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Abstract

The medullary dorsal reticular nucleus (DRt) was recently shown to belong to the supraspinal pain control system; neurons within
this nucleus give origin to a descending projection that increases spinal nociceptive transmission and facilitates pain perception

[Almeida et al. (1999), Eur. J. Neurosci., 11, 110±122]. In the present study, the areas of the brain that may modulate the activity

of DRt neurons were investigated by using of tract-tracing techniques. Injection of a retrograde tracer into the DRt resulted in
labelling in multiple areas of the brain. In the contralateral orbital, prelimbic, infralimbic, insular, motor and somatosensory

cortices labelling was prominent, but a smaller ipsilateral projection from these same areas was also detected. Strong labelling

was also noted in the central amygdaloid nucleus, bed nucleus of stria terminalis and substantia innominata. Labelled
diencephalic areas were mainly con®ned to the hypothalamus, namely its lateral and posterior areas as well as the

paraventricular nucleus. In the mesencephalon, the periaqueductal grey, red nucleus and deep mesencephalic nucleus were

strongly labelled, whereas, in the brainstem, the parabrachial nuclei, rostroventromedial medulla, nucleus tractus solitarius, spinal

trigeminal nucleus, and the parvocellular, dorsal, lateral and ventral reticular nuclei were the most densely labelled regions. All
deep cerebellar nuclei were labelled bilaterally. These data suggest that the DRt integrates information from the somatosensory,

antinociceptive, autonomic, limbic, pyramidal and extrapyramidal systems while triggering its descending facilitating action upon

the spinal nociceptive transmission.

Introduction

The medullary dorsal reticular nucleus (DRt; Lima, 1990; Swanson,

1998) is an area strongly involved in nociceptive processing.

Anatomical studies have revealed a closed reciprocal circuit between

the DRt and spinal dorsal horn. Descending DRt ®bres make

asymmetrical, presumably excitatory (Shepherd, 1990; Todd &

Spike, 1993) synaptic contacts upon lamina I spinal cells that, in

turn, project back to the nucleus (Almeida et al., 1993); in addition,

ascending ®bres originating in laminae I and IV±V neurons make

asymmetrical synaptic contacts upon DRt neurons projecting back to

the same spinal laminae (Almeida et al., 2000). These data revealed

the existence of a putative reverberative excitatory loop between the

DRt and spinal lamina I. The ascending spinal projection targeting

the DRt conveys nociceptive information as a large percentage of

lamina I neurons targeting the DRt (Almeida & Lima, 1997) and most

neurons recorded in the DRt (Villanueva et al., 1988, 1989; Roy et al.,

1992) are activated by noxious stimulation. Regarding the descending

action of the loop, different lines of evidence have shown that the

DRt has a facilitating action upon pain perception: (i) glutamate

stimulation of the DRt resulted in a decrease of the tail-¯ick latency

(Almeida et al., 1996); (ii) electrical or chemical lesioning of the

nucleus increased the tail-¯ick latency and the response temperature

in the tail-¯ick and hot plate tests, respectively (Almeida et al., 1996);

(iii) lesioning the DRt decreased the pain-like response in both the

acute and in¯ammatory pain phases of the formalin test (Almeida

et al., 1999a); (iv) the attenuation in nociceptive behaviour resulting

from DRt lesioning is accompanied by a decrease in noxious-evoked

c-fos spinal expression in laminae I±II and IV±V (Almeida et al.,

1999a); (v) glutamate stimulation of the DRt resulted in the

facilitation (increase) of the postdischarge of wide-dynamic-range

(WDR) spinal nociceptive neurons (Dugast et al., 2000), an effect

that is transiently reversed by DRt administration of the local

analgesic lidocaine (C.Dugast, A.Almeida & D.Lima, unpublished

data); (vi) DRt glutamate-activation reduced the stimulation fre-

quency and/or the number of stimulation pulses needed to trigger

wind-up in WDR neurons (Dugast et al., 2001). The above data

indicate that the nucleus has a pro-nociceptive action that is mediated

by a descending excitatory projection impinging upon spinal

nociceptive neurons (reviewed by Lima & Almeida, 2002).

A large number of studies have been dedicated to the descending

nociceptive inhibitory in¯uences triggered by the periaqueductal grey

matter (PAG) ±rostroventromedial medulla (RVM) ±spinal cord

circuit and by the noradrenergic pontomesencephalic nuclei project-

ing to the cord (for extensive reviews see Basbaum & Fields, 1984;

Hammond, 1986; Gebhart & Randich, 1990; Jones, 1992). In

contrast, the descending facilitating in¯uences, whose existence
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TABLE 1. Density of retrogradely labelled neurons after small (rat 691) and large (rat 536) CTb injections restricted to the Drt

Location of
labelled neurons

Small injection of CTb Large injection of CTb

Ipsilateral Contralateral Ipsilateral Contralateral

Telencephalon
Orbital cortex ++ ++
Prelimbic and infralimbic cortices ++ ++++
Secondary motor cortex + +++ + +++
Primary motor cortex + ++++ ++ +++++
Secondary somatosensory cortex + ++++ + +++++
Primary somatosensory cortex + ++++ + ++++
Dysgranular/granular insular cortices + ++++ +++ +++++
Agranular insular cortex +++ ++++ +++ +++++
Cingulate cortex +
Retrosplenial granular cortex + +
Secondary auditory cortex ++++
Primary auditory cortex ++
Perirhinal cortex + + +++
Ectorhinal cortex + ++
Parietal association cortex +
Temporal association cortex + ++
Lateral/medial preoptic area +
Bed nucleus stria terminalis + ++++ +
Substantia innominata ++ ++
Globus pallidus, lateral ++ ++
Central amygdaloid nucleus +++++ + +++++ +

