
Checkpoint and Run-Time Adaptation with Pluggable Parallelisation

Bruno Medeiros
Departamento de Informática/CCTC

Universidade do Minho
Braga, Portugal

brunom@di.uminho.pt

João L. Sobral
Departamento de Informática/CCTC

Universidade do Minho
Braga, Portugal

jls@di.uminho.pt

Abstract— Enabling applications for computational Grids
requires new approaches to develop applications that can
effectively cope with resource volatility. Applications must be
resilient to resource faults, adapting the behaviour to available
resources. This paper describes an approach to application-
level adaptation that efficiently supports application-level
checkpointing. The key of this work is the concept of pluggable
parallelisation, which localises parallelisation issues into
multiple modules that can be (un)plugged to match resource
availability. This paper shows how pluggable parallelisation
can be extended to effectively support checkpointing and run-
time adaptation. We present the developed pluggable
mechanism that helps the programmer to include
checkpointing in the base (sequential). Based on these
mechanisms and on previous work on pluggable
parallelisation, our approach is able to automatically add
support for checkpointing in parallel execution environments.
Moreover, applications can adapt from a sequential execution
to a multi-cluster configuration. Adaptation can be performed
by checkpointing the application and restarting on a different
mode or can be performed during run-time. Pluggable
parallelisation intrinsically promotes the separation of
software functionality from fault-tolerance and adaptation
issues facilitating their analysis and evolution. The work
presented in this paper reinforces this idea by showing the
feasibility of the approach and performance benefits that can
be achieved.

Keywords-application-level checkpointing; run-time
adaptation; pluggable parallelisation; aspect oriented
programming

I. INTRODUCTION
The first stage of enabling an application to run on

computational Grids (a.k.a, gridification) relies merely on
adapting the application to use Grid services, without further
application-specific improvements. A pragmatic example is
the MPICH-G2 [1] that enables applications written in MPI
to run on computational Grids, using the Globus toolkit. The
next stage in application gridification is the adaptation of
application behaviour to resources effectively committed to
application execution [2]. In Grid systems resources
committed to the application can change during application
execution. Examples of such variability include: resource
failure, requests to release allocated resources for use by
higher priority jobs and availability of new resources. Thus,
the application might have to increase or decrease its

resource usage during execution. At an extreme case the
application can be forced to restart on a different set of
resources. Grid applications can take a long time to
complete, becoming essential to address the failure of
resources. One way to address these failures is to
periodically save application data to disk and, in the case of
a failure, restart the application from the last checkpoint.

An essential requirement for fault-tolerance and
adaptability mechanisms in Grid systems is portability.
Fault-tolerance mechanisms should avoid changes to current
Grid middleware and the information should be saved in a
portable manner to allow an easy application migration
across the heterogeneous set resources typical of a Grid
environment. Moreover, the amount of saved information
must be minimal, as Grids have dedicated remote storage
elements, which increase the latency to store and retrieve
data, when compared with traditional cluster environments.

System-level checkpointing mechanisms are intrinsically
non-portable, as they require changes to the underlying
middleware; they save information on a machine dependent
format and tend to save unnecessary data since they do not
take advantage of application specific knowledge. On the
other hand, application level mechanisms avoid these
drawbacks but they require an additional effort from the
programmer to insert code for checkpointing.

Self-adaptive systems require strategies for resource
selection and malleable applications. The former involves
the selection of the most appropriate set of resources to
assign to the application. For instance, in [3] a strategy is
presented to decide how many computing resources should
be allocated to the application by periodically collecting
performance data from the application processors. The latter
is concerned with reshaping the application to effectively
use the given set of resources. Current approaches to
reshaping are based on over-complete decompositions,
where parallel tasks are coalesced when the resources
committed to the application are less than the number of
potential parallel tasks [4]. These works are mainly
concerned with providing low cost implementations of
excess of parallel tasks and/or with performing data
redistributions. They can be regarded as providing a
dynamic mapping of applications to resources, according to
Foster design phases [5]. Thus, the application structure
remains basically the same, only the mapping to resources

Published in the 40th International Conference on Parallel Processing (ICPP’11)
@IEEE Computer Society. Original publication in http://dx.doi.org/10.1109/ICPP.2011.83

changes. This can limit the adaptability to only a few tens of
resources, since adapting an application with thousands of
potential parallel tasks can introduce high costs, especially
when running on a small set computing resources.

