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Abstract—Social Networking Sites (SNS) have an unprecedexte
ability to capture Human activity, including inform ation about
the specific physical settings in which those acfiies are taking
place. This represents a major potential for uncoveng, on a
large scale, new knowledge about aggregate behawan the use
of places. In this paper, we explore the concept cfocial web
sensor, as a systematic data collection process thaan be
virtually attached to a particular location to retrieve location-
based information from social network sites. This pocess is
completely based on geographically scoped queries NS APIs
and does not depend on real physical sensors. Thejatiive of
this study is mainly to assess the viability of tlsi concept and
uncover the potential and limitations of this apprach as a reality
mining tool for urban environments. We have createdan initial
implementation and conducted the respective evaluan through
the deployment of a number of sensors in the cityfd.ondon and
the analysis of the respective results.
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. INTRODUCTION

The emergence of ubiquitous computing and Soci
Networking Sites (SNS) means that digital presense
increasingly shaping our lives and our actions.sEhgervices
have been capturing Human activity in unprecedemiags,
and, in that process, they are leading to the ekten
generation of new content associated with thoseitikes. The
information includes not only the primary socialjest, but
also meta-data about the circumstances in whidhctident is
generated.

Web 2.0, Social

Interestingly, many of these actions are incredging
traceable to the specific physical settings in Witey occur.
For example, many twitter posts are now tagged lsithtion
information and emerging systems, like Foursquare
Gowalla, are all about signaling presence in plafese also
consider that much of this information is publielyailable, we
may easily acknowledge that there is a clear petiior using
these tools for uncovering, on a large scale, neawkedge
about aggregate behaviors in the use of places.

In this paper, we explore the concept of social sehsor,
as a systematic data collection process that cawmirhelly
attached to a particular location to retrieve lmrabased
information from social network sites. Through geqmically
oriented queries, a social web sensor obtainsgéatarated at a
particular location and makes it available, pogsiiol some
aggregate form that constitutes the sensor oufjis. process
is completely based on user-generated data andwtittirectly
recurring to any physical sensor. Still, the insieg use of
geo-tagged or geo-referenced data may providerthand for

making these sensors valuable tools for detectimgl a
understanding location-based events and patteemcydarly
in urban environments. Our objective is thus todgtihe
viability of this concept and uncover the potentiahd
limitations of this approach as a reality miningltfor urban
environments.

In Section I, we revise related work and clarifget
relationship between our contribution and previewsk on
this topic. In Section Ill, we present the Spotsams
architecture for creating location-based socialseen To
evaluate the concept, we have conducted a sertsidg ssing
a number of sensors deployed in the city of Londbhe
description of this evaluation and the analysistre results
obtained is included in Section IV. Finally, in $en V, we
present our concluding remarks and outline futusekw

. RELATEDWORKON SENSINGAND SOCIAL
ANALYSIS

The ubiquity of mobile phones, GPS-enabled devices,

CCTV, Wi-Fi networks and other sensors provides ynan
appportunities for collecting data about Human atitig. The
collection of that information on a large scale yides the
opportunity to obtain an increased understanding thef
dynamics of communities and uncover new knowledysut
the rhythms of city life and the digital fingerpriof the urban
environment. The collaborative use of physical sendas
been explored in several projects as an approacimfterring
patterns of Human behavior, such as CenceMe [1] and
MetroSense [2]. CenceMe uses audio sensors and
accelerometers to be able to “read” the environraemind the
user and MetroSense explores the interaction betvike
sensors carried by the user and other devicesablaile.g.
Wi-Fi access points, etc.). Real Time Rome [3]\Vil project
Odeveloped in 2006, aggregates data from mobile gydiuses
and taxis in Rome to better understand urban dycgamireal
time. Collected data was used to create a setsofalization
plots exposed in the 2006 Venice Biennale. SenaneP[[4] is

a global research framework for mobile device éentireless
sensor networks. It enables collaborative sensiit@tives on

a large scale and includes a central repositonsifaring the
data. The Intel-sponsored Urban Atmospheres pr{jpéaims

to understand our future evolution of digital andreless
computing and how this will influence, disrupt, erd and
integrate into social patterns existent within gublic urban
landscape. The MIT Cartel project [6] was desigttedollect,
process, deliver and visualize urban-sensing dadatetraffic
conditions. While these approaches may have anriamtaole

in our ability to sense physical environments, theguire the
physical presence of the sensors and they tendrerate low-



level data, typically associated with movement, nghuair
quality or temperature.