Diencephalon
Paraventricular hypothalamic nucleus +++ ++ ++++ +++
Parasubthalamic nucleus + +++ +++
Zona incerta ++ + ++ +
Posterior hypothalamic area ++ ++
Lateral hypothalamic area ++++ ++ +++++ +++
Parafascicular thalamic nucleus + + +

Mesencephalon
Red nucleus ++++ ++++
Substantia nigra, compact + ++ +
Substantia nigra, reticular ++ ++
Retrorubral ®eld ++ +
Subpeduncular tegmental nucleus + +
Deep mesencephalic nucleus +++ +++ ++++ +++
Dorsal raphe nucleus ++ ++
Periaqueductal grey, dorsomedial + +++
Periaqueductal grey, lateral ++ ++ ++++ ++++
Periaqueductal grey, ventrolateral +++ + ++++ ++
Cuneiform nucleus + ++ +

Pons
Reticulotegmental nucleus of the pons ++ + +
Basilar pontine nuclei +++++ +++++
Pontine reticular nucleus, oral + ++ +
Principal sensory trigeminal nucleus ++ +
Subcoeruleus nucleus, ventral +++ +++ +
Mesencephalic trigeminal nucleus + ++ +
Motor trigeminal nucleus +
Pontine reticular nucleus, caudal ++ ++ ++ ++
Locus coeruleus + + + +
KoÈlliker-Fuse nucleus ++ ++ +++ ++
Parabrachial nuclei +++ ++ ++++ +++
A5 noradrenergic cell group +++ + +++ ++

Cerebellum
Interposed cerebellar nucleus ++++ ++++ +
Lateral (dentate) cerebellar nucleus ++ ++
Medial (fastigial) cerebellar nucleus ++ ++ + ++++

Medulla oblongata
Rostroventrolateral reticular nucleus + + + +
Raphe magnus nucleus ++ ++++
Raphe pallidus nucleus ++ ++
Raphe obscurus nucleus + ++
Vestibular nuclei + + + +
Dorsal paragigantocellular nucleus + + + +
Lateral paragigantocellular nucleus ++ ++ ++++ ++++
Gigantocellular reticular nucleus, alpha ++ + ++++ ++++

82 A. Almeida et al.

ã 2002 Federation of European Neuroscience Societies, European Journal of Neuroscience, 16, 81±95



were occasionally reported in the eighties, was only recently

subjected to detailed research (reviews by Fields & Basbaum,

1999; McNally, 1999; Millan, 1999; Urban & Gebhart, 1999; Lima &

Almeida, 2002). Both inhibitory and facilitating descending actions

were shown to be: (i) increased in the same nociceptive situation (e.g.

chronic/neuropathic pain; Cervero et al., 1991; Schaible et al., 1991;

Bian et al., 1998; Kauppila et al., 1998); (ii) triggered from the same

brain areas (RVM, Fields et al., 1983; Zhuo & Gebhart, 1992, 1997;

Wei et al., 1999; nucleus tractus solitarius, Ren et al., 1990; DRt,

Bouhassira et al., 1992; Almeida et al., 1996, 1999a); and (iii)

triggered from the same type of descending projection (e.g.

noradrenergic descending pathways; Proud®t & Hammond, 1981;

Yaksh, 1985; Fasmer et al., 1986; Tjùlsen et al., 1991; Martin et al.,

1999). Thus, it is a complex balance of facilitating and inhibiting

descending in¯uences upon the nociceptive transmission at the spinal

dorsal horn level that determines pain modulation, the ®nal action

being dependent on the speci®c characterization of each painful

condition (Lima, 1998; Fields & Basbaum, 1999; Lima & Almeida,

2002).

In order to ascertain the pattern of anatomical connections that may

modulate the activity of the nociceptive-facilitating neurons present

in the DRt, an extensive study of the brain areas that project to the

nucleus was carried out. Some of the data have been presented

previously in abstract form (Almeida et al., 1999b).

Materials and methods

The experiments followed the regulations of local authorities for

handling laboratory animals, the European Community Council

Directive 86/609/EEC and the ethical guidelines for the study of

experimental pain in conscious animals (Zimmermann, 1983).

TABLE 1. (continued)

Location of
labelled neurons

Small injection of CTb Large injection of CTb

Ipsilateral Contralateral Ipsilateral Contralateral

Gigantocellular reticular nucleus, ventral ++ + ++ ++
Gigantocellular reticular nucleus ++ ++ +++ ++
Intermediate reticular nucleus ++ + +++ ++
Dorsal reticular nucleus +++ +++ ++++ ++++
Area postrema + ++
Nucleus of Roller + ++
Hypoglossal nucleus + + + +
Dorsal motor nucleus of vagus + + + +
Nucleus of the solitary tract, ventrolateral ++++ ++++ +++++ +++++
Nucleus of the solitary tract ++++ ++++ +++++ ++++
Nucleus cuneatus ++ +++
Paratrigeminal nucleus ++++ ++++ +
Spinal trigeminal nucleus +++++ ++ +++++ ++
Ventral reticular nucleus + ++ ++ ++
Caudal ventrolat. ret. form., lateral + +++ ++
A1 noradrenergic cell group ++ ++ ++
Lateral reticular nucleus ++ + ++ +
Inferior olive +++++
Parvocellular reticular nucleus +++++ +++ +++++ ++++

Intensity of label: +++++, very dense; ++++, dense; +++, numerous; ++, few; + rare.

