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ABSTRACT 
 

Electroactive macroporous poly[(vinylidene fluoride)-co-trifluoroethylene] membranes 

have been processed by solvent evaporation at room temperature with different polymer/solvent 

concentrations. The pore architecture consists on interconnected spherical pores and this 

morphology is independent of the membrane thickness. The porosity of the produced membranes 

increases from 57% for the higher polymer concentration in the polymer/solvent solution 

(15/85), up to 83% for the lowest polymer amount in the polymer/solvent solution.  

Far infrared and differential scanning calorimetry measurements reveal that the polymer 

crystallizes in the ferroelectric phase and the polymer/solvent ratio does not changes the Curie 

transition and the melting temperature of the polymer.   

 

 

INTRODUCTION 

 

Poly(vinylidene fluoride) (PVDF) and its copolymers with trifluoroethylene (P(VDF-

TrFE)) have attracted technological and scientific interest due to their outstanding electroactive 

properties [1-2] among polymer materials and as they can be implemented from industrial [3] to 

biomedical applications [4]. Concerning applications as a biomaterial, PVDF and VDF 

(vinylidene fluoride) copolymers can be unique materials due to their piezoelectric properties 

that can be used in cell culture “ex-vivo” under mechanical and electrical excitation in tissue 

engineering techniques [5].    

Laroche et al. reported that PVDF can be applied in form of non absorbable syntetic 

sutures for vascular surgery [6]. It was observed some surface oxidation and water imbibitions of 
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the polymer with no significantly modification of the tensile strength of the PVDF suture, which 

retained 92.5% of its original value.   

 PVDF porous structures can also be taylored for applications as smart scaffolds with 

controled fiber distribution and electroactive -phase content [7-8]. A number of experimental 

procedures are available to produce porous PVDF with controlled pore morphology. One of the 

most important requirements for cell culture is an interconnected pore structure that allows cell 

seeding and, diffusion of nutrients and waste products of the cell metabolism. 

 One of the successful procedures to prepare porous PVDF is thermally induced phase 

separation, TIPS [9]. In this procedure, PVDF is dissolved at high temperature in a mixture of a 

high boiling point good solvent and a certain amount of a bad solvent. The decrease of 

temperature in controlled conditions produces phase separation when entering into a two phase 

coexisting zone of the phase diagram [5]. Depending of the solvents and the initial composition 

of the solution, liquid-liquid spinodal phase separation can take place or liquid-solid phase 

separation can occur when PVDF crystallizes from the solution.  Nucleation and growth of the 

coexisting phases will determine later the pore morphology when, after cooling to low 

temperatures, the solvents are extracted in order to leave the porous PVDF membrane [9]. 

Following a previous work [5], this paper reports on the pore size and architecture, 

polymer phase and thermal behavior of electroactive macroporous poly(vinylidene fluoride-

trifuoroethylene), P(VDF-TrFE) (72/28),  membranes with a well organized porous structure and 

thickness from 30 to 250 µm produced by solvent evaporation at room temperature starting with 

a diluted solution of the co-polymer in dimethylformamide (DMF).  

 

EXPERIMENTAL 

 

Samples with thickness between 10 and 250 m were prepared by spreading a solution of 

poly(vinylidene fluoride-trifluorethylene) P(VDF-TrFE) (72/28) (Solvay, Brussels, Belgium) in 

N,N dimethylformamide (DMF, Merck) on a glass slide. The initial concentration of the solution 

and the viscosity (measurement performed in a Fungilab ViscoStar apparatus) is shown in Table 

1. Solvent evaporation took place by room temperature solvent evaporation and crystallization of 

P(VDF-TrFE). The P(VDF-TrFE) (72/28) co-polymer obtained by this procedure is in the 

ferroelectric phase, being therefore also piezoelectric [1-2]. 

Scanning electron microscopy (SEM) measurements were performed in a FEI Nova 

NanoSEM 200 with an accelerating voltage of 20 kV, in previously gold coated samples 

(Polaron, model SC502 sputter coater). The samples analysed in cross-section, were previously 

immersed in liquid nitrogen for 180 s, in order to ensure that the sample temperature decreases 

below glass transition (Tg), and then were mechanically broken. 

Infrared measurements were performed at room temperature in a Perkin-Elmer Spectrum 

100 apparatus in ATR mode from 4000 to 650 cm
-1

. FTIR spectra were collected with 64 scans 

and a resolution of 4 cm
-1

. The thermal behavior of the samples was analyzed by differential 

scanning calorimetry measurements (DSC) with a Perkin Elmer Diamond DSC apparatus. The 

samples were cut into small pieces, placed into 40 µl aluminum pans and heated between 30 and 

200 ºC at a heating rate of 10 ºC.min
-1

. All experiments were performed under a nitrogen purge.  
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Table 1. Viscosity and porosity of the films of P(VDF-TrFE) for the different concentrations. 

