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Abstract. A parametrical study of masonry beams through numerical modelling has 

been performed in order to better understand the mechanical behaviour of these 

elements. Boundary conditions, geometry and reinforcement ratios are the main 

parameters analysed in this study. The numerical simulation is performed with 

DIANA® software, based on the Finite Elements Method. A comparison between 

numerical and experimental results is presented in order to validate the simulation. In 

conclusion, it was verified that the behaviour of masonry beams is greatly affected by 

the boundary conditions and geometry, as expected. With regard to reinforcement, it 

was noted that horizontal reinforcement increases the flexural strength of beams. On the 

other hand, variation in horizontal reinforcement had no influence on the shear 

resistance of masonry beams. Finally, the combination of horizontal and vertical 

reinforcement is shown to enhance the flexural and shear behaviour of masonry beams. 
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Introduction 
 

In masonry buildings, masonry beams are the structural elements responsible for 

the distribution of vertical loads over openings and they are subjected to shear and 

flexure stresses. According to several authors, their design can be performed using the 

ultimate strength design method similar to that used for reinforced concrete beams 

(Khalaf et al. [1], Hendry [2], Drysdale et al. [3], Taly [4]). Nevertheless, the usual 

presence of cores in units and the anisotropy of masonry, generated mainly by mortar 

joints which are planes of weakness, make the behaviour of masonry beams more 

complex. In spite of Eurocode 6 [5] provides the design of masonry beams under 

flexure and shear, by applying classic formulations used for homogeneous materials, 

very limited experimental and numerical information is available in literature about the 

resisting mechanisms characterising the behaviour of masonry beams under in-plane 

shear and bending.  

Based on experimental research carried out on masonry beams with variable depth 

to length ratios and variable tensile reinforcement ratios, Khalaf et al. [1] confirmed the 

assumption that plane sections remain plane during bending and obtained an ultimate 

compressive strain for masonry of about 0.003. Truss type reinforcement in bed joints 

was used by Limón et al. [6] in brick masonry beams (span to depth ratio equal to 4.5), 

which analysed the influence of the depth of the neutral axis, the quantity of 

reinforcement and the overlap of bars. By comparing the experimental and analytical 

results on the flexural strength it was found that diagonal bars appear to contribute to 

the flexural resistance of brick masonry beams. According to Jang and Hart [7] and 

Adell et al. [8] uniform distribution of longitudinal reinforcement leads to increasing of 

shear resistance by dowel action. Another important aspect regarding a section in 



bending is its compressive strength, which can play a significant role in the resisting 

moment (Chen et al. [9]). Note that in the case of masonry beams compressive stresses 

act in the direction parallel to the bed joints. 

Besides experimental analysis, numerical modelling of masonry beams can provide 

additional information on flexural and shear behaviour by considering the effect on 

some parameters. Variables such as geometry, boundary conditions and variation of 

vertical and horizontal reinforcement can be easily evaluated after the appropriate 

validation of the numerical model.  

In recent years some numerical approaches have been developed, from which an 

enhanced understanding of the mechanical behaviour of masonry has been achieved. 

There are two numerical approaches that have been adopted by researchers for 

numerical analysis of masonry structures, namely macro-modelling and micro-

modelling. It is well-known that both approaches reproduce satisfactorily the behaviour 

of masonry structures, having specific and particular applications. In the macro-

modelling approach, masonry is considered as a homogeneous material and the 

constitutive models represent the average material properties of masonry as a composite 

material. Several studies have been developed for the derivation of the homogenized 

elastic properties of the smeared masonry continuum (Anthoine [10], Lee et al. [11]) 

and for the representation of the inelastic behaviour of masonry (Lourenço [12], 

Luciano and Sacco [13], Zucchini and Lourenço [14], Shieh-Beygi and Pietruszczak 

[15], Reyes et al. [16]).   

In the case of micro-modelling, the masonry material is considered as a 

discontinuous assembly of units connected by joint interfaces simulated by appropriate 

constitutive laws. Micro-models are usually applicable to small size structures where 



detailed analysis on the resisting mechanisms and failure modes are to be evaluated 

(Lotfi and Shing [17], Lourenço [12], Giambanco et al. [18], Oliveira and Lourenço 

[19], Alfano and Sacco [20]). The great advantage of micro-modelling is the capacity 

for detecting local crack patterns and local failures. Lourenço and Rots [21] proposed a 

powerful interface cap model based on modern plasticity concepts, capable of capturing 

all masonry failure mechanisms, namely tensile cracking, frictional slip and crushing 

along interfaces 

Giambanco and Di Gati [22] and Giambanco et al. [18] proposed a simplified, 

elastoplastic interface model addressing the cohesive-frictional joint transition by taking 

into account geometrical dilatancy related to the roughness of fracture-slip surfaces 

appearing in the pure frictional stage. The yield surface adopted is expressed by a 

classical bilinear Coulomb condition with a tension cut-off. More recently Chaimoon 

and Attard [23]  proposed an elastoplastic interface model for masonry structures. The 

tensile and shear behaviour of joints is represented by a tension cut-off and a Coulomb 

failure surface, whereas the compressive behaviour is described by a linear cap surface. 

This model has been applied in the analysis of masonry beams under in-plane three-

point bending tests (Chaimoon and Attard [24]). A good agreement between the 

experimental and numerical results, in terms of load-displacement diagrams and failure 

modes in three point bending tests, was found. The fracture process in masonry beams 

involved both tensile and shear fracture along the vertical and horizontal bed joints. 