FIG. 1. Photomicrographs, each showing the coronal section presenting the largest tracer spread resulting from DRt injection with the retrograde tracer Ctb:
(A) in a typical small rat (rat 691) and (B) in a typical large rat (rat 536). In both injections, CTb extends through the DRt but is restricted to the limits of
the nucleus. In B, note the large number of retrogradely labelled neurons (arrowheads) located in the super®cial layers of the Sp5C and in the Sol. Scale bar,
150 mm. For abbreviations, see list.
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Retrograde-tracing studies

In order to determine the brain nuclei projecting to the DRt, seven

male Wistar rats (Gulbenkian Institute of Science, Lisbon, Portugal)

weighing 270±320 g were anaesthetized with halothane (a gaseous

mixture of 66% N2O and 34% O2 containing halothane at 4% for

induction and 1.5±2% for maintenance), and an iontophoretic

injection of 1% cholera toxin subunit B (CTb; low salt, List

Biological Products, Campbell, USA) was made in the left DRt

following the stereotaxic parameters of Paxinos & Watson (1986),

using a glass micropipette with 20±30 mm diameter tip and a positive

DC current of 2.5 mA for 10 min (smaller injections; 5 rats) or

15 min (larger injections; 2 rats). After completion of the injections

the micropipettes were left in situ for 10±15 min before being slowly

retracted. One week later, animals were reanaesthetized with 35%

chloral hydrate (1 mL/kg body weight) and perfused through the

ascending aorta with 1000 mL of 4% paraformaldehyde in 0.1 M

phosphate buffer (PB), pH 7.4. The entire brain was removed and

immersed in the ®xative for 4 h, then in 30% sucrose in PB at 4 °C

for 2±3 days. Coronal sections of the entire brain were cut on a

freezing microtome at 50 mm. One in every three brain sections was

immunoreacted for CTb and counterstained using the formol±thionin

technique (Donovick, 1974) and one in every three sections was only

immunoreacted for CTb. CTb was revealed using the immunoper-

oxidase technique, as previously described (Almeida & Lima, 1997;

Almeida et al., 2000). Brie¯y, sections were ®rst incubated overnight

at room temperature in a goat primary polyclonal antibody against

CTb (List Biological Products, USA) at 1 : 40000 in 0.1 M phosphate

buffer saline containing 0.3% Triton X-100 (PBST). After washing

repeatedly in PBST, the sections were incubated for 1 h in PBST

containing a biotinylated antigoat antibody raised in horse (1 : 200;

Vector Laboratories, Burlingame, USA). Sections were then washed

again and incubated for 1 h in PBST containing the avidin±biotin

complex (1 : 200, Vector Laboratories, USA). After washing in 0.1 M

tris-HCl, pH 8.2, peroxidase was revealed using 0.0125% 3,3¢-
diaminobenzidine tetrahydrochloride (DAB; Sigma Immuno-

chemicals, St Louis, USA) and 0.025% H2O2 in the same buffer.

The sections were then dehydrated and mounted in Eukitt.

Cytoarchitectonic diagrams of the injection sites were made with

the aid of a camera lucida. Retrogradely labelled neurons in brain

areas projecting to the DRt were located and superimposed on

projection drawings of selected representative sections from the atlas

of Paxinos & Watson (1998).

Anterograde-tracing control studies

Injection of the anterograde tracer biotinylated-dextran amine (BDA)

was made in several DRt-projecting brain nuclei, in order to establish

their termination areas in the nucleus. The paraventricular hypotha-

lamic nucleus (Pa), the lateral hypothalamic area (LH), the

ventrolateral periaqueductal grey matter (VLPAG), the red nucleus

(RD) and the lateral cerebellar nucleus of male Wistar rats were

injected iontophoretically in the left side of the brain, under halothane

anaesthesia (see above), with a 10% PB buffer, pH 7.2, using a

positive DC current of 2.5 mA for 20±30 min. Ten days later the rats

were anaesthetized and perfused as described above. Serial 50 mm

thick frozen coronal sections of the injection site and caudal medulla

were immunoreacted using the avidin±biotin complex method and

stained with DAB (see Almeida et al., 1995), the former sections

being further counterstained with formol±thionin. Fibres and terminal

arborizations labelled anterogradely in the DRt were plotted using

camera lucida drawings.

Results

Injection sites

CTb injection sites showed a compact dark zone surrounded by a

narrow rim without neuronal labelling, in which dark zones

intermingled with lighter zones (Fig. 1). More peripherally, a few

perikarya were labelled as a consequence of tracer uptake from the

central area. The injection site was considered to encompass only the

central dark area and surrounding rim. The injections were all placed

inside the limits of the DRt and thus were all considered for analysis.

BDA injection sites also showed the compact dark central zone

surrounded by a narrow rim of scarcely labelled neurons. In

accordance with previous technical studies, only the central region

and the rim were included in the injection site (Veenman et al., 1992;

Wouterlood & Jorritsma-Byham, 1993). In the animals analysed,

injections were placed inside the anatomical borders of the left Pa,

LH, RD and VLPAG.

FIG. 2A and B. Locations of retrogradely labelled cells plotted on representa-
tive coronal sections through the brain of rat 536. The injection site is shown
photographically in Fig. 1B. Each dot (d) and triangle (m) represents 1 and 5
neurons, respectively. (A and B) Sections at 13.2 and 12.20 mm rostral to the
interaural line. For abbreviations, see list.
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Retrograde labelling

CTb-labelled neurons projecting to the DRt were distributed along

the rostrocaudal extension of the brain, particularly in the cortex

(contralateral) and brainstem, although high numbers of neurons were

also found in some nuclei of the ventral telencephalon and

diencephalon. A systematic analysis of the location and density of

neurons projecting to the DRt is described in Table 1, whereas in

Fig. 2 the precise locations of retrogradely labelled neurons are

plotted on brain charts.

