
Using Text Mining Techniques for
Classical Music Scores Analysis

Alberto Simões, Anália Lourenço, and José João Almeida

Departamento de Informática, Universidade do Minho,
Campus de Gualtar, 4710-057 Braga, PORTUGAL

{ambs,analia,jj}@di.uminho.pt

Abstract. Music Classification is a particular area of Computational
Musicology that provides valuable insights about the evolving of compo-
sition patterns and assists in catalogue generation. The proposed work
detaches from former works by classifying music based on music score in-
formation. Text Mining techniques support music score processing while
Classification techniques are used in the construction of decision mod-
els. Although research is still at its earliest beginnings, the work already
provides valuable contributes to symbolic music representation process-
ing and subsequent analysis. Score processing involved the counting of
ascending and descending chromatic intervals, note duration and meta-
information tagging. Analysis involved feature selection and the evalu-
ation of several data mining algorithms, ensuring extensibility towards
larger repositories or more complex problems. Experiments report the
analysis of composition epochs on a subset of the Mutopia project open
archive of classical LilyPond-annotated music scores.

1 Introduction

The improving ability of score typesetting has made possible many new ap-
plications in Music Information Retrieval and Statistical Musicology. Musical
catalogues, digital audio editing, real-time performance enhancement and ac-
companiment systems are now a reality [1].

This work focused on the analysis of music composition, studying classical
composition patterns throughout different epochs. Descriptive statistics such as
the counting of notes and intervals provide an overall description of each score
whereas statistical discriminant, factor, and cluster analyses are often applied
to the study of composition evolving and genre. Nevertheless, the analysis of
symbolic music representation is, as far as we know, rare and may be considered
a breakthrough.

Open source typesets like Lilypond [5,6], abc [7] or MusicXML [3] and com-
mercial typesets like Finale or Sibelius provide machine-readable representations
of music scores. Text Mining techniques can easily address the counting of as-
cending and descending chromatic intervals and each note duration and other
kinds of metrics, and the tagging of meta-information. On the other hand, Fea-
ture Selection and Data Mining techniques can conveniently address further
analysis, account for problem complexity and specific goals.



Research is still at its earliest beginnings and experiments do not yet expose
the true potential of analysis. Nevertheless, text processing covers all major as-
pects of symbolic representations, producing datasets suitable for further mining.
Future work devises the improvement (in terms of robustness) of our Lilypond
parser, the processing of polyphonic scores and the replacement of semi-tones
by musical interval notation. Besides classical music composition, analysis over
other music genres (for instance, folk and jazz music) is to be addressed.

2 Symbolic Music Representation

Computational Musicology and Natural Language Processing are very similar
areas. Music is a language (usually denoted as the universal language) and needs
to be represented in a computer-readable format in order to be processed.

This section discusses the advantages of using symbolic music representation
in music analysis, and evaluates the most common formats.

2.1 Audio versus Symbolic Representations

There is a parallelism between the concerns of musicologists and linguists. When
analysing a music record from a Bach fugue, we are listening to the organist’s
interpretation of Bach’s own composition. Likewise, when listening to a recorded
oral story, one perceives the emotions transmitted by the reader. Even consid-
ering that interpretation does not alter the original composition, speech/audio
recognition would be an issue. On the other hand, music scores/texts are almost
noise free and are better at capturing work’s details. Linguists take advantage of
sentences boundaries and punctuation marks when analysing texts, and musicol-
ogists can use scores meta-information like pitch and time signatures to enrich
their analysis.

Computational music analysis is usually based on audio (mp3, wave, aiff,
midi), because audio repositories are largely available and symbolic resources
are more scarce due to the transcription work involved. Both representations
are valid and valuable, but while audio encompasses the performer’s emotions
and particular interpretation, music scores focus on composition. In this regard,
musicologists prefer to work with the latest.

2.2 Music Score Typesetting

The easier way to represent a music score is using an image file. Although this
format guarantees portability and human readability, it is impossible to process
automatically. Optical Music Recognition and Computational Musicology may
be complementary but they are independent research areas.