The use of data obtained from social networks
understand Human activities in physical space hss laeen
explored in a number of projects. Data from perbktotation
disclosures, even when aggregate, may provideeh ¢ésocial
awareness that can be used for that purpose. k@ues@nd
Gowalla are both location-based social
encourage people to explore cities. In Foursquaomts are
won by sending status messages with the user'§docand in
Gowalla users can collect virtual objects left ilages they
visited [7]. All these system generate as parthefirt usage,
considerable data about usage patterns of physjates.
HomeAndAbroad is an example of how to leverage lootqs
published in Flickr for trip planning [8]. By usirthe location

and time of the photos taken on the city, the syste

automatically generates gazetteers that includavkege time
to spend at the main attractions in four main sitiSeveral
other projects have explored the use of Twittemdat infer
new data about the cities and about the users. tTovisteter
[9] shows, almost in real time, the number of twebeing
published in different cities. Although the popidat
percentage that uses Twitter in each city may Herdnt, the
visual rendering of tweet-o-meter provides a desive view
of which cities are more active and detects whenattivity
grows or decreases. Fujisaka et al. describe a ochetbr
detection of unusual crowded locations by monitpnmicro-
blogging systems to obtain geo-tagged data whicnayzed
to examine spatial distribution [10]. TweetHood J[Jtedicts
the location of the user based on location of lisest friends.
Although several projects have used the data fraciak
networks to uncover information about the physiaalrld,
there is no simple and straightforward solutiogénerate such
data for a particular physical location. In thisrigowe focus
specifically on how to create generic and multigmge data
collection processes that may represent the mgsifisant
elements of the social activity associated witbcation.

. THE SPOTSENSING ARCHITECTURE

This section describes the SpotSensing architecin
how it can be used to deploy location-based webassen

A. Location-based web sensors

A location-based social web sensor is an abstradio a
location-based data collection process that praglacgpecific
output. The sensor metaphor is used to conveydbe that
those processes are attached to specific locajiastdjke any
sensor. However, these sensors differ from tratificensors
in two fundamental ways: the first is that they axelusively
virtual, which means that their attachment to atimn is not
the result of their physical presence at that locabut simply
a criterion in the data collection process; theosdcis that
they do not sense physical variables, such as teatye,
speed, light, or any other. They are based on afsehata
sources corresponding to existing social networkilagforms.
This is where the data comes from and potentially tgpe of
social network may be used, provided there is stype of
support for location-based queries. Sensors wétdfore be
measuring social activity as represented

in ob&deva

behavior within social networks. The social netwiogk
services from which data is collected are calletaCBources.

sensor is therefore a virtual entity created bgnts of the
SpotSensing infrastructure to measure social agtivi
associated with a particular location. A sensor ailvays
have a type, which determines the type of dataeitegates,
and a coverage area, which determines the geogedtiope

networkst thaupon which it is expected to generate data.

A sensor type is not determined by the data sdfuoce which
it obtains the information, but by its output dafaparticular
sensor type could combine data from multiple datarces,
and multiple sensor types could provide differeigws of a
particular data source. However, in this initialdst we have
created two basic usage sensors for Twitter argkr=lin this
paper, we will only analyze in more detail the @tiem of the
twitter sensor, but having created two differenpety of
sensors has been important in highlighting somethaf
implications of the respective data models to
conceptualization of the sensors. We will refer sash those
issues in the conclusions.

Regarding the geographical scope, sensors candoiieg as
individual sensors or as sensor grids. The geograbhkcope
of an individual sensor is specified by setting to®rdinates
of the center and a radius. The geographical sobpesensor
grid is specified by setting the coordinates of tmmter, a
radius for the grid, and the number of sensor kimdide the
grid. The system will automatically generate a damated and
multi-level set of sensors covering with minimaleoap the
specified region, as exemplified in Figure 1.

Figure 1 - Sensor Grid

The image represents a larger sensor, called sehsor
containing four other sensors 1A-1D, with a 50%iuadand
then 16 other smaller sensors, e.g. 1A1, with 2884 adius of
the larger sensor.