Telencephalon

In the prefrontal cortex, a bilateral projection to the DRt was shown

to occur from the prelimbic (PrL), infralimbic (IL) (Figs 2A and B,

and 3A), orbital (OC; Fig. 2A and B), and cingulate (Cg1) (Fig. 2B)

cortices, although with a contralateral predominance. In the motor

cortex, a higher number of neurons was present in the primary (M1)

than in secondary (M2) motor cortices and, in both cases, they were

predominantly located on the contralateral hemisphere (Fig. 2A±C).

Regarding the somatosensory cortex, a large number of neurons were

FIG. 2C and D. (Fig. 2 continued) Sections at 9.70 and 8.20 mm rostral to the interaural line. For details see legend to Fig. 2A and B, and abbreviations list.
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present, mainly in the contralateral secondary somatosensory cortex

(S2) and, in smaller numbers, in the contralateral primary

somatosensory cortex (S1) (Fig. 2C±F), barrel ®eld and facial

regions. A small ipsilateral projection from the S1 and S2 cortical

areas was also present (Fig. 2E). The forelimb, hindlimb and thorax

regions showed very few or no cells. In the insular cortices, labelled

neurons were present in all sections. Although the majority were

located contralaterally ( Fig. 2B±F), an ipsilateral projection was also

consistently observed (Figs 2B±F and 3B).

In subcortical telencephalic areas, an impressive number of

labelled neurons was located in the ipsilateral bed nucleus of the

stria terminalis (BST; Fig. 2D). In the amygdala, a very strong

projection was shown to occur, almost exclusively, along the entire

rostrocaudal extent of the central amygdaloid nucleus (Ce),

FIG. 2E and F. (Fig. 2 continued) Sections at 7.40 and 6.88 mm rostral to the interaural line. For details see legend to Fig. 2A and B, and abbreviations list.
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ipsilaterally (Figs 2E and F, and 3C). Numerous neurons projecting to

the DRt were also noted in the ipsilateral substantia innominata (SI;

Fig. 2D±F).

Diencephalon

In the thalamus, only the parafascicular nucleus (PF) presented some

labelled neurons both medially and laterally to the fasciculus

retro¯exus (Fig. 2H). A small projection from the zona incerta (ZI)

was present ipsilaterally (Fig. 2G). On the other hand, the

hypothalamus showed a large number of labelled cells located

bilaterally in different subnuclei of the Pa (Figs 2F and 3D). A great

number of cells projecting to the DRt were also located in the medial

and caudal portions of the LH, bilaterally (Fig. 2E±H). In the caudal

hypothalamus, the posterior hypothalamic area (PH) showed a

FIG. 2G±I. (Fig. 2 continued) Sections at 5.20, 4.48 and 2.96 mm rostral to the interaural line. For details see legend to Fig. 2A and B, and abbreviations list.

Brain afferents to the DRt 87

ã 2002 Federation of European Neuroscience Societies, European Journal of Neuroscience, 16, 81±95



moderate number of retrogradely labelled neurons, bilaterally

(Fig. 2G). Fewer neurons were labelled in the arcuate nucleus (Arc)

and ipsilateral tuberum cinerum (TC; Figs 2F and G).

Mesencephalon

Labelled cells were located in the caudalmost areas of the substantia

nigra, bilaterally (Fig. 2I). In the RD, most of the large neurons

labelled contralaterally were concentrated in its dorsal region

(Fig. 2I). Several bilaterally located labelled neurons were observed

through the rostrocaudal extension of the lateral and VLPAG

(Figs 2I±K and 3E). Other areas of the PAG presented a small

number of labelled neurons (Figs 2I and J). Labelled cells were

scattered, mainly ipsilaterally, through the large area of the brainstem

reticular formation forming the deep mesencephalic nucleus (DpMe;

Figs 2I and J), and in the cuneiform nucleus (CnF; Fig. 2K). In the

dorsal raphe, most neurons were present in the ventrolateral portion

of the nucleus followed by the ventral part, whereas the dorsal part of

the dorsal raphe was not labelled (Fig. 2J).

Pons

In one rat (number 691, small injection), the basilar pontine nuclei

(BPN) were the areas of the pons presenting the most extensive

distribution of bilaterally located cells, but no cells were labelled in

the other rat described in Table 1 (numb 536, large injection). The

CnF (Fig. 2K) and the caudal pontine reticular nucleus (PnC;

Fig. 2L±N) showed a moderate number of labelled neurons. A highly

packed set of cells projecting ipsilaterally to the DRt was present in

the mesencephalic trigeminal nucleus (Me5; Fig. 2J±M). The A5

noradrenergic group (A5), locus coeruleus (LC) and nucleus

subcoeruleus (SubCV) were noradrenergic brainstem areas that

presented a moderate number of labelled cells located mainly

ipsilaterally (Fig. 2L±N). A large number of labelled neurons was

distributed bilaterally through the subnuclei of the parabrachial nuclei

(PBN), particularly in the medial PBN (MPB) and ventral part of the

lateral PBN (LPB; Fig. 2K±M). Labelled neurons in the KoÈlliker±

Fuse nucleus (KF) were present bilaterally in all the appropriate

sections analysed (Figs 2K and L).