Aiming at better understanding the resisting mechanisms of concrete block masonry 

beams, used above openings in the case of modern masonry buildings, it was decided to 

perform a parametric study based on numerical analysis, taking into account the 

geometry of masonry beams, boundary conditions and vertical and horizontal 



reinforcement ratios. The numerical model was based on a micro-modelling approach so 

that the resisting mechanism, mainly at the level of unit-mortar interfaces, could be 

acquired. The calibration of the numerical model was based on experimental results of 

an extensive experimental investigation, also taking into account the mechanical 

properties resulting from the mechanical characterisation of concrete block masonry. 

 

Brief description of experimental tests 
 

The calibration of the numerical model was carried out from the experimental 

results obtained from flexural and shear tests performed on masonry beams built with 

concrete block units (Haach [25]). The static monotonic tests were carried out following 

two typical test setups (three and four point load configurations) recommended by 

EN846-9 [27], see Fig. 1. Two and three cell hollow blocks were used in the 

construction of the masonry beams, leading to two masonry bonds, namely beams with 

filled vertical joints (two hollow cell blocks) and beams with unfilled (dry) vertical 

joints (three cell hollow blocks). Fourteen masonry beams, of dimensions 1224mm 

length, 400mm depth and 100mm thickness, were tested under a four point bending 

configuration. Ten masonry beams, of 600mm length, 400mm depth and 100mm 

thickness, were tested under a three point configuration. Truss-type pre-fabricated 

reinforcement was used for both bed and head joints. A summary of the typologies of 

the masonry beams is shown in Table 1. Here, F denotes flexure, S denotes shear, 2C 

and 3C relates to the type of unit (two and three cell hollow blocks respectively) and 

UM means unreinforced masonry. The diameter and ratio of the horizontal and vertical 

reinforcement are denoted by φh and φv, ρh and ρv, respectively The designations D3 

and D5 are related to the diameter of the bed joint reinforcement in the case of the 



bending specimens. The letter C indicates that the bending specimen beams have bed 

joint reinforcement only at first course (from the bottom), and the letter D indicates that 

bed joint reinforcement is uniformly distributed in depth. In the case of masonry beams 

tested under a three load configuration, SH means that masonry beams only have 

horizontal reinforcement, and S1, S2 and S3 indicate vertical reinforcement ratios. 

In case of F-specimens, two vertical reinforcement bars of 5mm in diameter 

were introduced at the vertical cores of the concrete blocks between the supports and the 

load application points to avoid shear failure at the supports. Two vertical reinforcement 

bars were added at mid-span (indicated with M) in order to assess their contribution to 

the flexural behaviour of the beams, such as an increase in the flexural strength and the 

prevention of vertical splitting stresses developed at the upper compressive region due 

to high compressive stresses.  

In the case of beams under three load configuration tests, traditional steel bars 

(ρh

Horizontal and vertical reinforcement ratios, ρ

 = 0.70%) were positioned in a layer of mortar at the base of the beam and bed joint 

reinforcement was added at all courses. It should be pointed out that the position of the 

vertical reinforcement was, to a certain extent, defined by the geometry of the concrete 

units and their perforation.  

h and ρv 

[26

, and the distribution of 

reinforcement were the main parameters analysed in the experimental investigation. A 

more detailed overview of the experimental results can be found in Haach ]. 

 

Numerical modelling 
 

The numerical model applied to study reinforced concrete block masonry under in-

plane loading was defined using the software DIANA® [28 ]. The micro-modeling 



approach was chosen for the simulation since it includes all the basic failure 

mechanisms that characterize masonry, enabling the detailed representation of resisting 

mechanisms of the masonry beams. The Newton-Raphson iteration procedure was used 

with displacement control, and an energy convergence criterion with a tolerance of 10-3 

 

was adopted. After validation, the numerical model will be used for a parametric study 

to further assess the influence of parameters on the flexural and shear behaviour of 

concrete block masonry beams. 

Finite element mesh and boundary conditions 
For the numerical simulation a simplified micro-modelling approach was 

adopted. Thus, the finite element mesh was composed of continuum and interface 

elements to represent the masonry units and the masonry joints, respectively, see Fig. 2. 

In the case of concrete units, eight-node isoparametric plane-stress elements with a 2×2 

Gauss integration scheme were adopted. Aimed at foreseeing possible cracking passing 

through the units, potential vertical cracks were introduced at mid-length of the units. 

For the joints, six node interface elements with zero thickness and a 3-point Lobatto 

integration scheme were considered.  

Reinforcement was modelled through embedded bars, resulting in a slight 

increase in the stiffness of the finite element model. Reinforcement strains were 

computed from the displacement field of the continuum elements, which implies a 

perfect bond between the reinforcement and the surrounding material. 

When considered as an integral part of a structural masonry building, masonry 

beams present an intermediate behaviour between a beam restrained in both ends and a 

simply supported beam. The boundary conditions take a central role in the behaviour of 

masonry beams as they govern the failure mechanism. Depending on the boundary 



conditions of the beams, flexural or shear effects can prevail. Due to the difficulty of 

simulating restrained ends in the laboratory, it was decided to consider only simply 

supported beams in the research experimental program. The simply supported masonry 

beams tested in the laboratory were used to calibrate the numerical model but the 

parametric study also considered the possibility of having fixed ends so that the 

boundary conditions could be evaluated in relation to the in-plane shear and flexural 

behaviour of the beams.  