B. SpotSensing Service

The architecture of the SpotSensing service isatiegiin
Figure 2.
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Figure 2 — Architecture of SpotSensing

A web service interface enables clients to requbst
creation of new sensors and obtain the data thegrgte. A
sensor manager handles all the information aboigtiey
sensors and controls their life cycle. The senpimgess itself
is controlled by sensor modules corresponding & génsor
types that have been requested. A sensor typepsiates the
data processing knowledge associated with a phatiform of
social sensing. In our initial implementation, weava
developed a twitter usage sensor, which will becidlesd in
more detail, and a Flickr usage sensor type thtdimd data
about the images published at a given locationused the rich
meta-data associated with these images, e.g. tiypgachine
used, time elapsed between taking the photo antispiry,
tag density, authors diversity and others to gaaesianumber
of metrics about photo practices that may also ddevant
indicators about the nature of places. Each semper knows
how to generate the appropriate sensing tasks avddstore
the respective data. A Data Repository represdrsdata
collected for a particular type of data source &g from this
data that the sensor output will be generated.

The Task Manager accepts sensing tasks from sen8ors
sensing task specifies a periodic data collectiamtgss to be
conducted on a specific data source. Whenever aspasor is
activated, it needs to generate the sensing tasiis il
satisfy its data needs. A Data Harvester is thenetd
responsible for generating the queries to the daarce
according to the appropriate periodicity. It opties the

queries associated with a particular data sourcél an,. sensor

periodically retrieves from those data sourcesdiiia needed
for the currently active sensors. A single sendimgk may
create multiple Data Harvesters to distribute tbadl| or
overcome any limits imposed by data sources.

C. Twitter Usage Sensor

The Twitter Usage Sensor is one of the two typesewsfsor
that we have implemented as part of this studgupports the
generation of information about Human activity irs@ecific

location, as seen from twitter activity.

Twitter may be classified as a micro-blogging tgolwhich

people can share individual messages not exceetiy

characters. Given the limitations in message size,
microblogging is particularly suited for a fasterode of
communication in which messages are frequently ywed as
part of daily life. With the growing popularity afmobile
clients for twitter, location information can beség recorded,
and thus an increasing number of tweets are gestenaith
location information as meta-data. The messages amy
include a set of codes from which additional infation can
be inferred, such as the status or mood of theeseodthe
message target.
The creation of a Twitter usage sensor in the SpwiBg
system can be accomplished by specifying the fafigw
parameters.

e The coordinates where the sensor is to be deployed.

e The radius of the coverage area of the sensor
e The time granularity to be used for data update.

« A Location Mode that defines whether the sensor
should consider only tweets with geographic
coordinates or whether it should also consider tsvee
associated with location through location names.

Access to the twitter API is conducted by specaizwitter
harvesters. The Twitter API is based on a RESTarhdigm
and provides access to geo-referenced tweets,dinguall
their meta-data, and respective authors.
The Twitter API enforces some limitations on thquest rate
and number of results that can be obtained. Thigaliions are
based on the IP address of the requester andthmibumber
of requests to 350 per hour. The API requests malpude a
definition of the number of tweets to return peg@aup to a
max of 100, and the page number (starting at Igtiarn, up
to a max of roughly 1500 results (meaning 15 pages 100
results per page). Regarding location scoping, skarch
requests may specify a radius parameter with amaimi of 1
Km.
Multiple harvesters may be used collaborativelthie context
of a single sensing task. The periodicity with whibey will
contact the API is determined by the time grantyespecified
for the sensor, but also by its coverage radius.hArvester
collecting data for a large sensor, will have tokenanore
frequent connections to the data source in ordeavoid
limitations on the number of tweets retrieved friva API.
The information collected by twitter harvesters tisen
processed to extract the information that will bgased by
The tweets themselves are not parthaff t
information and are only kept for the time needegrtocess
them.
The information exposed by this Twitter usage Ssenso
includes generic sensor information and usage osetiihe
sensor data includes the date of the sensor’s yimglat, the
sensor area in Kmz?, the total number of days ardtthal
number of hours in which data was sensed. The usagecs
for the sensing period are as follows:

e The number of tweets;

« The number of tweets sent from one user to another
(i.e. dialogs);



The number of tweets written in English;

The number of unique users generating tweets;

The number of followers (i.e. users that add arothe

corresponding to parks, stadiums, airports, resialeplaces,
touristic sites and others, as listed in TABLE 1.

