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b Departamento de Matemática, Universidade do Minho, Braga, Portugal

Abstract

A multicomponent reacting gas with an arbitrary number of chemical species and one re-
versible reaction is studied at a kinetic level in the frame of Discrete Velocity Models of the
Boltzmann Equation, with the main objective of deriving the “reactive” Navier Stokes equations
of the model, and characterizing the dissipative terms related to shear viscosity, thermal con-
ductivity and thermal diffusion. The closure of the system formed by conservation and chemical
rate equations is based on a first-order Chapman-Enskog method, to be applied in the strong
reaction regime, and on a convenient representation of the density vector space in terms of the
macroscopic variables. A mathematical procedure is proposed which leads to identify the trans-
port coefficients and may be applied to a quite large variety of reactive gas flows. Moreover, it
allows to characterize the functional form of the transport coefficients in dependence on the local
gas concentrations, once the model is specified.
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1 Introduction

Kinetic approaches to the study of gas mixtures whose particles interact by elastic scattering and
chemical reactions, essentially based on Boltzmann-like models, have motivated several research
works since the last decades. More precisely, starting from the sixties, the first papers [1], [2], and
the more recent ones [3], [4], [5], [6], [7] should be mentioned, among others, with reference to the
full Boltzmann equation (be) extended to a chemically reactive gas mixture. On the other hand,
a large piece of research has been devoted also to the discrete velocity models of the Boltzmann
equation (dvm) and the related main bibliography can be found, essentially, in the book by Monaco
and Preziosi [8]; the renewed interest for dvm with care to gas mixtures, as tools to produce
approximate solutions to the be, is widely discussed in paper [9], but only for inert gases. Moreover,
historical remarks, developments, relevant mathematical features, advantages and drawbacks of
dvm for inert gases have been thoroughly outlined by Bobylev in his review paper [10]. For what
concerns discrete and semi-continuous models, allowing also dissipative collisional processes, such
as gas-photon interaction and chemical reactions, one may recall the recent papers [11], [12] by
Schürrer et al. and [13] by the present authors.

In this last paper, the mathematical theory concerning collision laws, chemical kinetics and
thermodynamical equilibrium has been formulated for a discrete kinetic model of a multicomponent
mixture with general reversible reactions and velocity discretization. The treatment is exhaustive
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at microscopic scale; on the other hand, the macroscopic picture of the reactive flow is limited to
the conservative processes described by the reactive Euler equations of the model. For this reason,
it seems interesting to go further, extending the study of Ref. [13] to fluid dynamical processes with
dissipative effects of viscosity, thermal conductivity and thermal diffusion due to chemical reactions.
In the framework of dvm some previous efforts oriented in this sense are those of paper [14] for
an inert gas and those of paper [15], where a bimolecular reaction and a Broadwell-type velocity
discretization have been considered. On the other hand, in the context of the generalized be extended
to gas mixtures with reversible reactions, some other investigations on transport coefficients can be
seen in papers [7], [16] and related bibliography.

Starting from the modeling of the reactive flow of Ref. [13], the theory here developed aims to
demonstrate that dvm, extended to chemically reactive gas mixtures, have the capability to identify
explicitly the transport coefficients.

The gas molecules during interactions are supposed to behave as Maxwell molecules and their in-
ternal degrees of freedom are not taken into account. A first-order perturbation scheme of Chapman-
Enskog type is applied to the kinetic equations, in the chemical regime termed strong reaction regime,
based on the assumption [2] that the mechanical relaxation time is shorter than the chemical one.
The reactive Navier-Stokes equations for momentum, energy, progress variable and partial number
densities are derived; their form is ready to handle for the deduction of transport coefficients, in
view of fluid dynamical applications.

More in detail, the kinetic equations for a gas mixture formed by r reactants and s products,
experiencing multiple elastic collisions and reversible reactions, are reported in Section 2, and the
main aspects of the related chemical kinetics are recalled in Section 3. The reactive collision frequen-
cies and the inelastic terms due to chemical interactions are introduced at the scope of recovering
the laws of chemical kinetics and deriving the rate equation which specifies the evolution of the gas
chemical composition.

The governing equations, resorting to some previous results stated by the authors in the quoted
paper [13] and to the idea of representing the density vector space in a convenient orthonormal
basis, are deduced in Section 4 and are shown to constitute a non closed set of partial differential
equations.

The successive Sections 5 and 6 are dedicated to build the theory necessary to make solvable the
system of the governing equations; its closure is achieved at the end of Section 6, thanks to lemmas
and propositions proven in Section 5.

The reactive Navier-Stokes equations of the model are derived in Section 7 and then re-written
for a pertinent choice of independent macroscopic variables in order to reproduce the classical
hydrodynamic formulation.

Finally, in Section 8, the transport coefficients are formally identified by means of a mathematical
procedure to be applied to a specific kinetic model.

2 Kinetic equations of the reactive flow

Consider a multicomponent gas mixture formed by r species A1, . . ., Ar and s species B1, . . ., Bs,
r, s ∈ IN; each M -species, M = A1, . . . , Ar, B1, . . . , Bs , is identified by its molecular mass mM and
chemical link energy εM . Besides multiple elastic collisions the gas particles experience inelastic
collisions with reversible chemical reaction of type

A1 + . . . + Ar
−→←− B1 + . . . + Bs . (1)
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Particles of M−species are supposed to move in the space with p selected velocities ~v
M

i , i = 1, . . . , p.
The number density of particles with velocity ~v

M

i is denoted by NM
i (~x, t) with ~x ∈ IR3, t ∈ IR+,

and N ∈ IRp(r+s) is the vector function defined by

N =
(
NA1

1 , . . . ,NA1
p , . . . ,NAr

1 , . . . , NAr
p ,NB1

1 , . . . ,NB1
p , . . . , NBs

1 , . . . ,NBs
p

)T

. (2)

It is important to recall that multiple elastic collisions as well as inelastic collisions with chemical
reaction contribute to adjust the number of collision invariants. Therefore, one can expect that the
model under consideration possesses the correct independent collision invariants and consequently
governing equations with only physically meaningful macroscopic variables.