 

Material models and mechanical properties 

Following the micro-modelling approach, where all materials of the reinforced 

concrete block masonry beams with mechanical nature are independently modelled, also 

different materials models were used, namely to represent the mechanical behaviour of 

reinforcement, units, vertical and horizontal unit-mortar interfaces and the potential 

cracks in the middle of units. Most of the mechanical properties for the description of 

the material models were obtained through experimental tests on materials and masonry 

assemblages from Haach [26]. 

The non-linear behaviour of the concrete masonry units was represented by a 

Total Strain Crack Model based on a fixed stress-strain law concept available in the 

commercial software DIANA® [28 ]. The tensile and compressive behaviour of the 

material is represented with one stress-strain relationship in a coordinate system that is 

fixed upon crack initiation. Exponential and parabolic constitutive laws were used to 

describe the tensile and compressive behaviour of the concrete masonry units 

respectively. The mechanical properties needed to describe this material model are the 

elastic modulus of concrete units (E = 9.57 GPa), the Poisson’s ratio of concrete units (ν 



= 0.20), the tensile and compressive strength of concrete units (ftu = 3.19 MPa and fcu = 

12.13 MPa, respectively), the fracture energy of units under tension and compression 

(Gfu
I = 0.06 N/mm and Gcu

[29

 = 10.00 N/mm, respectively) and the shear retention factor 

(β = 0.01). Due to the impossibility of obtaining the post-peak behaviour in tension and 

compression of the three cell concrete units, the values of fracture energy, both in 

tension and compression, were obtained from the experimental results obtained by 

Mohamad ] in concrete blocks with similar raw material composition.  

An interface cap model with modern plasticity concepts proposed by Lourenço 

and Rots [21], and further enhanced by Van Zijl [30], was used for interface elements 

describing the masonry joints. The interface material model is appropriate to simulate 

fracture, frictional slip as well as crushing along material interfaces, which are the 

possible failure modes of the masonry unit-mortar interfaces. The model requires the 

elastic normal and transverse stiffness of bed joints (kn = 20 N/mm3 and ks = 48 N/mm3

[31

, 

respectively). The normal stiffness was calculated based on the results of the direct 

tensile tests carried out to characterise the tensile bond strength of the unit-mortar 

interface (Vasconcelos et al. ]). The shear stiffness was obtained from the results of 

shear tests carried out on triplet specimens to characterise the shear behaviour of the 

concrete unit-mortar interface (Haach [25]). The yield function with exponential 

softening for the tension cut-off model requires the tensile bond strength of bed joints (ft 

= 0.33 MPa) and the mode I fracture energy (Gf
I

[25

 = 0.017 N/mm). The bond tensile 

strength was obtained from the experimental results of flexural tests of masonry carried 

out in the direction parallel to bed joints (Haach ]). Due to the difficulty of obtaining 

mode I fracture energy of the unit-mortar interface, this mechanical property was 



defined by fitting numerical and experimental results obtained in the masonry walls 

(Haach [25]).  

The behaviour of the masonry material in compression is modelled by a 

constitutive law composed by a parabolic hardening rule and a parabolic exponential 

softening branch (Lourenço and Rots [21]). For the definition of this constitutive law 

the value of compressive strength (fc = 5.95MPa) and the compressive fracture energy 

(Gc = 5.00 N/mm) are needed. These mechanical properties were obtained from uniaxial 

compressive tests carried out on masonry wallets. Additionally,  the parameter Css 

needed to take into account the contribution of shear stress to compressive failure (Css

[25

 = 

5.3), was defined by fitting the numerical to experimental results obtained in the 

masonry walls (Haach ]). 

The shear behaviour of the unit-mortar interfaces is given by the Coulomb failure 

criterion. All mechanical parameters defining the Coulomb type failure criterion were 

obtained from the tests carried out on triplet specimens (Haach [25]). The definition of 

this function is made through consideration of cohesion (c = 0.42 MPa), friction 

coefficient (µ = 0.49), dilatancy coefficient (tanψ = 0.52) and the shear fracture energy 

(Gf
II = 2.0 N/mm). In order to capture cohesion softening and friction softening a 

residual friction coefficient (µres = 0.43) was also considered. In the model, the 

dilatancy is considered to be dependent on the normal confining stress and on the shear 

slipping. Thus, for the correct definition of the dilatancy the confining normal stress at 

which the dilatancy becomes zero (σu

In the case of the dry vertical joints, the shear behaviour was also modelled based 

on the Coulomb criterion, with null cohesion and a friction coefficient corresponding to 

 = 1.35 MPa) and the dilatancy shear slip 

degradation coefficient (δ = 1.64) were also obtained by experimental analysis.  



the dry contact between two surfaces of concrete (µ = 0,65). Very low values of normal 

and transverse stiffness (2 N/mm3

According to Lourenço and Rots 

) were considered, with zero tensile strength.  

[21] it is useful to model potential cracks in units 

in order to avoid an overestimation of the collapse load and of the stiffness. Thus, 

potential cracks placed in the middle of the units were considered through interface 

elements with a discrete cracking model. High stiffness should be considered for these 

interfaces according to the suggestion of Lourenço [12] (kn = 106 N/mm3 and ks = 106 

N/mm3, respectively). In addition, an exponential softening behaviour was adopted for 

the tensile behaviour of these interfaces with a tensile bond strength, ft, of 3.19 MPa and 

a mode I fracture energy, Gf
I

[25

, of 0.06 N/mm. These properties were obtained from 

uniaxial compressive tests carried out on the concrete units (Haach ]). The 

constitutive law for discrete cracking in DIANA® [28 ] expresses the stresses as a 

function of the total relative displacements between surfaces.  