TABLE 1 - SENSORS FROM INDIVIDUAL PLACES

users as their friends following their tweet's uisdy;

The number of tweets sent from specific devices, 6.

iPhone or Blackberry;

The number of tweets with specific emotions tag

links and Retweets (i.e. tweets with the tag “RT’

referring someone’s tweets).

IV. EVALUATION

The evaluation of the system was conducted thrabgh

virtual deployment of a number of twitter-based ssea and
the analysis of the data generated by those senBogsmain
objectives of this evaluation were as follows:

To assess the viability of twitter-based sensors
terms of the respective data density and granyjarit

To assess the reliability of the location infotioa
associated with tweets;

To assess the ability of Twitter Usage Sensors
produce distinguishing data across different tygfqdaces.

A. Sensor Deployment

A key decision in our study was where to deploy skasors.
Given that different locations may have very digier patterns
of twitter usage, the chosen location could havenajor

impact on the conclusions of the study. We havesehdo go
for a location that could maximize the number ofedts
generated per location, and thus chose a large nityre
specifically London.
advantages: The first is that it makes the biatheflocation
choice more clear, i.e. whatever results we gel dre clearly
for highly urban settings with highly connected pigpions.

The second advantage is that this gave us the wynityr to

explore the sensors where they are more likelyeteffective
and therefore generate more relevant findings.

A second decision was how many sensors to defleyr, size
and their dispersion. Considering the multiple obye of the
study, we have chosen to deploy two sets of Twiiteyed

This approach presents two mmaj

Name of the place Type of Radius Number of tweets
place (Km) per hour and per
km?2
Emirates Stadium Stadium 0,25 29,0
Buckingham Palace and Garder Park 0, 26,2
. Big Ben and Houses of Parliament Landmar 0,2 304,9
r’ Westminster Abbey Landmark 0,2 450,6
’ Legoland Windsor Park 0,64 2,5
London City Airport Airport 2 2,1
Richmond Park Park 2 0,2
Bristol Zoo and Westbury Park Park 2 0,7
Hyde Park Park 1,5 12,1
Gatwick Airport Airport 1,5 1,0
Heathrow Airport Airport 2 0,8
Luton Airport Airport 2 0,5
London Southend Airport Airport 2 0,7
Stansted Airport Airport 2 0,2
Stamford Bridge Stadium Stadium 0,3 104,6
Queens Park Rangers FC Stadium 0,2 64,9
The New Den Statium Stadium 0,2 43,2
Walthamstow Greyhound Stadium Stadium 0,4 36,0
Arsenal Stadium Stadium 0,2 77,7
Lloyd Park Park 0,2 28,7
City Hall (London) Landmark 0,2 166,9
ta _London Business school Landmark| 0,2 100,3
British Museum Museum 0,2 147,8
St Paul's Cathedral Landmark 0,15 110,0
The Bank of England Landmark 0,15 111,5
The Tower of London Landmark 0,2 44,6
Tower's Bridge Landmark 0,3 19,1
St Mary Axe Landmark 0,5 12,9
The O2 (Millennium Dome) Landmark 0,25 58,8
The SIS Building AKA the MI6 Landmark 0,15 84,0
Natural History Museum Museum 0,15 112,4
Royal College of Art Landmark 0,15 61,8
Lord's Cricket Ground Stadium 0,2 91,4
Regent's Park Park 0,7 2,7
BBC Television Centre Landmark 0,15 111,4
Imperial War Museum Museum 0,15 299,8
County Hall London Landmark 0,18 105,4
Royal Festival Hall Landmark 0,15 134,6
Royal National Theatre Landmark 0,14 147,5
St Pancras Station Station 0,2 48,5
Charing Cross Railway Station Station 0,15 142,1
Ministry of Defence HQ Landmark 0,11 1402,1
Cardinal Place London Landmark 0,2 52,7
The National Gallery Landmark 0,2 95,6
Haggerston Park Park 0,25 32,2
Kennington Park Park 0,4 10,2
Battersea Park Park 0,6 3,5
Burgess Park Park 0,9 4,5
Southwark Park Park 0,5 6,9

sensors. The first set was a sensor grid as repessen
Figure 1. This grid includes a total of 21 senscasefully
placed to guarantee the containment of the srmsdiesors into
the larger ones. We thus had 16 small sensors aith
kilometers radius. Each group of 4 of those smeatissrs was
contained within a medium-sized sensor with a é4rkiters
radius. These 4 medium-sized larger sensors wertirim
contained within a large sensor with an 8 kilonmetexdius,
encompassing the entire study area. This grid wa@lyn
designed to assess the reliability of geographioatainment
and the effect of sensor size in the effectivernésbe sensing
process. It has allowed us to compare the effdctersor size
in the ability to capture tweets.