The time-space evolution of the p(r + s) number densities is given by the kinetic equations
(

∂

∂t
+ ~v

M

i · ~∇
)

NM
i = QM

i (N) + RM
i (N) , (3a)

where i = 1, . . . , p, M = A1, . . . , Ar, B1, . . . , Bs. The corresponding matrix form reads

∂N
∂t

+ A N = Q(N) + R(N) , (3b)

where vectors Q =
{
QM

i (N)
}

and R =
{
RM

i (N)
}

are due to elastic collisions and chemical

interactions, respectively. The matrix A is diagonal of order p(r + s) with elements AM
ii = ~v

M

i · ~∇ .
In particular, QM

i (N) are nonlinear mechanical terms known in literature for inert gases, see Ref.
[8], whose extended expressions are here omitted for brevity. However, independently from their
explicit expression, the property which states the vanishing of the summation over all admissible
velocities, is recalled as

p∑

i=1

QM
i = 0 , i = 1, . . . , p , M = A1, . . . , Bs. (4)

Conversely some more details are needed for the reactive terms RM
i (N) which will be characterized

in the next section.

3 Chemical kinetics of the reactive flow

Some relevant features of chemical kinetics can be reproduced within the present modeling of the
gas mixture. At this end, the chemical properties of the reacting gas mixture will be investigated
in this section, on the basis of the inelastic interactions among the particles. More specifically, the
inelastic interactions can be considered as collisions with chemical reaction of type (1) which result
in a rearrangement of mass m such that the equality holds

mA1 + · · · + mAr = mB1 + · · · + mBs , (5a)

and redistribution of total energy E , that is kinetic plus chemical link energy, such that

EA1 + · · · + EAr = EB1 + · · · + EBs . (5b)

In the present kinetic model, the interaction with chemical reaction correspond to the inelastic
collision represented by (

~vA1
i1

, . . . , ~vAr
ir

)
↔

(
~vB1

j1
, . . . , ~vBs

js

)
, (6)
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where subscripts i1, . . . , ir and j1, . . . , js assume any value 1, . . . , p. Due to the reversibility of the
chemical reaction, only collisions of type (6) which verify the microscopic reversibility principle (see
Ref. [17]), and preserve mass, momentum and total energy, are considered as admissible.
Some preliminaries are briefly reported to go insight the chemical kinetics of the collisions. For
further technical details, the reader is re-addressed to paper [13].

3.1 Reactive collision frequencies

The collision frequencies of the forward/backward reaction are in general functions, say gf/gb ,
depending on both incoming/outgoing velocities, and masses of reactants/products, respectively.
They are defined by

ν
B1···Bs,j1···js

A1···Ar,i1···ir
= gf

(
mA1~v

A1
i1

, . . . , mAr~v
Ar
ir

)
[σf (gf )]

3r−4
2 , (7a)

ν
A1···Ar,i1···ir

B1···Bs,j1···js
= gb

(
mB1~v

B1
i1

, . . . , mBs~v
Bs
js

)
[σb(gb)]

3s−4
2 , (7b)

where σf/σb denote the forward/backward cross sections, and the exponents assure the right di-
mension of the ν ′s. The effective expressions of the reactive collision frequencies depend on the
intermolecular potential modeling molecular interactions, and geometry of the selected velocities.

3.2 Laws of chemical kinetics

The laws of chemical kinetics can be recovered once the concentration evolution of each M−species
is determined. As known, see Ref. [18], such concentrations are measured by the individual number
densities nM defined by

nM =
p∑

i=1

NM
i , (8)

where NM
i evolves according to kinetic equations (3a). The inelastic terms RM

i (N) which figure in
such equations will be now detailed and their relevant property recalled.

• Inelastic terms

The terms RM
i (N) for particles with velocity ~vM

i involved in any inelastic collision of type (6)
represent the balance between gain and loss contributions to NM

i . The explicit expressions for
species Ak, B` in the forward reaction are

RAk
ik

(N) =
∑

j1···js

∑

i1···ik−1
ik+1···ir

(
1
s!

A
A1···Ar,i1···ir

B1···Bs,j1···js
NB1

j1
· · ·NBs

js
−

1
r!

A
B1···Bs,j1···js

A1···Ar,i1···ir
NA1

i1 · · · NAr
ir

)
,

(9)

RB`
j`

(N) =
∑

i1···ir

∑

j1···j`−1
j`+1···js

(
1
r!

A
B1···Bs,j1···js

A1···Ar,i1···ir
NA1

i1
· · · NAr

ir −

1
s!

A
A1···Ar,i1···ir

B1···Bs,j1···js
NB1

j1
· · · NBs

js

)
,

4



ik, j` = 1, . . . , p . The coefficients A denote the transition rates of the admissible collisions,
and result to be proportional to the reactive collision frequencies. Moreover, due to the
microreversibility principle, they verify the equality

A
B1···Bs,j1···js

A1···Ar,i1···ir
= A

A1···Ar,i1···ir

B1···Bs,j1···js
. (10)

• Property of inelastic terms

Equations of chemical kinetics. Summing over the velocities the kinetic equations (3a) of each
M−species, and taking into account property (4) of the elastic collision terms, one obtains the
equations of chemical kinetics

dnM

dt
=

p∑

i=1

RM
i (N) , M = A1, . . . , Bs , (11)

d
dt being the Lagrangian derivative.