An elasto-plastic model based on the yield criterion of Von Mises was adopted to 

describe the behaviour of the reinforcement considering the yield stress equal to 580 

MPa and the Young’s modulus equal to 196 GPa. These properties were obtained from 

tensile tests carried out on reinforcements (Haach [25]). As the reinforcement elements 

overlap the interface elements representing the masonry joints, and thus have traction 

components in the same directions as the interface elements (normal and shear 

components), a ‘free length’ (thickness of the joints) is needed in order to properly 

account for the stiffness of the interface crossed by the reinforcement. Reinforcement 

considerably increases the stiffness of the interface elements and the additional normal 

and shear stiffness of the interface elements crossed by the steel reinforcements is given 

respectively by Eq. 1 and Eq. 2: 
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where, Es  is the elastic modulus of reinforcements and lfr

It should be stressed that the presence of reinforcement leads to a significant 

increase of the elastic stiffness of the interfaces. As the stiffness attributed to the 

interfaces is much larger than the stiffness attributed to the masonry joint, the global 

non-linear problem becomes ill-conditioned. The number of iterations needed to achieve 

convergence, and consequently the computational effort, increase. 

 is the thickness of mortar 

joints. 

 

Validation of numerical model 
 

By comparing the experimental and numerical results in terms of maximum load 

applied to the types of masonry beams summarised in Table 2, it is observed that the 

numerical analysis provides reasonable agreement for the majority of the masonry 

beams, with a difference between experimental and numerical ultimate load lower than 

15%. The higher differences are obtained for unreinforced specimens (F-3C-UM, F-2C-

UM). The failure modes obtained for the unreinforced masonry are initiated by a central 

vertical joint and progresses to the top of the beams through the horizontal and vertical 

joints in a stair stepped configuration. This failure pattern involves mainly tensile and 

shear bond resisting mechanisms at the unit-mortar interface level, in agreement with 

the results reported by Chaimoon and Attard [24]. Thus, the shear strength parameters 

like cohesion and friction angle take a major role in the behaviour of these beams. On 



the other hand, it should be mentioned that the mortar used in the construction of the 

unreinforced specimens exhibited lower values of compressive strength, which 

indicated that, possibly, the adherence was not as good as the one obtained in the triplet 

test and used in the numerical modelling. It is likely that the influence of cohesion is not 

much relevant in the case of specimens combining horizontal and vertical 

reinforcement.  

The comparison of selected numerical and experimental load-displacement 

diagrams, obtained from the LVDT placed at mid length of the beams, for both load 

configurations and for masonry beams built with 3C- and 2C-units is displayed in Fig. 

3. It can be observed that specimens under the four point load configuration exhibit a 

typical flexural behaviour presenting reasonable agreement in the pre-peak regime with 

numerical model. Lesser agreement between experimental and numerical responses was 

observed in specimens governed by shear failure patterns (F-3C-D5-D-M and F-2C-D5-

D-M). In fact, it can be seen that the increase in the horizontal reinforcement ratio leads 

to a change in the cracking patterns from flexure to shear.  

In the case of S- specimens (three point load configuration) there was a very 

good agreement of numerical and experimental load-displacement diagrams for 

specimens failing in shear for the pre-peak and post-peak regime. The specimen S-2C-

SH, in which only horizontal reinforcement was added, exhibited the worst agreement 

both in terms of ultimate load and pre-peak regime due to the local crushing failure 

under the load application point that occurred in this test. 

It should be highlighted that numerical and experimental cracking patterns and 

failure modes showed very reasonable agreement. In the case of F- specimens, flexural 

stair stepped cracks growing from the vertical joints at the mid-span of the masonry 



beams up to the upper edge of the beams were observed in the numerical model, 

similarly to the crack patterns observed in the experimental specimens, see Fig. 4a. In 

case of S- specimens the numerical model also reproduces very well the localisation of 

the diagonal strut crushing according to that observed in experimental tests, see Fig. 

4b.In addition, it should be mentioned that the numerical model predicts very well the 

experimental strains developed in the reinforcement. As an example, Fig. 5 shows 

excellent agreement between the numerical and experimental strains at bed joint 

reinforcements (flexural specimen F-3C-D5-D) along the depth of the beam.   

To sum up, it is stressed that, in general, a reasonable agreement was achieved 

between numerical and experimental results obtained in masonry beams. Due to the 

simplifications considered, numerical modelling was not able to capture the cracking of 

the webs of the units observed in experiments due to the high compression stresses at 

the upper region of the beams. However, it is considered that the numerical model is 

acceptable to carry out the parametric study. 

 

Parametric study 

 

The main aim of the parametric study was to assess the influence of some parameters, 

which could not be evaluated in the experimental investigation both in relation to in-

plane flexural and shear behaviour of masonry beams. The parameters selected were (i) 

the span to depth ratio, (ii) the horizontal reinforcement ratio and (iii) the combination 

of vertical and horizontal reinforcement. These parameters were evaluated for two 

boundary conditions, namely simply supported and fixed end masonry beams, in order 

to discuss their role when flexure and shear failure predominated. For each boundary 



condition eight span to depth ratios were adopted, as shown in Fig. 6 and Fig. 7 (for 

simply supported beams). The same geometries were used for fixed end beams, leading 

to slightly lower depth to span ratios due to the location of the supports. A three point 

load configuration was adopted for the numerical simulation. The application of the 

load was in displacement control in order to avoid convergence problems in the post-

peak regime. The parametric study was carried out by considering the material 

properties and the three cell units used in the calibration of the numerical model. 