The second sensor set was created to generatenation
about specific places. We have identified seveoahtions

The size of the geographical scope of these senseass
determined according to the size of the places hiclwthey
were attached. Despite the circular nature of #hesars, we
tried to define the respective location and size iway that
provided the best possible match with the boundaoiethe
place.

The data collection took place during a period éfvieeks,
between March and June 2010. During this perio& th
deployed sensors have collected approximately 28P74
tweets.

B. Results regarding viability

The first objective of the evaluation was to assbesviability
of these twitter-based sensors in terms of theewsge data
density and granularity. There were at least twoy ke



dimensions that could be considered: the techriedlility of
the data collection process and the ability to geeeenough
data for at least some of the envisioned scenarios.
Regarding technical viability, the main risk we badentified
was the possible incompatibility between this usafyavitter
data and the limitations imposed by twitter's AR¢ris of
Service. In particular, the limits on the numbereduests and
tweets returned per request could mean that imaosewith

in the request to assess whether or not it fitsdenghe
geographical scope of the query.

The grid sensor set was conceived to combine iringles
collection process multiple granularities and féaié the
study of the effectiveness of geographical scopinthe data
collection process. TABLE 3 shows the number ofetsehat
have been detected by the grid sensors using eatiose
association methods. The numbers for the smaliesoss do

very high number of tweets, some tweets could b& lo not consider the repeated tweets that have beesedanore

between requests. Therefore, a large sensor coedaetically
collect fewer tweets than a set of smaller
corresponding exactly to the same area.

Regarding the data density generated by sensorsveve

particularly concerned about the granularity of se@sors, or
in other words, how small could they be and stdherate
meaningful data. Our measure for tweeting densag hased
on the number of tweets per square Km per hour.

T ting D it #tweets
weeting Density = —————
9 Y= Xm?+ #hours

These density numbers are included in TABLE 1,efach of
the places selected for sensing, and in TABLE 2, tfe
sensors created as part of the sensor grid.

TABLE 2 - SENSORS FROM THE GRID

Grid Level Radius (Km) Number of Number of tweets
Sensors per hour and per
km?
Level 1 8 1 4,6
Level 2 4 4 5,6
Level 3 2 16 58

The numbers show that the density of the largesmers
smaller. This may be consistent with the obserwatibat
during the data collection, the limits imposed hg fTwitter
service have occasionally been reached for thgetasensor,
suggesting that a reliability threshold may be eltsthe 8km
radius. The numbers also suggest that most locateren the
smaller ones, are able to sustain a continuoussaymificant
tweeting flow. Whether or not the density valuesaoted in
this study would be enough, will depend very heawih the
nature of the intended applications. For applicetiocequiring
real-time short-term data input, data density vaé more
critical. For applications that take a more long¥te
perspective of the data, e.g. place characterizatieen much
lower data densities may be enough for meaningfage.

C. Results regarding geographical scoping

When the harvester makes a request to the twitter, &

specifies the coordinates of the center and a sadie tweets
returned as part of this request are all tweets lage been
somehow connected with a particular location. Imsaases,
this corresponds directly to coordinates of thatmmn, mainly
when using mobile clients. In other cases, howetlgs, has
been done indirectly by associating a specifictiocaname to
the location of the person making the tweet, anghtby

mapping the coordinates of that location into tteaaspecified

than once by each of those sensors.