Laws of chemical kinetics. Inserting the microreversibility equality (10) into expressions (9)
of reactive terms, the property of inelastic terms reads

p∑

ik=1
RAk

ik
(N) = −

p∑

j`=1
RB`

j`
(N) . (12)

As a direct consequence of the previous items, the concentrations of each reactant Ak and
product B` satisfy the equations

dnA1

dt
= . . . =

dnAr

dt
= − dnB1

dt
= . . . = − dnB`

dt
(13)

which recover the laws of chemical kinetics.

3.3 Rate equation

The number density of a given product of the forward reaction, say nB1 without loss of generality, is
assumed as the progress variable describing the chemical composition of the gas mixture. The rate
equation is deduced as the time-space evolution of nB1 which is proportional to the concentration
of B1-product. At this end, it is convenient to write Eqs. (11) for M = B1, with the extended
expression for the sum of the reactive terms, that is

dnB1

dt
=

∑

i1···ir

∑

j1···js

A
B1···Bs,j1···js

A1···Ar,i1···ir

(
1
r!

NA1
i1

· · · NAr
ir −

1
s!

NB1
j1

· · · NBs
js

)
. (14a)

It is easy now to recognize at the r.h.s., the difference between two terms, say rf and rb , which
represent the rates of chemical formation and disappearance through the forward and backward
reactions, respectively. Thus the rate equation reads

dnB1

dt
= rf − rb. (14b)

When the forward and backward reactions proceed with equal rates one has rf = rb and the chemical
equilibrium is reached.
It becomes evident that the rate equation of the model is a natural consequence of the microscopic
description of the chemical transformations which ocurr during inelastic interactions.
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• Equation of chemical kinetics

Assuming that the gas particles behave as Maxwell molecules [19], the collision cross sections
are inversely proportional to the relative speed, so that the reactive collision frequencies defined
by expressions (7) do not depend anymore on the particle velocities. Consequently, it results

ν
B1···Bs,j1···js

A1···Ar,i1···ir
= νA , ν

A1···Ar,i1···ir

B1···Bs,j1···js
= νB , (14c)

with νA, νB ∈ IR+ . The rate equation (14a) takes the usual form of chemical kinetics

dnB1

dt
= νA nA1 . . . nAr − νB nB1 . . . nBs . (14d)

Under the above said assumption of Maxwell molecules, the trend of the gas mixture to both
mechanical and chemical equilibrium is assured, since an H-theorem for a spatially non homogeneous
gas evolution can be proven, as shown in Ref. [13].

4 Mathematical modeling

The reacting gas is governed by the conservation and rate equations, which will be here deduced
in a pertinent form in view of the kinetic approximation of the next Section. Some preliminaries
on the collision invariant spaces and their orthonormal basis, in accordance with the related results
of paper [13], are first recalled in Subsection 4.1, whereas definitions and roles of macroscopic and
microscopic variables are pointed out in Subsection 4.2. Finally in Subsection 4.3, the governing
equations are formulated in dependence on microscopic and macroscopic variables.

4.1 Collision invariants

Introduce in IRp(r+s) the linear sub-spaces F of mechanical collision invariants and M of mechanical-
reactive collision invariants, defined by

F =
{
Υ ∈ IRp(r+s) : 〈Υ, Q(N)〉 = 0

}
, (15a)

M =
{
Υ ∈ IRp(r+s) : 〈Υ,Q(N)〉 = 0 , 〈Υ, R(N)〉 = 0

}
, M ⊂ F . (15b)

where 〈 · , · 〉 is the standard inner product.

The following results hold as immediate consequence of those proven in paper [13].

Lemma 1. Let the vector Υ be a mechanical collision invariant, Υ ∈ F . Then Υ determines the
conservation of the macroscopic quantity

〈Υ, N〉 =
∑

M

p∑

i=1
[Υ]Mi NM

i (16)

during elastic collisions. If in addition Υ ∈ M, then 〈Υ,N〉 is preserved during inelastic interaction,
as well.
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Lemma 2. Let q denote the dimension of the linear sub-space F. Then the dimension of M is
q − 1. Orthonormal basis BM of M and BF of F can be represented by

BM =
{
Υ(1), . . . ,Υ(q−1)

}
, (17a)

BF =
{
Υ(1), . . . , Υ(q−1),Υ(q)

}
, BM ⊂ BF . (17b)

The choice of invariants Υ(1), . . . ,Υ(q−1) in Eq. (17a) is fixed by the independent quantities pre-
served during both elastic and inelastic collisions, whereas the choice of Υ(q) in Eq. (17b) is fixed by
an independent quantity preserved during elastic collisions, only. The role played by the invariants
will be more evident in the next subsections.

4.2 Macroscopic and microscopic variables of the model

In order to determine the functional dependence of the number densities on the macroscopic vari-
ables, the following definitions are needed.
Macroscopic variables. The inner products 〈Υ,N〉, when Υ varies in the basis BF , define the q

independent macroscopic variables of the model

ak = 〈Υ(k),N〉 , k = 1, . . . , q , q = dim F . (18)

Without loss of generality, as it will be seen in Section 7, such macroscopic variables can also assume
a fluid dynamical meaning determined as follows.
For k = 1, . . . , q − 5 , ak represent the independent partial number density n[k] = nAk1

+ nBk2
,

where k1 ∈ {1, . . . , r} and k2 ∈ {1, . . . , s} ; aq−4 , aq−3 , aq−2 denote the components of momentum
ρ~U ; aq−1 is the total energy ρe + 1

2ρ|~U |2 , detailed in Eqs. (56), and aq the progress variable nB1 .
Microscopic variables. Further inner products involving N and other vectors than Υ, say W , are
considered microscopic variables of the model, that is 〈W , N 〉 .

The following proposition can now be stated.

Proposition 1. The number densities NM
i , i = 1, . . . , p, M = A1, . . . , Bs , admit representation

in IRp(r+s) in terms of the q macroscopic variables a1, . . . , aq and p(r + s) − q microscopic variables
bq+1, . . . , bp(r+s).