FIG. 2J±M. (Fig. 2 continued) Sections at 1.20 and 0.28 mm rostral, and 0.30 and 6.8 mm caudal to the interaural line. For details see legend to Fig. 2A and B, and
abbreviations list.
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Cerebellum

All three major deep nuclei of the cerebellum presented a consid-

erable number of bilaterally labelled neurons, particularly in the

medial deep cerebellar nucleus (Fig. 2O).

Medulla oblongata

The gigantocellular (Gi, GiA, GiV), paragigantocellular (LPGi),

lateral (LRt) and ventral (VRt) reticular nuclei presented a

moderate number of labelled neurons, bilaterally (Fig. 2O±T).

Although without consistent neuronal labelling in all sections

analysed, all ponto-medullary raphe subdivisions contained

neurons projecting to the DRt, with special emphasis on the

nucleus raphe magnus (RMg; Fig. 2M±O). High numbers of

neurons were located in both medial (SolM) and ventrolateral

(SolVL) areas of the nucleus tractus solitarius (Sol), along its

rostrocaudal extension (Figs 1B and 2O±T). Numerous neurons

were also located bilaterally along the rostrocaudal ponto-

medullary extension of the parvocellular reticular nucleus (PCRt;

Fig. 2N±Q). In rat 691 (small injection), a high number of

contralaterally located neurons was present in the medial

portion of the inferior olive (IO), between interaural

coordinates ±3.30 and ±4.68 mm (Paxinos & Watson, 1998), but

no labelling in this area was observed in rat 536 (large injection).

A small number of labelled neurons were located in the motor

nucleus of the vagal nerve (10; Fig. 2Q±S) and hypoglossal

nucleus (12; Fig. 2R±T). The lateral part of the ventrolateral

medulla (VLMlat) showed a bilateral projection to the DRt

(Fig. 2R±T). A large number of neurons were labelled along the

ipsilateral rostrocaudal extension of the caudal portion of the

spinal trigeminal nucleus (Sp5C), being mainly concentrated in

the most super®cial laminae (Figs 1A and B, and 2R±T).

Numbers were much smaller in the interpolar part of the

trigeminal nucleus (Sp5I), where the neurons were preferentially

located in deeper laminae (Fig. 2O±Q). The DRt, the area injected

with CTb and the focus of this study, presented neurons of local

circuit, labelled ipsilaterally, and short-projecting neurons, labelled

bilaterally (Figs 2R±T and 3F).

FIG. 2N±T. (Fig. 2 continued) Sections at 1.04 to 5.60 mm caudal to the interaural line. For details see legend to Fig. 2A and B, and abbreviations list. As before,
each dot and triangle represents 1 and 5 neurons respectively. The stars in S each represent 10 neurons.
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Anterograde labelling

Fibres and terminal boutons anterogradely labelled with BDA were

observed mainly in the dorsal part of the DRt (DRtd) after cerebellar

injections, and through the dorsoventral extension of the DRt [DRtd

and ventral DRt (DRtv)] after hypothalamic (LH and Pa), VLPAG

and RD (Fig. 4) injections.

Labelled ®bres and terminals in the DRt occurred mainly

ipsilaterally after cerebellar, hypothalamic and VLPAG injections,

and exclusively contralaterally after RD injections.

Discussion

Technical considerations

Histologically, the DRt can be easily delimited from the Cu dorsally,

the Sp5C laterally, the Sol dorsomedially and the VRt ventrome-

dially. For the interpretation of the present ®ndings, four possible

sources of uncertainty inherent to the use of a tract-tracing technique

were considered. First, the placement of CTb in the DRt; the small

iontophoretic CTb injections resulted in restricted and perfectly

de®ned injection sites, all located within the boundaries of the DRt

FIG. 3. Labelled neurons in the ipsilateral infralimbic (A) and insular (B) cortices, central amygdaloid (C) and paraventricular hypothalamic (D) nuclei,
ventrolateral PAG (E) and contralateral DRt (F) following the large CTb injection shown in Fig. 1B. Scale bar, 150 mm. For abbreviations see list.
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along the rostrocaudal extension of the nucleus. Larger injections,

which were used in order to label larger numbers of cells, were also

selected according to their inclusion inside the limits of the nucleus.

Secondly, leakage of CTb: the micropipette track was examined and

no leakage of CTb was detected, probably as a consequence of the

small tip diameters of the micropipettes used and the time allowed for

the micropipette to remain in the injection place after tracer

administration. Thirdly, transneuronal transport: the possibility that

trans-synaptic transport accounted for the labelling of cells receiving

projections from the DRt can be ruled out, as CTb was shown not to

be carried transneuronally after anterograde transport (Almeida et al.,

1993). Fourthly, passing ®bres: the possibility that ®bres travelling in

the injected DRt areas may contribute to some of the retrograde

labelling observed does not need to be considered. In fact, previous

observations have shown that no spinal labelling occurs after CTb

injections into the spinothalamic tract (Lima et al., 1991), indicating

that CTb is not picked up by passing ®bres. Moreover, it has been

demonstrated that, with CTb, anterograde or retrograde tracing by

passing ®bres does not occur when iontophoretic injections are made

(Luppi et al., 1990; Angelucci et al., 1996). Taking into account all

the above facts, it was concluded that DRt injections resulted

exclusively in CTb retrograde labelling in the brain after tracer uptake

by afferent terminals terminating in the DRt. Therefore, it was not

considered necessary to make control CTb injections in medullary

nuclei bordering the DRt.