 

Analysis 1- Influence of the geometry of the unreinforced beams  

Similarly to what was found in the experimental analysis, it was observed that 

unreinforced masonry beams behaved in a very brittle manner due to the low strength of 

the unit-mortar interfaces. The crack patterns depended on the predominant shear or 

flexural behaviour but always followed the unit-mortar interfaces. 

Simply supported masonry beams failed in flexure, whereas fixed end beams 

failed in shear. Fig. 8 shows the typical cracking found for both boundary conditions 

under consideration. The onset of flexural cracking occurred at the bottom vertical 

joints located at mid span, where tensile normal stresses in vertical joints were at 

maximum, see Fig 10a. The shear cracking pattern was characterized by diagonal 

cracking along the compressed struts following the unit-mortar interfaces, see Fig. 8b. 

In both cases, the strength of beams was controlled by the shear and tensile bond 

strength of the vertical and horizontal bed joints. It is noted that the tensile bond 

strength of the dry vertical joints is zero, meaning that the progress of the flexural 

cracks from the bottom to the top of the beams was due to the shear bond strength 

failure of the bed joints. This means also that the flexural strength of masonry beams 



with dry head joints is assured by the shear strength of the bed joints. On the other hand, 

the shear bond strength was dependent on the normal stresses of the bed joints. The 

profiles of normal stresses at the bed joint of the first course (from the bottom) of 

simply supported beams with different span to depth ratios are shown in Fig. 9.  For the 

same depth and increasing span length corresponding to a higher span to depth ratio, the 

normal stresses present higher amplitude. This means that normal stresses in bed joints 

increase with the higher flexural deformed shape resulting in the greater interlocking 

between units. This behaviour is also valid in the case where the depth increases and the 

span length is kept constant, where the interlocking between units progressively 

decreases as a result of the lower flexural deformation of the beams. 

In the case where shear stresses predominate over flexural stresses (all fixed end 

masonry beams), it can be seen that the shear resistance of the beams depends on the 

combination of the tensile and shear bond strength of the mortar bed and dry head 

joints, respectively. Indeed, the progress of diagonal cracks depends on the achievement 

of the dry friction resistance of the head joints and on the tensile bond strength of the 

mortar joints, as the shear sliding of vertical joints induces tensile stresses at the mortar 

bed joints leading to diagonal cracking mostly at the unit-mortar interfaces. It should be 

noted that the shear friction resistance of the vertical joints is enhanced by the 

compressive stresses in the direction parallel to the bed joints developed in the upper 

region of the beam due to flexure.  

As aforementioned, due to the low shear and tensile bond strength of the unit-

mortar interface, diagonal cracking mostly develops along the unit-mortar interfaces. 

This means that the shear behaviour of masonry beams is very dependent on the normal 

stresses in the vertical and horizontal joints, since it is assumed that their shear 



resistance follows a typical Mohr-Coulomb criterion. From Fig. 10, where the 

distribution of normal and shear stresses along the diagonal crack is shown (vertical 

interfaces), it can be observed that the normal stresses present higher values at the 

extremities of the diagonal crack line (DCL) resulting from the typical normal stress 

diagram due to bending moments. It can be noted that the evolution of normal stresses 

along the diagonal considers different vertical alignments, resulting in a non-symmetric 

normal stress distribution. In the middle of the DCL normal stresses present low values 

which lead to a minimum shear strength. By comparing the normal stresses through the 

DCL among the masonry beams with different depths and spans for a same load level it 

can be concluded that the normal stresses increase with the reduction of depth of the 

beam and with the increase of the span of the beam, see Fig. 11. The normal stresses 

along the depth of the masonry beams can be the result of axial forces and bending 

moments. The increase in the normal stresses along the DCL is the result of: (a) an 

increase in the bending moments in the case of increasing span lengths; (b) the 

reduction of the inertia moment of the cross section in case of the decrease on the depth 

of the masonry beams. 

The results obtained from the distribution of shear stresses along the DCL 

reveals that they also increase with the reduction of beam depth and with the increase of 

the beam span, see Fig. 12. In the first case it is expected that the shear stresses decrease 

with an increase of beam depth, since the length on which the shear stresses develop for 

the same load level increases. The increasing shear stresses with increasing beam span 

lengths can be explained in a similar manner. In the case of increasing span-to-depth 

ratio, it is possible that the damage at the bottom of the beam due to flexure, associated 



with higher bending moments, reduces the effective depth resisting to  shear stresses 

leading to the higher shear concentration stresses. 

By comparing the progress of the vertical load applied to the masonry beams 

with the span to depth ratio illustrated in Fig. 13, it can be seen that the span to depth 

ratio plays a major role on the maximum load applied to the beams. The resistance of 

fixed end beams is clearly higher than the resistance of simply supported beams. In both 

cases, the increase in the span to depth ratio results in the decrease of the resistance of 

the masonry beams. However, the reduction of the resistance is particularly remarkable 

when the depth of the cross section is reduced, whereas the influence of the increase on 

the span length keeping the cross section constant is much less relevant. In fact, a 

decrease in the depth of the beam results in a reduction of the resisting cross section and 

in the resisting geometric properties like inertia moment, leading to a lower capacity to 

resist bending and shear stresses.  Besides, as aforementioned, for the same load acting 

on the beam the shear stresses are minimal for the highest depth of the beam, meaning 

that extra load can be applied before failure is reached.  