Proof. Consider a suitable orthonormal basis B of the whole space IRp(r+s), namely

B =
{
Υ(1), . . . ,Υ(q),W (q+1), . . . ,W (p(r+s))

}
, (19)

and let BF⊥ be an orthonormal basis of the space F⊥, orthogonal to F ,

BF⊥ =
{
W (q+1), . . . ,W (p(r+s))

}
. (20)

Since B = BF ∪ BF⊥ , the vector N ∈ IRp(r+s) defined in (2), splits in the basis B as

N =
q∑

k=1

akΥ(k) +
p(r+s)∑

`=q+1

b`W
(`) . (21)

Thus the coefficients ak in representation (21) turn out to be the macroscopic variables defined in
(18) and b` the microscopic variables defined by

b` = 〈W (`) , N 〉 , ` = q + 1, . . . , p(r + s) . (22)
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4.3 Governing equations

After all contents of Subsections 4.1-4.2, the governing equations of the model can be deduced in
the following proposition.

Proposition 2. The governing equations of the model constitute a non closed set of q equations in
p(r + s) unknowns, and can be written as

∂ak

∂t
+ 〈AN , Υ(k)〉 = 0 , k = 1, . . . , q − 1 , (23a)

∂aq

∂t
+ 〈A N , Υ(q)〉 = 〈R (N) , Υ(q)〉 . (23b)

Proof. It is enough to project the matrix kinetic equation (3b) onto the space F defined in (15a),
and remind definition (18) of the macroscopic variables. In particular, the mechanical-reactive
invariants Υ(1), . . . ,Υ(q−1) ∈ BM generate the q−1 independent conservation equations (23a) for the
macroscopic variables a1, . . . , aq−1, whereas the mechanical invariant Υ(q) ∈ F\M generates the rate
equation (23b) for the progress variable aq. Since N is expressed by decomposition (21) in the basis B,
equations (23) constitute a non closed set of q equations in the unknowns a1, . . . , aq, bq+1, . . . , bp(r+s),
that completes the proof.

The closure of the governing equations is achieved when each microscopic variable b`, given by
(22), becomes a known function of the macroscopic ones a1, . . . , aq. At this end, a detailed discussion
will be articulated in the two next sections, the former dealing with the first-order approximation
of N, the latter containing the proof necessary to determine the functional dependence of the
microscopic variables on the macroscopic ones.

5 Approximation procedure

A first-order approximation procedure of Chapman-Enskog type will be applied to the kinetic equa-
tions in the so called strong reaction regime [16] according to the assumption that the ratio of reactive
to inert characteristic times is greater than unity. Therefore the dimensionless kinetic equations (3b)
are expected to be written in the form

ε

[
∂N
∂t

+ AN − R(N)
]

= Q(N) , (24)

where ε = λ/d is the Knudsen number, λ being the mean free path and d the scale length of the
hydrodynamic gradients. Hereinafter N denotes the vector function of the dimensionless number
densities, and Q(N) obeys to the decomposition law

Q(N) = Q2(N,N) + Q3(N,N,N) + . . . + Qh(N, . . . ,N) , (25)

each term Qj, j = 2, 3, . . . , h , being the contribution due to all multiple elastic j–encounters, and
index h being such that h = max {r, s} .
The first-order expansions of the number densities and time derivatives of the macroscopic variables
are provided by

N = N(0) + εN(1), (26)

∂ak

∂t
=

(
∂ak

∂t

)(0)
+ ε

(
∂ak

∂t

)(1)
. (27)
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Under the Chapman-Enskog hypothesis, see Ref. [19], that the q independent macroscopic variables,
defined by Eqs. (18), are exact at the zero-order approximation, the following equalities are verified

ak = 〈N(0) , Υ(k)〉 , 0 = 〈N(1) , Υ(k)〉 , k = 1, . . . , q . (28)

Consequently, N(0) and N(1) can be written in the basis B, defined in (19), as

N(0) = a1Υ(1) + . . . aqΥ(q) + b
(0)
q+1W

(q+1) + . . . + b
(0)
p(r+s)W

(p(r+s)) , (29)

N(1) = b
(1)
q+1W

(q+1) + . . . + b
(1)
p(r+s)W

(p(r+s)) , (30)

where
b
(0)
` = 〈W (`) , N(0) 〉 , b

(1)
` = 〈 W (`) , N(1) 〉 , ` = q + 1, . . . , p(r + s) , (31)

and approximation (26) of N becomes

N =
q∑

k=1

akΥ(k) +
p(r+s)∑

`=q+1

(b(0)
` + εb

(1)
` )W (`) . (32)

On the other hand, the density vector N has the representation (21) in the basis B; therefore, the
coefficients b` are given by

b` = b
(0)
` + εb

(1)
` , ` = q + 1, . . . , p(r + s). (33)

Both the zero-order and first-order approximations b
(0)
` and b

(1)
` of the microscopic variables b`

result to be functions of the macroscopic variables a1, . . . , aq , as it will be indicated by Eqs.(38),
(49). The approximation technique proceeds according to the contents of the next three subsections.

5.1 Compatibility equations

The compatibility equations for N(0) and N(1) will be first deduced as pointed out in the next
lemma.

Lemma 3. The zero-order and first-order approximations N(0) and N(1) of the density vector N
satisfy the compatibility equations

Q(N(0)) = 0 , (34)

2Q2(N(0),N(1)) + · · · + hQh(N(0), . . . ,N(0), N(1)) =

=
q∑

k=1

∂N(0)

∂ak

(
∂ak

∂t

)(0)
+ AN(0) − R(N(0)) , (35)

where
N(0) = N(0) (a1, . . . , aq) . (36)

Proof. Inserting expansion (26) into the dimensionless matrix kinetic equation (24), and neglecting
terms with ε2, yields

ε

[
∂N
∂t

(0)
+ A N(0) − R(N(0))

]
= (37)

= Q(N(0)) + 2εQ2(N(0),N(1)) + · · · + hεQh(N(0), . . . ,N(0),N(1)) .

