
 1

A Document-oriented Web-based Application for Supporting

Collaborative Product Development

Filipe Rocha, Leonilde R. Varela, S. Carmo-Silva
Department of Production and Systems, School of Engineering, University of Minho

Campus de Gualtar, 4710-057 Braga, Portugal
filiperocha@gmail.com, leonilde@dps.uminho.pt, scarmo@dps.uminho.pt

ABSTRACT

Innovation is a creative process strongly associated with development and deployment
of new products, i.e., goods and services. This is essential in the global economy of today for
sustainability and success of companies. Good collaboration between those involved in new
product development is an essential requisite for this success. Such collaboration, which
involves not only company stakeholders but also suppliers and customers, requires easy
access to necessary data and agile communication and sharing of relevant information,
which is distributed in a network of resources and users. Hence, web-based applications,
decentralized repositories and databases are used to store and manage product and process
development information. For meeting these new product development requirements Internet
based collaborative tools and services must be applied. The use of web services is important
in product development, helping the integration of data and knowledge bases and also
processes and application interactions.

This paper reports on work for managing product and process information, as well as
documentation generation, throughout the product development process cycle in an Internet
based collaborative environment. The information concerned includes product and process
information, as well as product development history. One important aspect deals with web
based restoring decisions and options made along the product design and development
cycle, including product revisions and/or versions manipulation. The research work, focus is
on the development of a document-oriented web-based application using Apache CouchDB
technology and REST web services. The proposed application is described and the main
functionalities are illustrated through some examples of use.

INTRODUCTION

Innovation is closely associated with new product development (NPD). This is an
activity that can benefit very much from collaboration between stakeholders involved. This
can be enhanced through the use of agile tools and technology for efficient and fast
information sharing and the carrying out of collaboration tasks. Such tools and technology
are mostly available through the Internet. In fact, nowadays the Internet can be considered
the best channel for collaboration and knowledge exchange and un inevitable path for
companies sustainability and competitiveness [1]. This is true not only for a company itself,
but also for suppliers and customers that contribute for product innovation in a cooperative
and collaborative environment [1-4].

Zhang et al. [5] enhances and describes a web-based collaborative design platform.
This platform provides a product catalogue, a communication system between peers,
knowledge access restrictions and project management.

The use of web services [6] can be seen as a feasible interface between involved
parties in product innovation, helping the integration of data and knowledge bases,
processes and application interactions [1, 3, 5, 7].

One important aspect of this work is to access product and process information, in the
collaborative distributed context of NPD.

 2

Access to information for product design and development is not an easy task when
using relational databases (RDB). Tables are referencing other tables and to retrieve little
information, extreme computational work needs to be done by selecting and joining data from
this structure.

RDB are designed to store and report on highly structured, interrelated data. Moreover,
they include schemas and storage of the existing data that need frequent update. This often
causes problems not anticipated in the initial database design. Each change in the initial
database schema is a challenge for local and distributed upgrades. When dealing with
paperwork, this is common and happens when we need to adapt predefined paper forms by
adding or removing information and fitting its strict form to the needs of the moment.

In this paper, we propose a new approach to manage new product development
information. This new concept is based on Document-oriented Databases (DoDB) with native
distributed properties, instead of the usual Relational Database Managements System
(RDBMS). So, instead of the strict schema provided by tables we get to work with the
documents and free schemas. This new concept is based on an open source Apache project
named Apache CouchDB, commonly referred just as CouchDB [8].

This paper, in addition to this introduction follows with a literature review and the
description of a proposed approach for managing product information. Based on this a
system architecture is described and illustrated. Finally a conclusion is presented.

LITERATURE REVIEW

Companies use proprietary software, most of the times centralized, having high costs
with licenses and high risk with information losses. Aziz et al. [9] talk about the shortcomings
of centralized architectures and proposes a decentralized one based on open standards and
open source tools, stating that systems like this are implementable at low cost.

Sharma et al. [3] referring collaborative product innovation presents a theoretical
framework identifying tools and processes for people and teams to collaborate on product
development.
Zhang et al. [5] reviewed the state of the art on Internet-based product information,
concluding that despite several Internet web-based technologies which have been applied to
product development still none has been applied to real industrial applications. They also
found a number of practical problems remaining unsolved, including dynamic product
information collection and update, real-time collaboration, scalability and interoperability.
These problems still occur today despite several attempts and approaches to solve them [10-
14]. This is probably due to the existence of bottlenecks on the database back-ends [14].
Relational databases have very strict schemas and enhance those problems with dynamic
information, i.e., a change on the initial schema represents a change in the whole system.
Moreover, dynamic product information is not what we get with schemas because there is no
predefined schema for each product or service.