The reduction of the resistance for increasing span lengths is essentially 

associated to an increase in the bending moments and higher stress concentrations. In 

the case of fixed end masonry beams, where the shear response is predominant, an 

increase in the normal stresses for increasing span lengths, leading to an increase in the 

shear strength along the interfaces, appears to be counterbalanced by an increase in the 

bending moment. In relation to fixed end masonry beams the higher resistance of the 

beam with a span to depth ratio (L/H) of 2.03 can also be explained by its geometry, 

which completely avoids the sliding of the central region over the diagonal crack of the 



beam, as the progress of the diagonal crack from the top of the beam is restrained by the 

supports.  

 

Analysis 2 – Assessment of the influence of the horizontal reinforcement 

The influence of the horizontal reinforcement in the flexural and shear behaviour 

of masonry beams was analysed by considering different arrangements of bed joint 

reinforcement for both boundary conditions. Two different arrangements of 

reinforcement were considered: (i) reinforcement uniformly distributed along the depth 

and (ii) reinforcement concentrated at first course. Three horizontal reinforcement 

ratios, ρh

The variation of the load capacity of simply supported and fixed end masonry 

beams for different depth to span length ratios is displayed in Fig. 14. As expected, 

addition of horizontal reinforcement results in the improvement of flexural resistance 

due to the enhancement of the tensile strength of masonry and avoids its premature and 

brittle failure. Simply supported masonry beams with horizontal reinforcement 

concentrated at the first bed joint exhibited higher flexural strength, as expected, since 

the contribution for the improvement of the tensile strength is higher due to the higher 

reinforcement area with a higher lever arm. In general, the load capacity of beams was 

clearly improved by the introduction of horizontal reinforcement, but the variation of 

the horizontal reinforcement ratio seemed not to influence the strength of masonry 

beams. The increase of the load capacity was more remarkable in simply supported 

beams, achieving in average 50% higher values than in unreinforced masonry beams, 

, were considered: 0.10%, 0.20% and 0.30% in the case of uniform distribution 

along the depth and one reinforcement ratio equal to 0.10% was considered in the case 

of concentrated bed joint reinforcement at first course.  



probably due to the change in failure mode. In the case of fixed end beams, shear failure 

mode with diagonal cracking is maintained and an increase in the load capacity of 15% 

is attained. 

In the case of fixed end masonry beams, whose predominant shear behaviour is 

revealed by the shear diagonal cracking, it should be noted that the concentration of bed 

joint reinforcement at first course (from the bottom) appears to be harmful. This means 

that a concentration of bed joint reinforcement should be avoided. The concentrated 

reinforcement at the first course (from the bottom) is not effective in the distribution of 

cracking, even if it avoids flexural cracking at the bottom edge of the beam leading to 

shear failure with diagonal cracking. A more distributed crack pattern is only achieved 

through the distribution of reinforcement along the depth of the beam. The increase on 

the reinforcement ratio also improves the cracking distribution. 

From the distribution of normal and shear stresses along the DCL for the same 

load level it can be concluded that the introduction of horizontal reinforcement reduces 

the level of stresses in the DCL, independently on the boundary condition. The lowering 

of the stresses along the DCL is the result of the stress transfer between the masonry and 

reinforcement. The reduction of normal and shear stresses is related to the arrangement 

of the steel bars along the depth of the masonry beam. The level of shear stresses in 

unreinforced and reinforced masonry beams with concentration of bed joint 

reinforcement at first course (from the bottom) is practically coincident. This behaviour 

confirms that the concentrated reinforcement is not effective in the redistribution of 

shear stresses between masonry and reinforcement, meaning that horizontal 

reinforcement did not provided an increase in the shear capacity of masonry beams.   

 



Analysis 3 – Evaluation of the contribution of combined vertical and 

horizontal reinforcement 

The influence of vertical reinforcement in the behaviour of masonry beams was 

analysed by considering three vertical reinforcement ratios, namely 0.05%, 0.15% and 

0.25% and keeping a constant bed joint reinforcement ratio of 0.20%. The vertical 

reinforcement spacing was fixed in 200mm, even if for the vertical reinforcement ratio 

of 0.05% an additional spacing of 300mm was considered. In this analysis the same 

geometry, loading and boundary conditions of the previous studies were used.  

Figure 17 shows the progress of the maximum load with the variation of the span 

to depth ratio and with the variation of the vertical reinforcement ratio. It can be 

observed that the maximum load increases significantly with the addition of vertical 

reinforcement. Besides, vertical reinforcement controls the opening of diagonal 

cracking.  

In case of simply supported masonry beams, it can be observed that the variation 

of the vertical reinforcement ratio has no significant influence on their behaviour, which 

can be explained by the crushing failure mode of the beams at the top. Simply supported 

beams with large span length to depth ratios, such as the beam with L/H = 4.57, reached 

the crushing of masonry before the yield of reinforcement. The strength of beams 

increased with the decrease of the span to depth ratio and the crushing took place after 

the yielding of reinforcement. In fact, with the increase of the applied vertical load some 

vertical reinforcement reached the yield stress, which means that the beam became more 

deformable. This enabled also the yielding of horizontal reinforcement, contributing to 

the increase of the ultimate load of the beams. 