The analysis of similar terms in ε will be performed in two items.
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• Equating coefficients of zero-order in ε, the first compatibility equation (34) is immediately
deduced. Furthermore, as known, the unique solution N(0) to Eq. (34) is the Maxwellian den-
sity vector, see Ref. [20]. Thanks to the one-to-one map between the Maxwellian parameters
and the macroscopic variables ak, the coefficients b

(0)
` in the expressions (29) of N(0) become

known functions of type

b
(0)
` = b

(0)
` (a1, . . . , aq) , ` = q + 1, . . . , p(r + s), (38)

and, consequentely, the zero-order approximation N(0) verifies Eq. (36).

• Equating coefficients of first-order in ε, one gets

2Q2(N(0),N(1)) + · · · + hQh(N(0), . . . ,N(0), N(1)) =
∂N(0)

∂t
+ AN(0) − R(N(0)) . (39)

Since equality (36) holds, the time derivative of N(0) at the zero-order approximation, remind-
ing expansion (27), is

∂N(0)

∂t
=

q∑

k=1

∂N(0)

∂ak

(
∂ak

∂t

)(0)
, (40)

and the second compatibility equation (35) of the lemma is implied.

5.2 The linearized mechanical operator

The particular form of the l.h.s. of the compatibility equation (35) for N(1) can be seen as the
peculiar one of the linearized mechanical operator IL about the Maxwellian equilibrium N(0). When
multiple elastic collisions occur, IL is such that

IL(N(0) + εN(1)) = 2Q2(N(0),N(1)) + · · · + hQh(N(0), . . . ,N(0),N(1)) . (41)

A relevant property of the operator IL which will be fundamental in the sequel is stated in the next
lemma.

Lemma 4. The linearized operator IL verifies the orthogonality property

〈IL(N(0) + εN(1)) , Φ〉 = 0 , ∀Φ ∈ F , (42)

or, equivalently, IL(N(0) + εN(1)) ∈ F⊥ . Thus, the equality holds

IL(N(0) + εN(1)) =
p(r+s)∑

`=q+1

α` W (`) , (43)

where the coefficients α` are, in general, functions of type

α` = α`(a1, . . . , aq, b
(1)
q+1, . . . , b

(1)
p(r+s)) . (44)

Proof. The orthogonality property (42), from definitions (41) of operator IL and (15a) of space F ,
is an immediate extension to reactive mixtures of that demonstrated in Ref. [20] for inert gases. So
the first part of Lemma 4 is valid. On the other hand, a suitable basis of F⊥ is provided by the set
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(20). Thus, expanding the linear operator IL(N(0) + εN(1)) in the basis BF⊥ , decomposition (43)
follows. Inserting expansions (29), (30) with relation (38) into (43), and then projecting onto space
F⊥, coefficients α` result to be functions of type (44).

The features of linearized mechanical operator and the content of previous Lemmas 3, 4 allow
to obtain a more convenient form for the compatibility equation for N(1), as stated in the next
proposition.

Proposition 3. The first-order approximation of the microscopic variables b
(1)
` satisfies the follow-

ing condition
p(r+s)∑

`=q+1

α`(a1, . . . , aq , b
(1)
q+1, . . . , bp(r+s))W (`) =

q∑

k=1

∂N(0)

∂ak

(
∂ak

∂t

)(0)
+ AN(0) − R(N(0)) . (45)

Proof. Having in mind definition (41) of the linearized operator IL and its orthogonality property
of Lemma 4, the compatibility equation (35) of Lemma 3 can straight away be written in the form
(45).

Since N(1) is expanded through decomposition (30), the compatibility equations (35) can be susti-
tuted by Eq. (45).

5.3 Solubility conditions

The time derivatives of the macroscopic variables ak, which figure in the compatibility equations
(45), are still unknown at the zero level of the approximation. Such derivatives will be actually
evaluated by means of the so called solubility conditions for N(1) . The next lemma supplies this
requirement.

Lemma 5. The time derivatives of the macroscopic variables ak are given by the so called solubility
conditions (

∂ak

∂t

)(0)
= 〈−AN(0) + R(N(0)) , Υ(k)〉 , k = 1, . . . , q . (46)

Proof. Projecting the compatibility equation (45) onto the space F , one obtains
q∑

k=1

(
∂ak

∂t

)(0)
〈
∂N(0)

∂ak
, Υ(j) 〉 +

+ 〈AN(0) − R(N(0)) , Υ(j) 〉 = 0 , j = 1, . . . , q . (47)

The derivatives of N(0) can be easily evaluated reminding that, as stated by (36), N(0) = N(0)(a1, . . . , aq) ,
and that N(0), in the basis B , admits representation (29) with coefficients b

(0)
` = b

(0)
` (a1, . . . , aq), as

stated by (38), namely

∂N(0)

∂ak
= Υ(k) +

p(r+s)∑

`=q+1

∂b
(0)
`

∂ak
W (`) , k = 1, . . . , q . (48)

Casting the above expressions of the derivatives of N(0) into Eq. (47), and reminding that vectors
Υ(k) are orthonormal, one immediately obtains Eq. (46) as required.

It can be pointed out that Eq. (46) play the role of solubility conditions for N(1) in the compat-
ibility equation (45).
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6 Closure of the governing equations

As anticipated at the end of Section 4, the system (23) of the governing equations becomes closed
when the unknowns reduce to the only q independent macroscopic variables, that is to say the
density vector becomes a function of type N = N(a1, . . . , aq) . Since in the approximation procedure
N results to be represented by Eq. (32), where the coefficients b

(0)
` depend on a1, . . . , aq , as stated

by Eq. (38), it is now necessary to express the first-order approximation b
(1)
` in terms of the

macroscopic variables, only. This is the objective of the next proposition.