Major problems with scalability with relational databases become a point of failure. In
particular, replication is not trivial. To understand why, consider the problem of having two
database servers that need to have identical data. Having both servers for reading and
writing data makes it difficult to synchronize changes. Having one master server and another
slave is bad too, because the master has to take all the heat when users are writing
information [15]. This statement leads to wish that there was a replication system that would
come with an automatic conflict detection and resolution, by making it easy to synchronize
data in both directions whenever wanted after being able to work offline independently [16].

REST (Representational State Transfer) technology is considered to have great
potential for solving scalability problems [17-20]. Fielding [19] states that “The REST
architectural style has been defined to describe the web architecture and to guide its future
evolution, preserving the fundamental characteristics of scalability”. It promotes software
evolvability, efficiency, performance and reliability [16] using the protocols already available
for the web.

 3

 Liu and Xen [21] reviewing some traditional technologies and systems for
management of product information and discuss the need for their integration on a web
environment as a means of having a more adaptive and flexible infrastructure. They also
mention bandwidth and security concerns with data availability over the Internet.
Unfortunately they do not say how the reviewed systems handle changes made to
predefined data management models, leaving therefore, important questions unanswered.

Frutos and Borenstein [22] talk about mass customization and the role that customers
should have in new product development. They report a web-based information system for
flats’ customization through interactions between building company web site and costumers.
Customers can generate a variety of customized solutions, i.e new products, with control on
costs, despite flat variants’ limitations.

One concept that has been used in production areas on several fields is the
Document-Oriented Databases (DoDB). This concept is implemented in Apache CouchDB
DBMS (Database Management System) [23] and can be of great utility in NPD due to the
functionalities that DoDB offer .

The next sections will focus on explaining how Apache CouchDB works in the
proposed approach to manage new product development information, followed by a
description of our solution for the system’s architecture.

PROPOSED APPROACH

In this work we propose the CouchDB for managing NPD information. CouchDB is an
open source “distributed, fault-tolerant and schema-free DoDB, accessible via a RESTful
HTTP/JSON API” [24]. Data is stored in documents, presented in key-value maps using the
data types from Javascript Oriented Notation (JSON) [25].

CouchDB is not a relational database or a replacement for it. Moreover, it should also
not be seen as an object-oriented database, despite relationships between documents being
possible. CouchDB is designed to store and report on large amounts of semi-structured data,
simplifying the development of document-oriented applications, which is the bulk of
collaborative web applications. A CouchDB database can be described as a flat collection of
JSON (JavaScript Object Notation) documents, identified by a universal unique identifier
(UUID). Each document is an object that consists of named fields. Field values can be
strings, numbers and dates, ordered lists and associative maps.

With CouchDB, no schema is enforced, so new document types with new meaning can
be safely added alongside the old ones. Error! Reference source not found.Figure 1
illustrates a JSON document including some of the substructures stated before.

 4

Figure 1: Excerpt of a JSON Document in CouchDB

CouchDB is a fully Atomic Consistent Isolated Durable (ACID) [18] storage engine,

never overwriting committed data or associated structures, ensuring that the database file is
always in a consistent state. Thus it guarantees that database transactions are reliably
processed. Document updates are serialized and there are no locks. It uses a Multi-Version
Concurrency Control (MVCC) model, meaning that any number of clients can be reading
documents without being locked out or interrupted by concurrent updates, even on the same
document [15]. Documents are indexed in B-Trees by their DocID and a sequential number.
Since we are talking about append-only, each update to the database generates a new
sequential number to identify the document state in its history. This is implemented in the
_rev field, i.e. the field containing the identification of document revision. of the document as
shown in Figure 1.

Transactional commits provide consistent state to the database, i.e., in case of failure
during a commit transaction, the commit is discarded and maintenance operations are run.
From time to time, some jobs are run in order to compact data, freeing space on disk.

CouchDB also integrates a view model to add structure back to unstructured data.
Views are the method of aggregating and reporting on the documents. They are built
dynamically never affecting the document and providing different representations of the
same data, as shown in Figure 2.

 5

Figure 2: Concurrency with CouchDB – Documents concurrently trying to access Apache

CouchDB

CouchDB uses Google’s MapReduce programming model [26] for views.
CouchDB is a peer based distributed database system. Here, any number of CouchDB

hosts, servers and off-line clients, can have independent “replica copies” of the same
database, where applications have full database interactivity (query, add, edit, delete). When
back on-line or on a schedule, database changes are replicated bi-directionally on the
several players (CouchDB hosts), as seen on Figure 3.

Figure 3: Apache CouchDB distributed System

CouchDB also is characterized by having a built-in conflict detection and management
and the replication process is incremental and fast, copying only documents and individual
fields changed since the previous replication.

Figure 4 shows an updated document that is inserted on one database and should be
replicated through the entire distributed database backend.

Figure 4: CouchDB Replication

Most applications require no special planning to take advantage of distributed updates
and replication.