In the case of fixed end masonry beams, given the preponderance of diagonal 

cracking over flexural cracking, the vertical reinforcement was effective in the 

resistance to shear stresses, always achieving the yield strength. As in the case of simply 

supported beams, the yield of vertical reinforcement made the beam more deformable, 

leading to the yielding of horizontal reinforcement and finally to the crushing of 

masonry. Therefore, the increase in the vertical reinforcement ratio delayed the crushing 

of masonry and improved the behaviour of the beam. 

Variation in spacing of vertical reinforcement did not influence the behaviour of 

simply supported masonry beams, but in case of fixed end specimens higher spacing in 

general appeared to reduce the strength of the beams. This behaviour can possibly be 

explained by the higher capacity of control over the opening of diagonal cracks and 

premature crushing of masonry, see Fig. 16. In contrast to the simply supported beams, 

in fixed end masonry beams an increase in the vertical reinforcement ratio improves the 

shear capacity of the beams, confirming its effective role in resisting shear stresses. 

Finally, it was decided to evaluate the influence of the horizontal reinforcement 

ratio by keeping the configuration of vertical reinforcement.  For this, a constant vertical 

reinforcement ratio of 0.05% with a spacing of 200mm was considered. Three 

horizontal reinforcement ratios were adopted with uniform distributed reinforcement 

along depth of the beams, namely 0.10%, 0.20%, 0.30% and one reinforcement ratio of 

0.10% was considered when concentrated horizontal reinforced was introduced at first 

course.  

From Fig. 17, it can be seen that the introduction of vertical reinforcement 

improved the contribution of the horizontal reinforcement ratio to the strength of the 

beams. In fact, as aforementioned, without vertical reinforcement the behaviour of the 



simply supported beams was almost not affected by the variation of the horizontal 

reinforcement ratio. This behaviour is valid for all span to depth ratios. 

In fixed end masonry beams, similarly to the discussion when only horizontal 

reinforcement was introduced to the beams, their behaviour shows practically no 

sensitivity to the variation of the horizontal reinforcement ratio. However, it should be 

mentioned that the addition of vertical reinforcement enhances the load capacity when 

results are compared to the values obtained in beams reinforced only at bed joints. This 

means that in the masonry beams governed by shear the horizontal reinforcement does 

not seem to influence in a great extent the shear strength of masonry beams. 

 

Conclusions and final remarks 
 

For the numerical simulation of concrete block masonry beams under flexure and 

shear a micro-modelling approach was adopted due to the need to understand in detail 

the resisting mechanisms. In a first phase the numerical model was calibrated based on 

the experimental results of masonry beams tested under four point and three point load 

configurations. The mechanical properties of materials used in the model were obtained 

from experimental tests, even if a few of them had to be obtained by a comparison of 

the numerical and the experimental results. Very reasonable agreement was found 

between the numerical force-displacement diagrams describing the mechanical 

behaviour of masonry beams. In a second phase, an extensive parametric study was 

performed aiming at evaluating the influence of the different parameters such as the 

aspect ratio, boundary conditions and horizontal and vertical reinforcement ratios in the 

behaviour of masonry beams.  

The parametric study carried out on masonry beams revealed that:  



(a) The mechanical behaviour of unreinforced masonry beams appeared to be  

controlled by tensile and shear bond resisting mechanisms as flexural and diagonal 

cracks developed along the unit-mortar interfaces. Unreinforced masonry beams 

presented very brittle behaviour.  

(b) Horizontal reinforcement increased the flexural strength of masonry beams 

and improved ductility.  However, it should be stressed that the enhancement on 

strength was more remarkable in the case of simply supported beams, where flexural 

behaviour is predominant. Horizontal reinforcement increased the shear strength of 

masonry beams relative to unreinforced beams due to the prevention of sliding and thus 

of the progress of diagonal cracking.  

(c) The sensitivity to variation of the bed joint reinforcement ratio is clear in the 

case where vertical reinforcement was added for simply supported beams. In case of 

fixed end masonry beams, the presence of horizontal reinforcement also contributes to 

the improvement of the strength of the beams but the strength was not sensitive to the 

variation of the reinforcement ratio. 

(d) The introduction of vertical reinforcement combined with bed joint 

reinforcement improved considerably the flexural and shear resistance of masonry 

beams.  The vertical reinforcements controlled the crack opening and generated a 

change in the failure mode of the beams promoting the crushing of masonry after 

yielding of vertical and bed joint reinforcement. It should be stressed that fixed end 

masonry beams were sensitive to the vertical reinforcement ratio, as it effectively 

contributed to improve the shear strength of the masonry. 
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Fig. 1 – Test setup of masonry beams: (a) four point load test and (b) three point load 

test (dimensions in mm). 

Fig. 2 – Example of mesh applied to the masonry beams. 

Fig. 3 - Comparison between numerical and experimental results (Force vs. 

displacement diagrams): (a) F-3C-D3-C, (b) F-2C-D3-C, (c) S-3C-S3 and (d) S-2C-S3. 

Fig. 4 - Comparison between numerical and experimental crack patterns: (a) F-3C-D3-C 

and (b) S-3C-S3. 

Fig. 5 – Comparison between experimental and numerical strains in horizontal 

reinforcement of specimen F-3C-D5-D. 

Fig. 6 – Simply supported masonry beams: variation of span. 