Sensors

TABLE 3- RESULTS FOR THE SENSORS IN THE GRID
Sensors Total of | Radius | Geo Located Alfa Located | Total
Sensors | (Km) Tweets Tweets

1 1 8 1348952 429592 1778544
1A-1D 4 4 1302840 348974 1651814
1A 1 4 442411 69100 511511
1A1-1A4 4 2 405862 54548 460410
1B 1 4 521075 150638 671713
1B1-1B4 4 2 443128 110223 553351
1C 1 4 391457 100233 491690
1C1-1C4 4 2 308793 70665 379458
1D 1 4 433922 38432 472354
1D1-1D4 4 2 376735 31898 408633

We can observe from the table how the number oketsve
obtained with smaller sensors compares with the baunof
tweets obtained from their containing sensor. Tamlrer of
tweets sensed by the larger sensor is consistbigger, but
this was expectable considering that its coveraga & also
bigger than the union of the coverage areas ofctmgained
Sensors.

Regarding the use of location names, we can obshat
even though location names are a relevant parbaition-
based tweets, about 81% of those tweets are assbaidth
specific coordinates. The use of location namesrbesaled
to be less reliable. Another limitation specifiedthe Twitter
API with the use of names is that the data colbecprocess
can only be done with a minimum 1km radius. Thisiidoes
not apply to queries with geographic coordinate ¥duld
refine this on the SpotSensing service by usingtwrdinates
directly, but the process would be much more compte
name locations are included, as we would have toutcown
mapping from location names into geographical cimartes.
These results suggest that when tweeting densityitisal,
both methods should be used to increase the nuoflheeets
considered. However, if the reliability of locatiamformation
is more important, then only tweets with coordisatbould be
considered. This has lead us to include this optiorihe
operation parameters of the twitter usage sensor.

D. Results regarding Place characterisation

The final objective of the study was to explorentioat extent
the data collected at different locations couldviide relevant
hints about the type of place being sensed, pgspitolviding

some perception about the different nature of thpdaees. For
this part of the study we have analyzed the dateated from

the sensors deployed in the various places. TABLE 4
summarizes the aggregate results obtained for #ia place
categories.



TABLE 4 - RESULTS FROM THE INDIVIDUAL SENSORS

Airport | Landmark | Museum | Park Stadium | Station
# Unique Tweets 101555 | 220053 13253 2447313392 17995
# Unique Users 8293 24869 3241 18874 6254 3656
# Sensors 6 19 3 12 7 2
# Tweets/Sensor 16926 | 11582 4418 20395 13342 899
# Tweets/Km?/hour 5 3575 560 130 447 191
# Users/Km?2 119 8979 12137 459 5647 1862p
% Users with a iPhone 6% 5% 13% 8% 7% 15%
% of Dialogs 31% 29% 35% 34% 29% 33%
% of English Tweets 86% 81% 86% 82% 63% 86%
% Tweets with Emotion-Tags| 9% 8% 8% 10% 11% 8%
% Geo-Tweets 78% 40% 89% 61% 22% 87%
% Retweets 13% 18% 15% 14% 11% 15%

These results show how different types of place gemerate
different tweeting practices and open the possjbifor

extending this type of process for uncovering neferimation
about places.

V. CONCLUSIONS

The results obtained from this exploratory studggast that
the overall concept of location-based social walissg may
indeed be a viable concept.

Regarding technical viability we have studied thtect of
service access limitations, which would imposendtlon the

maximum size of sensors, and data density, whicluldvo
impose a minimum size for sensors. We have found ng)

problems for the sizes used in our study: 8km afu large
sensors and 2km radius for small ones. Again, giores with
less significant twitter activity, the minimum sizlor a
meaningful twitter sensor could have to be largepending
on the intended applications.

These types of problems will also depend on thareatf the
services. For example, for a Flickr sensor, thee fawer
limitations because time is not so critical, iteisipossible at
anytime to obtain all the previously published moat a
given location, and therefore there is no riskosirg data.
Regarding the ability of the sensors to generataningful

data about places, we have not developed any type

inference process based on sensor data, as ouxgsabnly
on the sensor concept. Still, we have shown thetettare
clearly distinguishing parameters that can be skEnsad

therefore there is a potential to use these semsoes source

for multiple types of reality mining processes.

Q0]

A. Future Work

An obvious additional feature would be to consitter tweets
content, which we have not address, except forecontlated
meta-data such as the language. For example, thdswoore
used in a particular place could provide an impurtasis for
characterizing that place. Also, considering that have not
explored the real applications of this sensing esystfuture
work should consider to what extent the abstrastipmovided
by these sensing services could be used to supgerence
processes that so far have been done using ad-atx
collection processes.
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