When looking for music typesetting software one can easily find commercial
software like Finale or Sibelius. The problem is that their internal format for
music representation is closed and not documented making their use difficult.
On the other hand, there are some open formats such as:



– MusicXML [3]
The most recent is MusicXML, an XML based format. It is being more and
more used, although there are still few music scores encoded with it.

– abc [7] abc++ [2]
These are simple textual formats that generate quality music scores and also
MIDI files. There are some repositories with abc encoded music, but the
format is not flexible enough for some specific music notation.

– Lilypond [5,6]
This format was inspired in abc and MusicTEX, and is able to produce high
quality music scores and MIDI files. This GNU project keeps a steady devel-
opment, supporting a wide range of music notation, from ancient notation
to modern music. Also, there are tools that support the conversions from
abc and MusicXML into the Lilypond notation. Yet, Lilypond has a major
drawback: a very complex and instable syntax.

After evaluating overall advantages and disadvantages, Lilypond typesetting
was chosen to support the present research. Although syntax is an issue, the
richness of this typesetting notation was considered an important breakthrough.

Fig. 1. Music score excerpt.

\relative c, {

\time 3/4

\clef bass

c2 e8 c’ g’2.

f4 e d c4 c, r4

}

Fig. 2. LilyPond notation example.

Elaborated, real-world scores lead to complex lilypond code. It is not within
the scope of this work to expose Lilypond’s notation at its full extent. Figure 2
shows the code for a small score excerpt (Figure 1) in order to support further
processing and analysis discussion.



3 Music Score Processing

Music score processing may involve different kinds of features depending on the
aim of the computational analysis. There are atomic features such as chromatic
and diatonic intervals, rhythm and key signature, and compound features like
n-grams of intervals and rhythmic patterns. It is also possible to extract meta-
information such as instruments, performance and composition style.

3.1 Chromatic Intervals

Lilypond supports two notation styles: absolute and relative positioning. Using
absolute positioning force the user to use octavation quotes to specify in which
octave the note will be placed. In relative mode, a note without octavation quotes
is chosen so that it is closest to the previous one. Since most music has small
intervals, pieces can be written almost without octavation quotes in relative
mode. Larger intervals are made by adding octavation quotes.

To compute chromatic intervals the notation style needs to be detected (rel-
ative positioning needs a relative command) so the list of notes is normalized
using the relative notation. Then, intervals are calculated two by two: first note
with the second, second with the third, and so on. Rests are treated specially, so
an interval between the note before the rest and the one after is not calculated.
Also, intervals can be ascending or descending. Thus, a positive or negative in-
teger value of semi-tones is calculated for each interval using a built-in table of
consequent notes. Table 1 shows the intervals extracted from Figure 1.

Table 1. Interval calculus.

interval c e e c’ c g’ g f f e e d d c c c,

semi-tones 4 8 7 -2 -1 -2 -2 -12

To simplify further discussion on chromatic intervals we will represent them
as “an” for ascending intervals, and “amn” for descending intervals. The value
n is the number of ascending or descending semi-tones. Table 2 summarizes the
number of occurrences for each interval.

Table 2. Intervals histogram.

semi-tones am12 am2 am1 a4 a8 a7

occurrences 1 3 1 1 1 1

3.2 Diatonic Intervals

Diatonic intervals are less informative than chromatic intervals, as different chro-
matic intervals correspond to the same diatonic interval. Diatonic intervals com-



putation is quite similar to chromatic intervals calculation with a different table
of basic intervals.

3.3 Rhythm

For rhythm, Lilypond uses a numeric parameter specifying each note duration.
If omitted, the note duration is the same as the previous one. A value of 1
represents the Semi-breve (whole note), 2 represents the Minim (half note), 4 is
used for the Semiminim (crotchet), and so on. For dotted notes, one (or more)
dots can be added.

Table 3. Rhythm histogram.

rhythmic figure count

arhythm2dot 1

arhythm2 1

arhythm4 6

arhythm8 2

To compute rhythm information the Lilypond music needs to be normalized
so each note contains its duration. Then, they can be easily extracted using
regular expressions. To help discussion, rhythmic attributes will be named as
“arhythmduration”. Table 3 summarizes the occurrence count for each note du-
ration from the example above.

