

ro
bl

em
s

Function evaluations preformance profile

Filter IR
IPOPT

Figure 7: Function evaluations performance profiles

allow the algorithm to take the full step - their algorithm saves some function
evaluations with this option.

7 Conclusions and future work
The numerical results are already very promising and encourage the algo-
rithm development. As future work some important tasks will be performed
- to prepare the algorithm for equality constraints problems, that must have
a special treatment, and to use test problems with larger dimension. The fil-
ter management analysis, like the relation between its size at the end of the
iterative process and the number of insertions, will be object of study. The

17

C code must be optimized and then it is also expected the CPU time perfor-
mance analysis. The comparison with IPOPT shows that some test problems
penalize the Filter IR performance - a careful analysis must be performed to
identify the reasons of this behaviour. To introduce second order corrections
avoiding the Marato’s effect and to implement the filter restoration phase are
also ideas to consider.

References
[1] A. S. Antunes and M. T. T. Monteiro. A filter algorithm and other nlp

solvers: Performance comparative analysis. Recent Advances in Opti-
mization. A. Seeger (Ed.). Lectures Notes in Economics and Mathemat-
ical Systems, 563:425–434, 2006.

[2] E. D. Dolan and J. J. Moré. Benchmarking optimization software with
performance profiles. Mathematical Programming, Ser. A 91:201–213,
2002.

[3] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty
function. Mathematical Programming, A 91:239–269, 2002.

[4] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modelling
Language for Mathematical Programming. Boyd & Fraser publishing
comapny, Massachusetts, 1993.

[5] P. E. Gill, S. J. Hammarling, W. Murray, M. A. Saunders, and M. H.
Wright. User’s guide for LSSOL: A fortran package for constrained lin-
ear least-squares and convex quadratic programming. Technical Report
86-1, Systems Optimization Laboratory, Department of Operations Re-
search, Stanford University, 1986.

[6] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. User’s guide
for NPSOL 5.0: A fortran package for nonlinear programming. Technical
Report CA.94 305, Systems Optimization Laboratory, Department of
Operations Research, Stanford University, 1998.

[7] C. C. Gonzaga, E. Karas, and M. Vanti. A globally convergent filter
method for nonlinear programming. SIAM Journal on Optimization,
14:646–669, 2003.

[8] J. M. Martínez. Inexact-restoration method with Lagrangian tangent
decrease and new merit function for nonlinear programming. Journal of
Optimization Theory and Applications, 111:39–58, 2001.

18

[9] J. M. Martínez and E. A. Pilotta. Inexact-restoration algorithm for
constrained optimization. Journal of Optimization Theory and Applica-
tions, 104:135–163, 2000.

[10] C. E. P. Silva and M. T. T. Monteiro. A filter algorithm - compari-
son with NLP solvers. International Journal of Computer Mathematics,
2007. to appear.

[11] A. Wächter and L. T. Biegler. Line search filter methods for non-
linear programming: Local convergence. SIAM Journal Optimization,
16(1):32–48, 2005.

[12] A. Wächter and L. T. Biegler. Line search methods for nonlinear pro-
gramming: Motivation and global convergence. SIAM Journal of Opti-
mization, 16(1):1–31, 2005.

[13] A. Wächter and L. T. Biegler. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming.
Mathematical Programming, 106(1):25–57, 2006.

19