In this paper we address the second issue, by exploring a
strategy to effectively write malleable parallel applications
that can reshape the parallelism structure. For instance, we
address the reshaping of a sequential execution mode to
concurrent execution based on shared memory. We assume
that the adequate set of resources committed to the
application is identified with other tools/methodologies
(e.g., [3]).

The key insight presented in this paper is that using an
approach based on pluggable parallelisation, which localises
parallelisation issues into well-defined modules, enables an
effective way to adapt the application to the resources
committed to application execution. Moreover, fault-
tolerance is automatically provided in parallel execution
environments by requesting the programmer to specify
fault-tolerance in the sequential base code, using the
provided pluggable mechanisms.

Pluggable parallelisation intrinsically promotes the
separation of software functionality from fault-tolerance and
adaptation issues facilitating their analysis and evolution. In
this paper we extend previous work on using aspect oriented
programming to modularise parallelisation and gridification
issues [6][7][8] to support pluggable application-level
checkpointing and dynamic adaptability of parallelism.

The next section compares this work against other
approaches. Section III briefly presents the pluggable
parallelisation approach and section IV describes its
extension to support application-level checkpoint and
adaptation. Section V presents performance results and the
last section concludes this paper and outlines future work.

II. RELATED WORK
OpenMP [9] introduces directives to specify

parallelisation issues that can be ignored in a strict
sequential execution. Thus, in OpenMP we can unplug the
parallel code, but this is only possible if no explicit calls to
the OpenMP API are performed. Moreover, parallelisation
can only be unplugged at compile-time. OpenMP presents
strong limitations when specifying efficient applications for
distributed memory machines due to its centralised
execution model. Application-level checkpointing
mechanisms for OpenMP were proposed in [10].

MPI and its Grid enabled version, MIPCH-G2 [1]
imposes a fixed parallelism structure, i.e., the structure
cannot change during execution. MIPICH-G2 can use
specific communication middleware among nodes and
supports the development of configuration aware
applications. Although, it is hard to support a high degree of
adaptability as the parallelism-related code in mixed with
the domain specific code. Thus, with MPI it is only possible
to use over-decomposition to support adaptive applications,
leading to an additional overhead when multiple processes

are mapped into the same physical resource. Checkpointing
and adaptability mechanisms for MPI were proposed in
[4][11].

Skeleton-based approaches [12] present a higher degree
of adaptability, as only the high-level parallelism pattern is
specified in the application (e.g., a Farm or a Pipeline),
giving flexibility to the skeleton implementation to find the
best implementation for each running conditions. This
approach can also encapsulate fault-tolerance issues in the
skeleton implementation. Although there are some
approaches that support Grid systems [13], these approaches
do not yet support the dynamic reconfiguration of the
parallel structure associated to an application. Skeleton
based approaches have similarities to the proposed work as
they also explicitly separate domain-specific code from
parallelisation issues and they give more freedom to find the
best running strategy for each pair skeleton/target platform
(e.g., the parallelism degree).

Previous work on adaptability relies on optimising the
mapping of a fixed parallel structure into a given set of
resources (which might change dynamically). These are
optimisations of the mapping of application level tasks into
available resources. For instance, optimisation of a skeleton
farm in [14] is concerned in performing the best scheduling
of tasks on a specific set of resources. Similarly, [15] deals
with reconfiguring ASSIST applications to effectively
leverage the available resources, by dynamically changing
the mapping of virtual processors into processing elements.
Work in [16] presents a system where applications are
reconfigured if the performance contract is not meet.
Reconfiguration is performed by checkpointing application
state to disk and restarting on a different set of resources. A
similar strategy for MPI-based applications is presented in
[4], where a set of MPI processes can be restarted on a
different platform. Overall these approaches can adapt the
mapping of processes to processors but they cannot change
the amount of parallelism within an application to match a
particular target platform, resulting in some overhead when
the parallelism degree largely surpass the number of
available compute resources.