3.4 Rhythmic Gestures

Some rhythmic gestures are usual in specific epochs. For instance, the use of
tuplets or syncopation is relevant for epoch classification. Tuplets detection is
simple as Lilypond notation includes specific commands to typeset them. Thus,
a quick search for the command and analysis of its parameters suffices for tuplets
feature extraction. Syncopation and similar rhythmic gestures need to be anal-
ysed taking into account figures relative duration, and their relative positioning
on bars.

3.5 Key Signature

As it is known, a specific key signature does not force the tonality for a music.
For instance, a key signature without any accidental can be C major or A minor.
Meanwhile, Lilypond and some other symbolic notations, include some more in-
formation than just the key signature. Lilypond can include the full tonality
(pitch and type: major, minor, mixolydian, lydian, and others) in the key sig-
nature. Also, there is the problem of key signature change. There are different
approaches to solve this problem: counting the number of bars for each tonality
found, or just consider the first one.



3.6 Time Signature

Time signature feature extraction is similar to the key signature extraction: there
is a specific command to explicitly specify the one being used, but this command
can be used more than once.

4 Experiments on Classical Music Epoch Classification

Classical music epoch classification was chosen as case study for this paper.
While working with Lilypond typesetting and studying classical music, Mu-
topia’s project 1, was the primary data source. This is a fairly large and diverse
open-source repository. There are over than 800 scores richly annotated with
meta-information.

Data analysis involved dataset preparation, feature selection, algorithm eval-
uation and results assessment. Dataset preparation addressed the collection of
music scores and their tagging according to composition time periods. Although
music composition period boundaries are not consensual, it is fairly acceptable
to define rough time limits and there were defined four time intervals (Table 4).
Given that music scores for different instruments are not directly comparable,
so far only monophonic scores for violin, cello, flute, recorder and clarinet were
collected.

Table 4. Classification Epochs.

Name Year Range Size Composers

A 1500–1600 5 J. des Prés, Banister, anonymous
B 1700–1800 11 Bach, Baltzar
C 1800–1900 4 Minkus, Giuliani
D 1900–2000 4 Grieg, Brown

Mining experiments used Weka open-source data mining toolkit 2 which al-
lowed not only the actual mining but also feature analysis and algorithm evalu-
ation. These experiments did not aim at the full construction of a classification
model but instead to analyse its feasibility.

Dataset attributes were evaluated in order to assess their predictive ability
using three different statistical approaches: Support Vector Machines (SVMs),
gain ratio and Chi-squared test (Table 5). As a result, two different feature sets
(given the similarity between gain ratio and Chi-squared outputs) were used in
data mining experiments.

Data mining aimed at testing different analysis approaches, while determin-
ing the set of predictive attributes more suitable for this particular classifica-
tion problem. ZeroR majority voting provided a reference model, while J48,
1 http://www.mutopiaproject.org/
2 http://www.cs.waikato.ac.nz/~ml/weka/



Table 5. Feature selection outputs.

Most worthy attributes

SVMAttributeEval am6, arhythm1, am24, a3, arhythm2dot, am9, am7,
am2, a12, arhythm4dot, a13, a7

GainRatioAttributeEval am7, am6, a12, a7, am2, a1, am12, am9, a9
ChiSquaredAttributeEval am7, a12, am6, a7, am2, a1, am9, am12, am4

Näıve Bayes and SimpleCart applied information theory, Bayes theorem and
cost-complexity analysis to the problem. The 10-fold stratified cross-validation
technique, which is the evaluation method of choice in most practical limited-
data situations [4], supported the prediction of the error rate of the learning
algorithms.

Table 6. Algorithm performance over SVM proposed features.

ZeroR J48 NaiveBayes SimpleCart

Correctly Classified Instances (%) 45.8333 62.5 62.5 58.3333
Kappa statistic 0 0.449 0.4114 0.3352
Mean absolute error (%) 0.3564 0.2024 0.2027 0.2427
Root mean squared error (%) 0.4243 0.4192 0.4263 0.3899
Relative absolute error (%) 100 56.7764 56.8712 68.0993
Root relative squared error (%) 100 98.8108 100 91.9018

ZeroR J48 NaiveBayes SimpleCart

Class TP FP F1 TP FP F1 TP FP F1 TP FP F1

A 0 0 0 0.4 0.105 0.444 0.2 0 0.333 0.6 0.211 0.5
B 1 1 0.629 0.727 0.308 0.696 0.909 0.462 0.741 0.909 0.462 0.741
C 0 0 0 1 0.15 0.727 0.5 0 0.667 0 0 0
D 0 0 0 0.25 0 0.4 0.5 0.15 0.444 0.25 0 0.4

Figure 3 shows a simplified tree for music classification, result of the J48
model. Also it is interesting to refer that these measures are not just the obtained
using the model, but they make sense regarding musicology analysis.