“Unlike cumbersome attempts to bolt distributed features on top of the same legacy
models and databases, it is the result of careful ground-up design, engineering and

 6

integration” [27]. The document, view, security and replication models, the special purpose
query language, the efficient and robust disk layout are all carefully integrated for a reliable
[27] and efficient system.

With very little database work, it is possible to build a distributed document
management application with granular security and full revision histories. Updates to
documents can also be easy and interactively carried out by enabling incremental fields that
hold the revision number and also replication of fields that hold digitized information and
replications including text, images, audio or video.

The main purpose of this work is to manage NPD information. Hence, in the next
section we present a system architecture aimed at supporting this purpose.

SYSTEM ARCHITECTURE

A schematic representation of how the system has been implemented is shown in
Figure 1. The system is based on distributed CouchDB DoDB. The figure shows the main
system functionalities in two parts. The first part includes a web-based product catalog,
available to customers and fed by final versions of products created by NPD teams inside the
company’s walls. The second part deals with information handling and storage, arising from
interaction among NPD stakeholders involved, particularly from NPD teams, and applications
used.

Internet feedback from customers can be seen as an advantage. Customers’ views,
comments and reviews on a product usually lead to new versions of products. So, new
product ideas can arise from customers’ feedback. Thus, one major feature of this system is
to take the views and ideas from customers and from other stakeholders for generating new
ideas and new products. A NPD idea may originate a new document that can be tagged to
call attention e.g. to the idea and to resulting product versions. Then, taking advantage of
CouchDB’s, product development information, including all external attachments, design
information, reports, specifications and concepts in all product development iterations should
be stored.

Figure 5: System architecture.

There are several technologies being considered for system implementation. CouchDB

 7

manages the distributed environment keeping all peers synchronized on demand and/or on
schedule. Since we are using REST, operations on the database are simple. Catalog and
product information management web interfaces will be created using Ruby programming
language [28] and the web application framework Ruby on Rails (RoR) [29], usually referred
simply as Rails. Ruby is a robust object-oriented programming language and Rails is a
Model/View/Controller (MVC) web framework for creating dynamic websites coded in Ruby.
RoR also uses REST [30], Therefore, RoR and CouchDB just need a small wrapper to
exchange information. All of these technologies are open source and thus available for free.

At this stage of the work, we managed to produce a very simple prototype of a web
application that is able to interact with CouchDB. The application is designed to allow users
to add their own product specifications freely and register and browse revisions to the shared
documents.

Figure 6 shows the prototype at work. It presents some product information, including
the last revision of it. Attachments are also shown when they are images, or links to the files
are provided for images’ retrieval in an easy and user-friendly way.

 Figure 6: Showing basic product information.

Another interesting system feature is related to suppliers. They may dynamically

propose supplying resources for a product. In order to preserve suppliers’ confidential
information, data should be filtered by web services, becoming a subpart of the product
information. Figure 7 is a graphical representation of this idea.

 8

Figure 7: Use of web services to filter confidential information.

CONCLUSION

New product development (NPD) can be enhanced trough collaboration of
stakeholders involved including customers and suppliers. This collaboration requires easy
access to information generated in the NPD process. This process and collaboration can
benefit very much from the use of recent advances on Internet technology, including web
services and Document-oriented Databases (DoDB).

In this work we explore the use of some recent Internet technologies, namely Apache
CouchDB DBMS and REST towards the development of an environment for dynamic
information handling, updating and storage, in the process of NPD, carried out by the local or
remote interaction and collaboration of several stakeholders, including customers product
development teams and suppliers.

As a first incursion on the collaboration and easy access of information in the process
of NPD, a small prototype of a web application that is able to interact with CouchDB has
been developed and described here. It is designed to allow users to freely add their own
product specifications, register and browse revisions to be shared. Moreover, document
revisions and attachments can be easily made available through revision properties provided
by DoDB.

Shared catalogs, provided by distributed properties, can be used in this context, since
NPD teams may have online and offline access to suppliers’ catalogs. Hence, further work
will be carried out in the near future enhancing the system by adding several features. These
include sharing catalogs that can provide parts of the new product directly from suppliers
using an API, improving abstraction of the prototype by letting users define all product
requirements and functional specifications freely and interactively choosing what revisions
created should be adopted in the design of the final product.

REFERENCES

[1] W. Yan, C. Chen, Y. Huang et al., “A data-mining approach for product
conceptualization in a web-based architecture,” Computers in Industry, vol. 60, no. 1,
pp. 21-34, Jan 1, 2009.

[2] B. Dong, G. Qi, X. Gu et al., “Web service-oriented manufacturing resource
applications for networked product development,” Advanced Engineering Informatics,
vol. 22, no. 3, pp. 282-295, Jul 1, 2008.