One way to avoid the overhead of over-decomposition,
when running on a small amount of resources, is to promote
more malleable applications by dynamically creating tasks.
Divide and conquer pattern of parallelism was proposed for
that goal [17][3], avoiding the need to migrate running tasks
as only newly created tasks are used to adapt the parallelism
degree of the application. This approach imposes additional
burden to programmers, as tasks should be dynamically
created during application execution, a model that is not
adequate for most applications and might impose additional
overheads due to dynamic task creation.

Our previous work addressed the modularisation and
decomposition of parallelisation issues into several modules
[6] and on pluggable modules to Grid-enable existing
applications [7], with fewer changes than current
approaches. This previous work focused on separating

parallelisation issues from domain specific codes by means
of pluggable parallelisation [8], that at compile-time (or
load-time), rewrite the application-specific code to deliver
Grid-enabled codes. In this approach, the same base code
can be used for a strict sequential execution, shared memory
systems and distributed memory systems, by plugging
different parallelisation modules. Thus, a single code base
can be statically adapted for a wide range of platforms.

In this article we extend our previous work to also
modularise fault-tolerance and adaptability issues and show
that modularising parallelisation helps to develop adaptive
Grid applications. Our model is extended to support
checkpointing and reconfiguration, thus achieving malleable
Grid-enabled codes.

III. PLUGGABLE PARALLELISATION
This section presents the programming model underlying

the pluggable parallelisation approach. The next subsections
give an overview of the programming model, present the
programming constructs for shared and distributed memory
and show an illustrative example. Additional details can be
found in [8][18].

A. Programming Model
Our programming model resemble to the OpenMP model,

as in OpenMP the parallelisation process can be separated
from the writing of domain specific code. In OpenMP
programmers can start by developing the domain specific
code and later introduce OpenMP directives to specify
parallel execution. These directives can be seen as user
specified application rewritings to derive the parallel version
of the code (actually, an OpenMP compiler rewrites the
code to generate a parallel version). OpenMP fails, however,
to provide alternative parallelisation for the same domain
specific code as the parallelisation process requires invasive
changes to the domain specific code.

The key of pluggable parallelisation is to regard the
parallelisation process as an optimisation phase where
domain specific code is rewritten to execute in parallel,
according user specified pluggable modules. In this
approach, like in OpenMP, programmers start by writing the
domain specific code. Parallel programming abstractions
specify how to rewrite the base code to enable parallel
execution. The key difference is that these rewriting are
provided in separated modules and we also support
programming abstractions for distributed memory. This
approach introduces several key benefits:
• Modularity: the code that specifies parallel execution is

confined to well defined modules;
• Incremental development: it is possible to start with

simpler (or “sequential” like) versions and later to
develop more complex parallel versions by improving
or adding more parallelisation modules;

• Pluggable: the domain specific code can run without
parallelisation and it is possible to develop alternative
parallel versions and can be selected according to the
target platform/applications.

Pluggable parallelisation [8] is based on a set of well
know parallel programming abstractions. Currently the
focus is on object-oriented applications, as they provide a
richer set of programming abstractions to support modular
programming. We developed programming abstractions that
support execution models similar to OpenMP (for shared
memory systems) and MPI (for distributed memory
systems), but those abstractions act as program rewrites
(more specifically, they rewrite object implementations).
This allows the deployment of multiple versions of the same
application:
1. Sequential version, based on the domain-specific code;
2. Parallel version for shared memory systems, by

plugging parallelisation modules for shared memory.
3. Parallel version for distributed memory by plugging

parallelisation modules for distributed memory systems.
Overall, pluggable parallelisation addresses the

complexity of the development of parallel applications by
promoting an incremental development. Developers start
with simple parallel versions and progressively improve the
code by developing/extending modules that specify parallel
execution issues. The modules can also be composed to
attain complex forms of parallelisation (e.g., hybrid
shared/distributed memory parallelisation). The concept of
pluggable parallelisation has been applied to develop
parallel versions of many applications, including all JGF
benchmarks [19][8], a Java framework for evolutionary
computation [20] and a framework for molecular dynamics
simulations [21].