5 Final Remarks

The main contributes of this work can be divided into score processing and music
composition analysis. Symbolic music representation was considered a far richer
data source than commonly used audio files. In this regard, Lilypond typeset-
ting open-source software provided a convenient representation while Mutopia
project delivered a considerable number of already annotated scores. Score au-
tomatic processing involved score parsing towards the identification of rhythm



Table 7. Algorithm performance over gain ratio and Chi-squared proposed features.

ZeroR J48 NaiveBayes SimpleCart

Correctly Classified Instances (%) 45.8333 66.6667 54.1667 62.5
Kappa statistic 0 0.5013 0.3449 0.4255
Mean absolute error (%) 0.3564 0.1836 0.2292 0.2151
Root mean squared error (%) 0.4243 0.4036 0.4461 0.3925
Relative absolute error (%) 100 51.5156 64.3156 60.3612
Root relative squared error (%) 100 95.1406 100 92.5063

ZeroR J48 NaiveBayes SimpleCart

Class TP FP F1 TP FP F1 TP FP F1 TP FP F1

A 0 0 0 0.4 0.105 0.444 0.4 0.263 0.286 0.6 0.158 0.6
B 1 1 0.629 0.818 0.308 0.75 0.727 0.154 0.8 0.909 0.308 0.909
C 0 0 0 0.75 0.1 0.667 0.5 0 1 0.25 0.05 0.25
D 0 0 0 0.5 0 0.667 0.25 0.2 0.2 0.25 0.05 0.25

a12 ascending octavation;
am6 descending augmented fourth;
am2 descending major second;

Fig. 3. Tree representation of the classical music classification model.



figures and the calculation of chromatic intervals and key and time signatures.
Music composition analysis included general statistical analysis and data mining,
aiming at the construction of classification models. Specifically, models capable
of identifying the classical music composition epoch.

Although the Lilypond parser needs to be improved (in terms of robustness),
future work is driven by new analysis horizons. Processing is to be extended to
polyphonic scores and musical interval notation should replace semi-tones. Be-
sides classical music composition, analysis over other music genres (for instance,
folk and jazz music) is to be addressed.

Acknowledgments

Alberto Simões has a scholarship from Fundação para a Computação Cient́ıfica
Nacional and the work reported here has been partially funded by Fundação
para a Ciência e Tecnologia through project POSI/PLP/43931/2001, co-financed
by POSI, and by POSC project POSC/339/1.3/C/NAC. The work of Anália
Lourenço is funded by a scholarship from the Fundação para a Ciência e Tec-
nologia (Ref. POCI/BIO/60139/2004).

References

1. Roger B. Dannenberg and Christopher Raphael. Music score alignment and com-
puter accompaniment. Commun. ACM, 49(8):38–43, 2006.

2. Guido Gonzato. Making Music with ABC PLUS (v 1.0.4), 2005.
http://abcplus.sourceforge.net/abcplus en-1.0.4.zip.

3. Michael Good. MusicXML: an internet-friendly format for sheet music. In XML
Conference & Exposition, Orlando, Florida, 2001.

4. Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 1137–1145, 1995.

5. Han-Wen Nienhuys. LilyPond, automated music formatting and the art of shipping.
In Forum Internacional Software Livre (FISL7.0), 2006.

6. Han-Wen Nienhuys and Jan Nieuwenhuizen. LilyPond, a system for automated
music engraving. In Proceedings of the XIV Colloquium on Musical Informatics,
Firenze, Italy, May 2003.

7. I. Oppenheim. The ABC Music standard 2.0 (draft IV, 14/8/2003), 2003.
http://abc.sourceforge.net/standard/abc2-draft.html.