Fig. 7 - Simply supported masonry beams: variation of depth. 

Fig. 8 - Deformed mesh with the representation of the maximum principal stresses after 

the application of a displacement equal to 0.75 mm: (a) simply supported beam (L/H = 

3.05) and (b) fixed end beams (L/H = 3.55). 

Fig. 9 - Normal stress distribution in first bed joint of simply supported beams with the 

same level of loading: (a) variation of span length (P=2kN) and (b) variation of depth 

(P=5kN). 

Fig. 10 - Profiles of stresses in vertical joints along the diagonal crack line (DCL) in 

fixed end beam (L/H = 4.06): (a) normal stresses and (b) shear stresses. 

Fig. 11 - Normal stresses in vertical joints along the DCL of fixed end beams for the 

same level of vertical load: (a) influence of the variation of the depth (P= 10kN) and (b) 

influence of the variation of span (P= 5kN). 



Fig. 12 - Shear stresses along vertical joints of the DCL of fixed end for the same level 

of vertical load: (a) influence of the variation of the depth (P= 10kN) and (b) influence 

of the variation of span (P= 5kN). 

Fig. 13 - Variation of load capacity of unreinforced beams in relation to the span to 

depth ratio. 

Fig. 14 – Variation of load capacity with variation of horizontal reinforcement ratio of 

beams reinforced only with horizontal bars: (a) simply supported and (b) fixed ends. 

Fig. 15 – Variation of load capacity with variation of vertical reinforcement ratio of 

beams reinforced with vertical and horizontal bars: (a) simply supported and 

(b) fixed ends. 

Fig. 16 – Deformed mesh with the representation of the minimum principal stresses 

after the application of a displacement equal to 3.00 mm in a fixed end beam with L/H = 

3.36: (a) spacing equal to 200 mm and (b) spacing equal to 300 mm 

Fig. 17 - Variation of load capacity with variation of horizontal reinforcement ratio of 

beams reinforced with vertical and horizontal bars: (a) simply supported and (b) fixed 

ends. 
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Table 1 – Experimental details of masonry beams. 

Beam Øh ρ
(mm) (%) 

h  Øv ρ
(mm) (%) 

v  Dimensions  
(mm) 

F-3C-UM - - 5 0.112 1407x404x100 
F-3C-D5-C 5 0.097 5 0.112 1407x404x100 
F-3C-D5-D 5 0.292 5 0.112 1407x404x100 

F-3C-D5-D-M 5 0.292 5 0.167 1407x404x100 
F-3C-D3-C 3 0.035 5 0.112 1407x404x100 
F-3C-D3-D 3 0.105 5 0.112 1407x404x100 

F-3C-D3-D-M 3 0.105 5 0.167 1407x404x100 
F-2C-UM - - 5 0.118 1420x408x94 

F-2C-D5-C 5 0.102 5 0.118 1420x408x94 
F-2C-D5-D 5 0.307 5 0.118 1420x408x94 

F-2C-D5-D-M 5 0.307 5 0.177 1420x408x94 
F-2C-D3-C 3 0.037 5 0.118 1420x408x94 
F-2C-D3-D 3 0.111 5 0.118 1420x408x94 

F-2C-D3-D-M 3 0.111 5 0.177 1420x408x94 
S-3C-UM - 0.292 - - 804x404x100 
S-3C-SH 5 0.292 4 0.094 804x404x100 
S-3C-S1 5 0.292 4 0.125 804x404x100 
S-3C-S2 5 0.292 4 0.219 804x404x100 
S-3C-S3 5 - - - 804x404x100 
S-2C-UM - 0.307 - - 808x408x94 
S-2C-SH 5 0.307 4 0.066 808x408x94 
S-2C-S1 5 0.307 4 0.132 808x408x94 
S-2C-S2 5 0.307 4 0.199 808x408x94 
S-2C-S3 5 0.292 - - 808x408x94 

 



Table 2 – Comparison between experimental and numerical results concerning the ultimate load. 

Beam HExp
(kN) 

  H
(kN) 

Num HNum / H
 (%) 

Exp Beam HExp
(kN) 

  H
(kN) 

Num HNum / H
 (%) 

Exp 

F-3C-UM 4.05 5.48 1.35 F-2C-UM 5.90 8.68 1.47 
F-3C-D3-C 23.32 24.90 1.07 F-2C-D3-C 24.09 25.14 1.04 
F-3C-D3-D 33.19 29.70 0.89 F-2C-D3-D 37.73 28.79 0.76 

F-3C-D3-D-M 33.30 32.75 0.98 F-2C-D3-D-M 37.38 34.59 0.93 
F-3C-D5-C 44.90 37.56 0.84 F-2C-D5-C 45.54 40.78 0.90 
F-3C-D5-D 45.04 47.66 1.06 F-2C-D5-D 61.24 50.05 0.82 

F-3C-D5-D-M 59.31 51.01 0.86 F-2C-D5-D-M 56.10 57.20 1.02 
S-3C-UM 66.80 48.72 0.73 S-2C-UM 62.11 59.20 0.95 
S-3C-SH 86.68 60.70 0.70 S-2C-SH 100.34 77.72 0.77 
S-3C-S1 102.91 94.14 0.91 S-2C-S1 127.61 115.60 0.91 
S-3C-S2 110.89 97.08 0.88 S-2C-S2 102.75 125.20 1.22 
S-3C-S3 101.43 105.80 1.04 S-2C-S3 188.96 192.20 1.02 
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