A surprising result was the retrograde labelling present in the

BPN and IO in rat 691 (Table 1). Spread of the tracer to nuclei

close to the DRt cannot account for this observation as this

rat received a small and well located injection. It is possible that

this ®nding is due to the different rostrocaudal centre of the CTb

injection (Fig. 1, interaural coordinates: ±5.30 for rat 691 vs. ±5.60

for rat 536) and, consequently, re¯ects different anatomical loci

inside the DRt.

Brain afferents to the DRt: anatomical considerations

This is the ®rst study addressing the systematic evaluation of the

brain areas projecting to the DRt, through tracer injections applied

directly to the nucleus. The only other work with retrograde tracer

administration to the DRt was a detailed study on the cortical

projections to the nucleus (Desbois et al., 1999).

Telencephalon

To the best of our knowledge, the projections from orbital cortex,

globus pallidus and substantia innominata to the DRt were reported

here for the ®rst time.

Although our data are in general in accordance with the work of

Desbois et al. (1999) concerning the dense afferent projection to the

DRt from widespread contralateral cortical areas like the M1, M2, S1,

S2 and insular cortices, we observed further labelling in other areas of

the cortex. In fact, a small but consistent projection from the

ipsilateral hemisphere of those cortical areas and an important

projection from the contralateral prelimbic, infralimbic and orbital

cortices are also described in the present study. The variation reported

in these two studies probably re¯ect different sensitivities of the

retrograde tracers used: wheat germ agglutinin±apo horseradish

peroxidase±gold (WGA±ApoHRP±Au; Desbois et al. 1999) and CTb

(the present study). If this is the case, we can conclude that CTb is a

more sensitive tracer than WGA±ApoHRP±Au, especially if we take

into account that in both studies the injections were restricted to the

DRt and our small injections seem to be smaller than those in the

other study. Although no direct comparisons have been made

between the two tracers, this hypothesis is supported by retrograde-

tracing studies which clearly showed that, in the spinothalamic and

spino-DRt pathways, CTb labelled signi®cantly more spinal cells

than the tracers wheat germ agglutinin±horseradish peroxidase

FIG. 4. Photomicrographs showing anterogradely labelled ®bres and terminal
boutons in the contralateral DRt following injections of BDA in the left red
nucleus: (A) small magni®cation of the dorsoventral extension of the DRt, in
which the location of the two subareas of the nucleus, the dorsal (DRtd) and
the ventral (DRtv) Drt are indicated; (B and C) higher magni®cations of the
DRtd and DRtv areas, respectively, shown in A, which reveal details of the
abundant anterograde labelling present in both areas of the nucleus. Scale bar,
150 mm. For abbreviations see list.
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(WGA±HRP) or free HRP after injections of similar size in the

thalamus or DRt (Lima & Coimbra, 1988; Lima, 1990).

Diencephalon

To the best of our knowledge, the projections from the PF, posterior

hypothalamic area and ZI, to the DRt were reported here for the ®rst

time. Interestingly, the PF is also one of the major efferent targets of

the DRt in the brain (Villanueva et al., 1997), thereby suggesting the

existence of a feedback loop between the DRt and PF.

The important projections originated in the Pa and LH have been

referred to in previous anterograde tracing studies (Luiten et al.,

1985; Allen & Cechetto, 1992); however, these only reported the

strong ipsilateral projection. Such variability might be ascribed again

to the injection site or tracer sensitivity. Indeed, it is possible that the

injections of the anterograde tracer Phaseolus vulgaris-leucoagglu-

tinin (PHA-L) in the Pa did not reach the neurons originating the

contralateral projection (Luiten et al., 1985). In the case of the WGA±

HRP injections in the LH, it is possible that the tracer lacks suf®cient

sensitivity to label the contralateral side of the projection (Allen &

Cechetto, 1992).

Mesencephalon

To the best of our knowledge, the projections from the substantia

nigra, RD, dorsal raphe nucleus and mesencephalic trigeminal

nucleus to the DRt were reported here for the ®rst time.

The ipsilateral projection from the DpMe to the DRt was also

reported in a previous study (Jones & Yang, 1985; see also Veazey &

Severin, 1980) but the contralateral projection, as seen here, was not

detected, probably due to the lower sensitivity of the method

employed (autoradiography). The bilateral projection from the caudal

VLPAG terminating in the DRt was already mentioned (Chen &

Aston-Jones, 1996; Odeh & Antal, 2001).

Pons

The projections from the basilar pontine nuclei, SubCV (see

Westlund & Coulter, 1980) and reticulotegmental nucleus of the

pons to the DRt were shown here for the ®rst time.

The strong bilateral projection from both the medial and lateral

PBN and KF (Saper & Loewy, 1980; Herbert et al., 1990; Krukoff

et al., 1993) and the bilateral projections from the A5 (Tavares et al.,

1997) and LC (Jones & Yang, 1985; Fritschy & Grzanna, 1990) to the

DRt have already been reported.

Cerebellum

In a previous study, the injection of 3H-leucine/proline into the lateral

and interposed cerebellar nuclei resulted in ®bre and terminal

labelling along all the ipsilateral dorsoventral extension of the DRt

(Woodson & Angaut, 1984). Our ®ndings extend these results by

demonstrating a bilateral projection to the DRt from all the three

groups of deep cerebellar nuclei (medial, interposed and lateral; see

also Teune et al., 2000).

Medulla oblongata

To the best of our knowledge, the projections from the nucleus raphe

magnus, inferior olive, paratrigeminal nucleus and ventral reticular

nucleus to the DRt are reported here for the ®rst time.