Proposition 4 . The first-order approximation b
(1)
` of the microscopic variables b` can be

univocally expressed in terms of the macroscopic variables, that is

b
(1)
` = b

(1)
` (a1, . . . , aq) , ` = q + 1, . . . , p(r + s) . (49)

Proof. Insert expressions (48) into compatibility equations (45), that is

p(r+s)∑

`=q+1

α` W (`) =
q∑

k=1

(
∂ak

∂t

)(0)
Υ(k) +

p(r+s)∑

`=q+1

∂b
(0)
`

∂t
W (`) + AN(0) − R(N(0)) . (50)

If now one represents the term AN(0) − R(N(0)) in the basis B, namely

AN(0) − R(N(0)) =
q∑

k=1

〈AN(0) − R(N(0)) , Υ(k)〉Υ(k) +

p(r+s)∑

`=q+1

〈AN(0) − R(N(0)) , W (`)〉W (`) , (51)

and reminds the solubility conditions (46) of Lemma 5, the previous equality (50) reduces to

p(r+s)∑

`=q+1

α` W (`) =
p(r+s)∑

`=q+1

(
〈AN(0) − R(N(0)),W (`)〉 +

∂b
(0)
`

∂t

)
W (`). (52)

Reminding that N(0) , b
(0)
` depend on the macroscopic variables, as specified by Eqs. (29), (38),

and α` satisfies condition (44), Eq. (52) results to be equivalent to an algebraic system of type

α`(a1, . . . , aq, b
(1)
q+1, . . . , b

(1)
p(r+s)) = 〈AN(0) − R(N(0)) , W (`)〉 +

∂b
(0)
`

∂t
, (53)

` = q + 1, . . . , p(r + s)

Since Lemma 3 assures that b
(0)
` = b

(0)
` (a1, . . . , aq) , system (53) can be regarded in the unknowns

b
(1)
q+1, . . . , b

(1)
p(r+s) and be actually solved in terms of the macroscopic variables, as required.

Remark. The existence and uniqueness of solutions b
(1)
` (a1, . . . , aq) of system (53) may be stated

resorting to the proof carried on in Ref. [20] for inert gases, and is here omitted for brevity.
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7 Reactive Navier-Stokes equations

The results of the first-order approximation procedure of Section 6 will be applied to the governing
equations. Re-write the conservation and rate equations (23) after inserting expansion (32) of N and
expressions (38), (49) of b

(0)
` , b

(1)
` . One obtains the reactive Navier-Stokes equations of the model

∂ak

∂t
+ 〈A (

q∑

`=1

a`Υ(`) +
p(r+s)∑

h=q+1

b
(0)
h W (h) ) , Υ(k)〉 + (54a)

+ ε 〈A (
p(r+s)∑

h=q+1

b
(1)
h W (h) ) , Υ(k)〉 = 0 , k = 1, . . . , q − 1 ,

∂aq

∂t
+ 〈A (

q∑

`=1

a`Υ(`) +
p(r+s)∑

h=q+1

b
(0)
h W (h) ) , Υ(q)〉 + (54b)

+ ε 〈A (
p(r+s)∑

h=q+1

b
(1)
h W (h) ) , Υ(q)〉 =

= 〈R (
q∑

`=1

a`Υ(`) +
p(r+s)∑

h=q+1

(b(0)
h + εb

(1)
h )W (h) ) , Υ(q)〉 .

Such equations result to form a closed system of q equations, since the unknowns are the q macro-
scopic variables a1, . . . , aq , only, as previously discussed.

On the other hand, when the macroscopic variables are specified as announced in Subsection 4.2,
the reactive Navier-Stokes equations (54) reproduce the hydrodynamic formulation. In particular,
let

ak = n[k] = nAk1
+ nBk2

, k = 1, . . . , q − 5, k1 ∈ {1, . . . , r}, k2 ∈ {1, . . . , s} ,

(aq−4, aq−3, aq−2) = ρ~U , (55)

aq−1 = ρe +
1
2
ρ|~U |2 ,

aq = nB1 ,

where ρ is the total mass density, ~U the gas mean velocity, and ρe the internal energy, defined by

ρ =
∑

M

mM nM , ~U =
1
ρ

∑

M

mM

p∑

i=1

NM
i ~vM

i , (56)

ρe =
1
2

∑

M

mM

p∑

i=1

NM
i |~vM

i − ~U |2 +

(
r∑

k=1

εAk
−

s∑

`=1

εB`

)
nB1 .

Accordingly, the reactive equations (54) can be written in the hydrodynamic form

∂n[k]

∂t
+ ~∇ ·

(
~I [k]

)
= 0 , k = 1, . . . , q − 5 , (57)
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∂

∂t

(
ρ~U

)
+ ~∇ ·

(
ρ~U ⊗ ~U + IP

)
+ (58)

ε ~∇ ·


 ∑

M

∑

i

p(r+s)∑

h=q+1

mM b
(1)
h [W (h)]

M

i ~v
M

i ⊗ ~v
M

i


 = 0 ,

∂

∂t

(
ρe +

1
2
ρ | ~U |2

)
+ ~∇ ·

[
ρ

(
e +

1
2

| ~U |2
)

~U + ~U · IP + ~q

]
+ (59)

ε ~∇ ·


 ∑

M

∑

i

p(r+s)∑

h=q+1

b
(1)
h [W (h)]

M

i (
1
2
mM | ~v

M

i |2 +εM )~v
M

i


 = 0 ,

∂nB1

∂t
+ ~∇ ·

(
~I B1

)
+ ε ~∇ ·


 ∑

i

p(r+s)∑

h=q+1

b
(1)
h [W (h)]

B1
i ~v

B1
i


 =

∑

i

RB1
i , (60)

where ~I [k] = ~I Ak1 +~I Bk2 , ~I M being the current density of M−species, IP is the stress tensor and ~q
the heat flux which will be defined in equations (61). Note that equations (57)-(59) are conservation
laws, whereas equation (60) is the balance equation for the B1-species.