Fraction 

P(VDF-TrFE) / DMF 

Concentration 

 

w/v (g/cm
3
) 

Viscosity 

 

cP 

Porosity 

 

% 

15 / 85 0,2 629,3 57 

10 / 90 0,15 267,6 72 

5 / 95 0,1 81,2 83 

 

Due to the porous nature of the membrane a suitable method to estimate the porosity of 

the samples is the measurement with a pycnometer. In this work, the porosity of the samples was 

measured by an improved weight-method. The weight of the pycnometer filled with ethanol, was 

weighted and labeled as W1; the sample, whose weight was Ws, was immersed in ethanol. After 

the sample was saturated by ethanol, additional ethanol was added to complete the volume of the 

pycnometer. Then, the pycnometer was weighted and labeled as W2; the sample filled with 

ethanol was taken out of the pycnometer. The residual weight of the ethanol and the pycnometer 

was labeled W3. The porosity of the scaffold was calculated according to [10]: 

 

  
        
      

 

 

The mean porosity of each membrane was obtained as the average of the values determined in 

three samples.  

 

 

DISCUSSION  

 

Membranes of P(VDF-TrFE) with thickness between 10 to 250 m were produced by 

solvent evaporation at room temperature from a homogeneous solution in DMF. The 

microstructure of the polymeric membrane is shown in figure 1. It can be observed that all 

samples present a spherical porous structure with diameter around 15 m. At higher 

magnifications (Figure 1b) it is possible to observe small porous, with 4 m diameter, in the 

walls of the bigger porous structure, which demonstrates the interconnectivity of the porosity, 

that results from the spaces between the polymer microspheres that form the pores walls, while 

larger secondary pores may appear due to some defects in the structure. In a previous work, it 

was found that the thickness of the membrane does not have influence in the porous structure, as 

this microstructural effect is due to solvent evaporation [5]. In this way, samples prepared by 

spin-coating or solvent casting present the same porous morphology. 

 

Eq. 1 
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Figure 1 – SEM micrographs of the P(VDF-TrFE) samples crystallized at room temperature: a) 

topography of the sample with 72% porosity; b) Cross-section for the sample with 57% porosity; 

c) Cross-section for the sample with 72% and d) Cross-section for the sample with 83%% 

porosity. The scale bar corresponds to 20 microns. 

 

 

The nature of the crystalline phase present in the polymer can be identified by differential 

scanning calorimetry (DSC) and far infrared spectroscopy (FTIR). FTIR spectra for the samples 

crystallized at room temperature shows that the crystallization of the polymer occurs in the 

ferroelectric phase (figure 2a) due to the presence of the absorption band at 840 cm
-1

, 

characteristic of the ferroelectric phase of the polymer [11]. 

In the DSC thermograms (figure 2b) two peaks are observed, the one that occurs at the 

lower temperature corresponds to the ferroelectric-paraelectric transition (FE-PE, Curie 

transition) with maxima at ca. 117ºC. The higher DSC endotherm corresponds to the melting of 

the paraelectric phase and it located at ca.145ºC. It can be observed that the crystallization 

process does not affect the FE-PE transition temperature and the melting temperature of the 

polymer, what takes to conclude that the solvent evaporation does not  play an important role in 

the final polymer crystalline properties, but in the crystallization dynamics, which affects the 

porosity and consequently the microstructure of the P(VDF-TrFE) membranes depending on the 

specific place of the P(VDF-TrFE)/DMF solution phase diagram in which the isothermal 

crystallization begins [5]. 

In this way, the final polymer porous microstructure taking place in the P(VDF-

TrFE)/DMF system undergoing solvent evaporation is explained by a liquid/liquid spinodal 

decomposition followed by polymer crystallization [5]. 
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Figure 2 – a) Infrared measurements for the PVDF-TrFE samples obtained by room temperature 

crystallization from P(VDF-TrFE)/DMF solutions with different amounts of DMF solvent 

(15/85, 10/90 and 5/95, corresponding to 57, 72 and 83% of porosity, respectively); b) 

Differential Scanning Calorimetry results for the same samples. 

 

CONCLUSIONS 

 

Isothermal solvent evaporation from an homogeneous P(VDF-TrFE)/DMF solution 

allows to obtain a well organized tridimensional porous structure, in membranes from 30 up to 

150 m thick. The pore architecture consists of spherical pores of around 15 m with small 

porous of 4 m in the walls of the first ones. 

The polymer/solvent ratio determines the final porosity of the membrane, the mechanism 

being a liquid/liquid spinodal decomposition followed by polymer crystallization. The porosity 

ranges from 57% to 83%, being the highest degree of porosity obtained for the P(VDF-

TrFE)/DMF solution with the highest amount of initial DMF. The degree of crystallinity and 

ferroelectric phase of the obtained samples are not affected by the initial P(VDF-TrFE)/DMF 

ratio.  
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