Our study con®rms a very strong ipsilateral projection from the

caudal part of the spinal trigeminal nucleus to the DRt (Esser et al.,

1998), but also shows an important contralateral projection to the

nucleus. Contrary to our results, the projection from the A1

noradrenergic cell group was previously reported to be bilateral,

probably due to the larger injection in the A1 area in that study, which

reached the nearby LRt (McKellar & Loewy, 1982). The latter has a

bilateral projection to the DRt, as shown by the present study.

Functional considerations

The DRt seems to be an important recipient for the nociceptive

information transmitted supraspinally as most DRt neurons

(Villanueva et al., 1988) and super®cial dorsal horn neurons

projecting to the DRt (Almeida & Lima, 1997) are activated by

noxious stimulation converging from all the body to the DRt

(Villanueva et al., 1988). In addition, the nociceptive input is

transmitted to the PF and ventromedial (VM) and reunions thalamic

nuclei of the medial thalamus, to which the DRt projects massively

(Villanueva et al., 1997; Monconduit et al., 1999). These nuclei

project to the amygdala and hippocampus (Ottersen & Ben-Ari, 1979;

Su & Bentivoglio, 1990), areas involved in emotional/affective and

cognitive control (Lopes-da-Silva et al., 1990). They also project to

large areas of the motor cortex (Donoghue & Parham, 1983) and/or

dorsal (caudate±putamen complex) and ventral (nucleus accumbens)

striatum (Berendse & Groenewegen, 1990). Altogether, these data

indicate that the DRt belongs to the medial pain system (Melzack &

Casey, 1968) and may be involved in processing the motor actions

triggered by the motivational±affective afferent component of pain

sensation.

The large spectrum of projections converging upon the DRt

indicates that the activity of the nucleus is affected by, and involved

in, several brain functions. However, in a classi®cation effort, the

brain areas projecting to the DRt were considered to belong to one or

more of the following two broad functional systems.

Sensorimotor and pain control systems

A large spectrum of brain areas belonging to the supraspinal pain

control system project to the DRt and may modulate its activity.

Thus, areas shown to be antinociceptive, like the motor cortex, basal

ganglia, amygdala, thalamus (PF, paraventricular thalamic nucleus,

sensory thalamus), hypothalamus (LH, Pa, Arc, PH), the PAG±RVM

circuit, noradrenergic brainstem areas (LC/subcoeruleus, PBN, KF,

A5, Sol, A1) and the brainstem reticular formation (DpMe, CnF, VRt,

VLMlat) were shown here to project to the DRt (reviewed by Lima &

Almeida, 2002). On the other hand, areas traditionally known to be

antinociceptive but presenting also pronociceptive actions, such as

the RVM (Wei et al., 1999; Kovelowski et al., 2000) and Sol (Ren

et al., 1990; Ness et al., 2000), also project to the DRt. Moreover, the

ipsilateral and contralateral DRt itself, which has a primarily

pronociceptive action (Almeida et al., 1996, 1999a), have short-

projecting neurons inside its borders. Altogether, these data indicate

that the DRt is a likely candidate to mediate the balance between

inhibiting and facilitating nociceptive actions that may, respectively,

turn off or turn on the descending facilitating action of the nucleus.

The DRt seems also to be implicated in the pain motor reaction

itself, as it not only receives a strong projection from the motor cortex

and several extrapyramidal motor areas (globus pallidus, substantia

nigra, RD, basilar pontine nuclei, reticulotegmental nucleus of the

pons, deep cerebellar nuclei, IO, PCRt and LRt), but also projects to

the spinal ventral horn (Villanueva et al., 1995). Thus, it is possible

that the DRt in¯uences the motor reactions to noxious stimulation

directly by modulating the activity of spinal motoneurons.
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Autonomic and limbic systems

The activity of DRt neurons can also be in¯uenced by the visceral

motor system, which involves afferents from structures such as the

dorsal motor nucleus of the vagus and the PrL and IL cortices. Other

important forebrain autonomic centres (reviewed by Loewy, 1990)

involved in the organism homeostasis and projecting to the DRt

include the BST, Ce, Pa and LH. Most of the above autonomic

centres belong also to the limbic system (where emotions are

modulated; reviewed by Lopes-da-Silva et al., 1990), namely the

prefrontal cortex (PrL, IL and OC), BST, Ce and SI. These data

indicate that the DRt not only relays ascending nociceptive informa-

tion related to the motivational±affective component of pain (see

above), but its activity can also be modulated by the reaction

triggered by that dimension of pain.

Brain afferents to the DRt: anterograde-tracing studies

We administered BDA to some of the brain areas that presented

numerous retrogradely labelled cells after CTb injections in the DRt;

all these injections con®rmed, by the presence of abundant ®bre- and

bouton-labelling, that those areas project in fact to the DRt.

Interestingly, the most dorsal portion of the DRt (DRtd; Almeida et

al., 1995) is the only, or at least the main, area of the nucleus that

receives projections from the various brain areas injected. The DRtd

is the area of the nucleus that is reciprocally connected with the spinal

cord lamina I through asymmetrical synapses, presumably excitatory

(Almeida et al., 1993, 2000) and, thus, may underlie the descending

facilitation of spinal nociception conveyed by the nucleus (Almeida

et al., 1996, 1999a, 2000; Lima & Almeida, 2002). Moreover, the

DRtd is the area that relays the transmission of ascending nociceptive

transmission from the whole body to the VM (Monconduit et al.,

1999; Desbois & Villanueva, 2001) which, in turn, projects diffusely

to all areas of the ipsilateral cortex (Herkenham, 1979). Thus, one

might conclude that the DRtd is an area of convergence of

modulatory actions from the brain upon the ascending nociceptive

input carried by the medial pain system.