Remark 1. Equations (57) of partial number densities n[k] do not contain terms in ε; formally
they coincide with the partial mass conservation laws in the Euler formulation. On the other hand,
equations (58), (59) and (60) of momentum, energy and progress variable include terms in ε; formally
they reproduce the corresponding equations in the Euler formulation when ε = 0.

Remark 2. In spite of the presence of microscopic quantities in terms with ε, Eqs. (57)-(60)
are actually interpreted as the Navier-Stokes equations of the model. In fact, once the model and
chemical reaction are specified, the procedure of Sections 5, 6 allows to express the microscopic
variables b

(1)
h in dependence on the macroscopic variables, as evidentiated by expressions (49) of

Proposition 4.

8 Transport coefficients

The results of previous sections permit to identify the transport coefficients, according to the line
that will be here proposed
– Remind first the kinetic definitions within discrete kinetic theory of the viscous stress tensor IP
(−IP is the momentum flux tensor), current density ~IM and heat flux vector ~q

IP =
∑

M

mM

p∑

i=1

NM
i

(
~v

M

i − ~U
)

⊗
(
~v

M

i − ~U
)

,

~IM =
p∑

i=1

NM
i ~vM

i , (61)

~q =
1
2

∑

M

mM

p∑

i=1
NM

i |~v
M

i − ~U |2
(
~v

M

i − ~U
)
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+(εA1 + · · · + εAr − εB1 − · · · − εBs) ~IB1 ,

where εM is the chemical link energy of M -species introduced in Section 2.
– Expand the densities NM

i at the first-order level as in (32). Accordingly, the macroscopic quantities
given by (61) split in the form

IP = IP(0) + ε IP(1) ,

~IM = ~I M (0)
+ ε ~I M (1)

, (62)
~q = ~q (0) + ε ~q (1) .

In Maxwellian equilibrium, the stress tensor IP(0) results to be spherical and the heat flux reduces
to its reacting contribution, since the elastic one vanishes, so that

IP(0) = p(0) II , ~I M (0)
=

p∑

i=1
NM

i
(0)

~vM
i ,

~q (0) = (εA1 + · · · + εAr − εB1 − · · · − εBs) ~IB1
(0)

,

p(0) , ~I M (0)
, ~q (0) being the gas pressure, current density of species M and the heat flux in

Maxwellian equilibrium, and II the unit tensor. Therefore the splitted form (62) reads

IP = p(0) II + ε




∑

M

mM

p∑

i=1




p(r+s)∑

`=q+1

b
(1)
` [W (`)]

M

i


~v

M

i ⊗ ~v
M

i


 ,

~IM =
p∑

i=1

NM
i

(0)
~vM

i + ε




p∑

i=1

p(r+s)∑

`=q+1

b
(1)
` [W (`)]

M

i ~v
M

i


 , (63)

~q = ε


1

2

∑

M

mM

p∑

i=1




p(r+s)∑

`=q+1

b
(1)
` [W (`)]Mi


 |~v

M

i |2~v
M

i




+ (εA1 + · · · + εAr − εB1 − · · · − εBs) ~IB1
(1)

.

In expansions (63), the terms within the large square brackets, defining IP(1), ~I M (1)
and ~q (1) involve

b
(1)
` and represent the dissipative contributions to the stress tensor, current density of M -species

and heat flux vector due to transport effects. For this reason, expressions (63) can be interpreted
as Navier-Stokes representation of the model for IP, ~I M , ~q.
The actual computation of the transport coefficients of shear viscosity, thermal conductivity and
thermal diffusivity may be achieved as outlined through the following steps.

1. Explicit the coefficients b
(1)
` in terms of the macroscopic variables, according to Proposition

4 of Section 6, once the velocity discretization and chemical reaction have been specified for
an assigned gas mixture.

2. Combine the explicit expressions obtained in step 1 with Eqs. (63) in order to express the

first-order terms IP(1), ~I M (1)
and ~q(1) in the linear dependence on the gradients of mean

velocity, energy and concentrations of each species, respectively, obtaining a more tractable
Navier-Stokes representation for IP , ~I M and ~q , ready to be compared with the corresponding
hydrodynamic representations.
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3. Recall the hydrodynamic expressions of the dissipative terms known within the extended (be),

as deduced in paper [16], say IP(1)
∗ , ~I M

∗
(1)

and ~q
(1)
∗ , defined by

IP(1)
∗ = µ

∑

h

∑

k

~eh ⊗ ~ek

(
∂Uh

∂xk
+

∂Uk

∂xh

)
− 2

3
µ

(
~∇ · ~U

)
II ,

~I
M(1)
∗ = −

∑

M ′ =/ M

DMM ′

[
~∇(kBnM ′T )

p
+ χ

M′
~∇ log T

]
(64)

~q
(1)
∗ = −κ~∇T − p

∑

M

χM
~IM +

∑

M

nM

(
5
2
kBT + εM

)
,

where µ, κ, χM , DMM ′ are the shear viscosity, thermal conductivity, thermal diffusion ratio
of species M and diffusion coefficients defining the symmetric diffusion matrix; finally, ~eh, ~ek

are the unit vectors of the canonical basis in IR3 and kB the Boltzmann constant.

4. Match the dissipative contributions of the model representation, as obtained in step 2, with
IP(1)

∗ , ~q
(1)
∗ and ~I

M(1)
∗ .

5. In the model expressions of IP(1), ~q (1), ~I M(1) of step 2, recognize then the multiplicative coef-
ficients of the gradients of mean velocity, energy and concentrations of each species; interpret
them as µ, κ and DMM ′ , respectively.