[3] A. Sharma, “Collaborative product innovation: integrating elements of CPI via PLM
framework,” Computer-Aided Design, vol. 37, no. 13, pp. 1425-1434, Nov 1, 2005.

[4] L. Wang, “Collaborative conceptual design—state of the art and future trends,”
Computer-Aided Design, vol. 34, no. 13, pp. 981-996, Nov 1, 2002.

[5] S. Zhang, W. Shen, and H. Ghenniwa, “A review of Internet-based product
information sharing and visualization,” Computers in Industry, vol. 54, no. 1, pp. 1-15,
May 1, 2004.

[6] "Web Services @ W3C," 20 May 2009; http://www.w3.org/2002/ws.

 9

[7] H. Wang, G. Liu, B. Han et al., “Collaborative simulation environment framework
based on SOA,” Computer Supported Cooperative Work in Design, 2008. CSCWD
2008. 12th International Conference on, pp. 416 - 419, Mar 31, 2008.

[8] http://couchdb.apache.org. "Apache CouchDB: The Apache CouchDB Project," 20
May 2009, 2009; http://couchdb.apache.org/.

[9] H. Aziz, J. Gao, P. Maropoulos et al., “Open standard, open source and peer-to-peer
tools and methods for collaborative product development,” Computers in Industry, vol.
56, no. 3, pp. 260-271, Apr 1, 2005.

[10] W. Shen, Q. Hao, and W. Li, “Computer supported collaborative design:
Retrospective and perspective,” Computers in In, no. 59, pp. 855-863, 2008.

[11] K. Rodriguez, and A. Al-Ashaab, “Knowledge web-based system architecture for
collaborative product development,” Computers in Industry, no. 56, pp. 125-140,
2004.

[12] K. C. Tseng, H. Abdalla, and E. M. Shehab, “A Web-based integrated design system:
its applications on conceptual design stage,” The International Journal of Advanced
Manufacturing Technology, vol. 35, no. 9-10, pp. 1028-1040, 2006.

[13] B. Dong, and D. Zhao, “Service-oriented design part information semantic modeling
and applications,” Computer Design and Applications (ICCDA), 2010 International
Conference, vol. 5, pp. 174-177, 2010.

[14] S. Xie, H. Huang, and Y. Tu, “A WWW-Based Information Management System for
Rapid and Integrated Mould Product Development,” The International Journal of
Advanced Manufacturing Technology, vol. 20, no. 1, pp. 50-57, 2002.

[15] G. Decandia, D. Hastorun, M. Jampani et al., "Dynamo: amazon's highly available
key-value store." pp. 205-220.

[16] J. C. Anderson, J. Lehnardt, and N. Slater, "CouchDB: The Definitive Guide," O'
Reilly, 2009.

[17] L. Richardson, and S. Ruby, RESTful web services - Webservices for the real world:
O'Reilly, 2007.

[18] J. Gray, and A. Reuter, Transaction Processing : Concepts and Techniques (Morgan
Kaufmann Series in Data Management Systems): {Morgan Kaufmann}, 1992.

[19] R. T. Fielding, “Architectural Styles and the Design of Network-based Software
Architectures,” PhD Thesis, 2000.

[20] P. Mazzetti, S. Nativi, and L. Bigagli, “Integration of REST style and AJAX
technologies to build Web applications; an example of framework for Location-Based-
Services,” Information and Communication Technologies: From Theory to
Applications, 2008. ICTTA 2008. 3rd International Conference on, pp. 1-6, 2008.

[21] D. T. Liu, and X. W. Xu, “A review of web-based product data management systems,”
Computers in Industry, vol. 44, no. 3, pp. 251-262, 2001.

[22] J. D. Frutos, and D. Borenstein, “A framework to support customer-company
interaction in mass customization environments,” Computers in Industry, vol. 54, no.
2, pp. 115-135, 2004.

[23] "CouchDB Wiki: CouchDB in the Wild," 20 May 2009;
http://wiki.apache.org/couchdb/CouchDB_in_the_wild.

[24] "CouchDB wiki: FrontPage," 29 May 2009; http://wiki.apache.org/couchdb.
[25] http://www.json.org. "JSON," 29 May 2009, 2009; http://www.json.org.
[26] J. Dean, and S. Ghemawat, “MapReduce: simplified data processing on large

clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.
[27] "Apache CouchDB: The Apache CouchDB Project," 20 May 2009;

http://couchdb.apache.org/.
[28] http://www.ruby-lang.org. "Ruby Programming Language," 20 May 2009, 2009;

http://www.ruby-lang.org/.
[29] http://www.rubyonrails.org. "Ruby on Rails," 20 May 2009, 2009;

http://www.rubyonrails.org.
[30] "Ruby on Rails Guides," September 2010;

http://guides.rubyonrails.org/getting_started.html#rest.

 10