Conclusion

In summary, the present ®ndings, together with the current available

literature, indicate that the DRtd might be at the centre of: (i) a spino-

reticulo-thalamo-cortical nociceptive pathway that spreads the

nociceptive information converging from all the body to large areas

of the cortex; (ii) a supraspinal network that integrates information

from areas of the autonomic, limbic, pyramidal, extrapiramidal and

antinociceptive systems before triggering its output action; (iii) a

descending nociceptive facilitating pathway that increases nocicep-

tive transmission at the spinal dorsal horn level (Lima & Almeida,

2002).
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Abbreviations

3V, 3rd ventricle; 4V, 4th ventricle; 7, facial nucleus; 10, dorsal motor nucleus
of the vagus; 12, hypoglossal nucleus; A1, A1 noradrenergic cell group; A5,
A5 noradrenergic cell group; AI, agranular insular cortex; AIP, agranular
insular cortex, posterior part; Aq, aqueduct of Sylvius; Arc, arcuate

hypothalamic nucleus; Au1, primary auditory cortex; Au2, secondary auditory
cortex; BDA, biotinylated-dextran amine; BL, basolateral amygdaloid
nucleus; BPN, basilar pontine nuclei; BST, bed nucleus of the stria terminalis;
cc, central canal; Ce, central amygdaloid nucleus; Cg1, cingulated cortex;
CnF, cuneiform nucleus; CTb, cholera toxin subunit B; cu, cuneate fasciculus;
Cu, cuneate nucleus; DAB, diaminobenzidine; DI, dysgranular insular cortex;
DLPAG, dorsolateral periaqueductal grey; DMPAG, dorsomedial periaque-
ductal grey; DPGi, dorsal paragigantocellular nucleus; DpMe, deep mesence-
phalic nucleus; DRt, dorsal reticular nucleus; DRtd, dorsal reticular nucleus,
dorsal part; DRV, dorsal raphe nucleus, ventral part; DRVL, dorsal raphe
nucleus, ventrolateral part; Ect, ectorhinal cortex; fmi, forceps minor of the
corpus callosum; GI, granular insular cortex; Gi, gigantocellular reticular
nucleus; GiA, gigantocellular reticular nucleus, alpha part; GiV, gigantocel-
lular reticular nucleus, ventral part; HRP, horseradish peroxidase; ic, internal
capsule; IL, infralimbic cortex; Int, interposed cerebellar nucleus; IntA,
interposed cerebellar nucleus, anterior part; IntPPC, interposed cerebellar
nucleus, posterior parvicellular part; IO, inferior olive; IRt, intermediate
reticular nucleus; KF, KoÈlliker±Fuse nucleus; Lat, lateral (dentate) cerebellar
nucleus; LC, locus coeruleus; LGP, lateral globus pallidus; LH, lateral
hypothalamic area; LPAG, lateral periaqueductal grey; LPB, lateral para-
brachial nucleus; LPGi, lateral paragigantocellular nucleus; LRt, lateral
reticular nucleus; M1, primary motor cortex; M2, secondary motor cortex;
Me5, mesencephalic trigeminal nucleus; Medical, medial (fastigial) cerebellar
nucleus; Mo5, motor trigeminal nucleus; MPB, medial parabrachial nucleus;
OC, orbital cortex; Pa5, paratrigeminal nucleus; Pa, paraventricular hypotha-
lamic nucleus; PAG, periaqueductal grey matter; PaMP, paraventricular
hypothalamic nucleus, medial parvicellular part; PaPo, paraventricular
hypothalamic nucleus, posterior part; PaR, pararubral nucleus; PB, phosphate
buffer; PBN, parabrachial nuclei; PBS, phosphate buffer saline; PBST,
phosphate buffer saline with triton; PCRt, parvocellular reticular nucleus; PF,
parafascicular thalamic nucleus; PH, posterior hypothalamic area; PHA-L,
Phaseolus vulgaris-leucoagglutinin; PnC, pontine reticular nucleus, caudal
part; PnO, pontine reticular nucleus, oral part; PPTg, pedunculopontine
tegmental nucleus; PRh, perirhinal cortex; PrL, prelimbic cortex; Pta, parietal
association cortex pyx, pyramidal decussation; RD, red nucleus; RMg, raphe
magnus nucleus; RNCD, substantia nigra, compact part; Ro, nucleus of Roller;
ROb, raphe obscurus nucleus; RPa, raphe pallidus nucleus; RVM, rostroven-
tromedial medulla; S1, primary somatosensory cortex; S2, secondary
somatosensory cortex; scp, superior cerebellar peduncle (brachium conjuncti-
vum); SI, substantia innominata; SNR, substantia nigra, reticular part; sol,
solitary tract; Sol, nucleus of the solitary tract; SolM, nucleus of the solitary
tract, medial part; SolVL, nucleus tractus solitarius, ventrolateral part; Sp5C,
spinal trigeminal nucleus, caudal part; Sp5I, spinal trigeminal nucleus,
interpolar part; STh, subthalamic nucleus; SubCV, subcoeruleus nucleus,
ventral part; TC, tuber cinereum area; TeA, temporal association cortex; Ve,
vestibular nuclei; VLMlat, ventrolateral medulla, lateral part; VLPAG,
ventrolateral periaqueductal grey matter; VM, ventromedial thalamic nucleus;
VRt, ventral reticular nucleus; WDR, wide-dynamic-range; WGA±ApoHRP±
Au, wheatgerm agglutinin±apohorseradish peroxidase conjugate; WGA±HRP,
wheat germ agglutinin±horseradish peroxidase conjugate; ZI, zona incerta.
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