To complete this section it should be underlined that the dependence of the transport coefficients
on the temperature of the total mixture does not appear evident. In fact in dvm the quantity T
defining the temperature, namely

T =
1

3nkB

∑

M

mM

p∑

i=1

N
M

i |~v M

i − ~U |2,

is usually introduced as the kinetic temperature of the model, in order to reproduce the state
equation in the usual form

p =
2
3

ρe.

Thus, it seems to be clear that the dependence of transport coefficients on T is strictly joined to the
set of selected velocities, both in direction and modulus, in other words the temperature is strictly
related to the model. Such peculiarity of dvm has been widely discussed by Ernst in [21].

9 Concluding remarks

The content of the present paper furnishes a consistent methodology which can be applied to derive
the Navier-Stokes equations and transport coefficients, starting from an arbitrary dvm for a reactive
gas mixture with general reversible reaction. At the same time, the paper supplies the mathematical
theory and the relevant modeling aspects necessary to set up the above said methodology.

As emphasized in Ref. [22], at the scope of studying the flow properties, it is important to know
the functional form of the transport coefficients in dependence on the local concentrations of each
species and whole mixture. This can be done in the present modeling, at formal level, trough steps
1-5 of Section 8.
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Anyway, a first attempt has been done in this direction in the quoted paper [15] where a dvm for
a gas with bimolecular reaction was considered. After rather cumbersome calculations, the transport
coefficients of shear viscosity µ and thermal diffusivity DMM ′ only, could be analytically evaluated,
showing an explicit dependence on local concentrations as well as on scattering collisional frequencies
and speed of each gas species. Conversely, the thermal conductivity κ could not be recovered, since
in the mentioned paper the macroscopic governing equations did not involve the energy equation,
and the assumed independent macroscopic variables did not include the heat flux vector. This lack
is due to the fact that a complete characterization of the transport coefficients can be realized only
once the procedure of the present work is applied. In this sense, the proposed approach provides an
improvement covering such lack.

On the other hand, as argued by Brun in paper [23], the computation of the transport terms
suggests how crucial is the choice of good modelings for the collision terms, when chemical processes
are included. The theory developed in the present paper yields feasible the study of fluid dynamical
applications and real gases effects related to moderately dense gases, at small Knudsen number
subjected to transport effects, when the chemical process is entirely considered at the molecular
level. In fact, in the framework of dvm one can include multiple non reactive collisions in the
scattering source term, as well as multiple collisions with chemical reaction in the chemical source
term.

As future perspective, one can deal with the evaluation of transport coefficients for the Hydrogen-
Oxygen system with reference to both bimolecular reaction

H + O2 ⇀↽ OH + O

through which the radicals OH and O are formed from a stable species O2 and a radical H, and
autocathalytic reaction

OH + M ⇀↽ H + O + M

of dissociation-recombination of the radicals OH, H, O.
Within dvm such reactions have been already considered in paper [15] and paper [24] where,

in particular, a dvm with also triple elastic and inelastic collisions is used to study the steady
detonation wave problem; but for the above mentioned perspective they still need to be modeled in
a fashion more coherent with the line of the theory developed in the present paper. This task is not
immediate and therefore will be matter of a next work.
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17



[4] Groppi, M. and Spiga, G.: Kinetic approach to chemical reactions and inelastic transitions in
a rarefied gas. J. Math. Chem. 26, 197–219 (1999)

[5] Rossani, A. and Spiga, G.: A note on the kinetic theory of chemically reacting gases. Physica
A 272, 563–573 (1999)

[6] Groppi, M., Rossani, A. and Spiga, G.: Kinetic theory of a diatomic gas with reactions of
dissociation and recombination through a transition rate. J. Phys. A: Math. Gen. 33, 8819–
8833 (2000)

[7] Alves, G. M. and Kremer, J. M.: Effect of chemical reactions on the transport coefficients of
binary mixtures. J. Chem. Phys. 117, 2205–2215 (2002)

[8] Monaco, R. and Preziosi, L.: Fluid dynamic applications of the discrete Boltzmann equation,
World Scientific Singapore (1991)

[9] Bobylev, A. V. and Cercignani, C.: Discrete velocity models for mixtures. J. Stat. Phys. 91,
327-341 (1998)

[10] Bobylev, A. V.: Relationships between discrete and continuous kinetic theories. In: Brun, R.
et al (ed.) Rarefied Gas Dynamics 1, 19–30 (1999)

[11] Hanser, F., Koller, W. and Schürrer, F.: Treatment of laser induced thermal acoustics in the
framework of discrete kinetic theory. Phys. Rev. E 61, 2065-2073 (2000)

[12] Koller, W., Hanser, F. and Schürrer, F.: A semi-continuous extended kinetic model. J. Physica
A 33, 3417-3430 (2000)

[13] Pandolfi Bianchi, M. and Soares, A. J.: Reactive Euler equations of discrete models with
reversible reactions. Continuum Mech. Thermodyn. 12, 53–67 (2000)

[14] Chauvat, P. and Gatignol, R.: Euler and Navier-Stokes description for a class of discrete models
of gases with different moduli. Transp. Theor. Stat. Phys. 21, 417–435 (1992)

[15] Monaco, R., Pandolfi Bianchi, M. and Rossani, A.: Chapman-Enskog expansion of a discrete
velocity model with bi-molecular reactions. Math. Models Meth. Appl. Sci. 4, 355-370 (1994)

[16] Ern, A. and Giovangigli, V.: Kinetic theory of reactive gas mixtures with application to com-
bustion. Transp. Theor. Stat. Phys. 32, 657–677 (2003)

[17] Polak, L. S. and Khachoyan, A. V.: Generalization of Boltzmann’s H-theorem for a reacting
gas mixture. Soviet J. Chem. Phys. 2, 1474-1485 (1985)

[18] Bird, G. A.: Molecular gas dynamics, Clarendon Press Oxford (1976)

[19] Cercignani, C.: Theory and application of the Boltzmann equation, Scottish Academic Press
Edimburg (1975)
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