B. Programming Abstractions for Shared Memory Systems
The programming model for shared memory systems

follows an execution model similar to the OpenMP model.
Execution starts in a main thread that can spawn a team of
threads to execute a block of code. We provide the concept
of parallel method: a method that is executed by all newly
created threads in the team. Synchronisation occurs when
the parallel method finishes. Data sharing constructs can
protect shared data (object fields or other objects) from
concurrent accesses. For this purpose we provide
synchronised, master and single methods that provide
functionality similar to the OpenMP directives with
identical names. For instance, synchronised methods are
executed in mutual exclusion when executed by a team of
threads. A barrier construct inserts a barrier before or after a
method execution. Recently two new mechanisms where
added: for methods and thread local fields. The former
provides functionality similar to the for work sharing
construct and thread local fields can be used to avoid
synchronisation by providing a local object field to each
thread in the team.

C. Programming Abstractions for Distributed Memory
Systems

The programing model for distributed memory slightly
differs for the MPI model. Like MPI, it is based on a SPMD
model but it mainly relies on the concept of object
aggregate. An object aggregate is a class of objects that have
a single instance on each node and transparently replaces a
single object instance in the domain specific code. In our
model this is specified by the Replicate abstraction.
Aggregate members are identified by their Id. Calls to the
original object instance are executed by the aggregate
element with Id 0 (i.e., the object instance transparently
replaced by the aggregate). Several primitives control the
way method calls are executed by the aggregate. These calls
can be executed in parallel by all elements in the aggregate,
using the same or a specific parameter for each element, or
delegated to a specific aggregate element. When the original
call returns a value, a special function can be specified to
combine the return result of each method execution to a
single value.

Data structures (and objects) created by aggregate
elements are replicated on each node of an aggregate. There
is an exception for object data fields consisting of primitive
data. This primitive data can be partitioned among aggregate
elements, according to a pre-defined partition (block, cyclic
and hybrid). Since we start from domain specific code,
using centralised view of the data, we specify the points in
execution where data is partitioned and scattered, gathered
and updated. Moreover, user defined data partition and data
updates are also possible.

D. Illustrative Example
We illustrate this programming model by presenting a

distributed memory parallelisation of the JGF Series
benchmark [19] (Figure 1). In this case, the domain specific
code is presented in black and the distributed memory
parallelisation is presented as comments (in red/italic). This
programming model is inspired in OpenMP, although we
use a more powerful template-based notation in order to
overcome some composition limitations of annotations. For
understandability purposes we inserted the parallelisation
code as comments in the domain specific code, but usually
they are specified in a separate module (e.g., file).

...
// Partitioned<TestArray,BLOCK>
double TestArray[][] = ...
...
// ScatterBefore<Do(),TestArray>
void Do() {
 ...
 for (int i = 1; i < TestArray[0].length; i++) {
 TestArray[0][i] = TrapezoidIntegrate(/*.. */);
 TestArray[1][i] = TrapezoidIntegrate(/*.. */);
 }
}
// GatherAfter<Do(),TestArray>

Figure 1. Distributed memory parallelisation of the JGF Series benchmark

The Partitioned<TestArray,BLOCK> declares that
TestArray object field will be distributed block-wise among
aggregate elements. ScatterBefore<Do(),TestArray>
declares that each partition should be updated (using the
data from the aggregate id 0) before the execution of
method Do. The reverse operation is performed after
execution of method Do: data is again collected in the
master aggregate member.

In this programming model it is possible to express most
common types of parallel applications in a way such that the
parallelisation code can be unplugged for a strict sequential
execution ([18] presents an example of Farming and an
Heartbeat parallel applications; more recently we
re-implemented all JGF parallel benchmarks [19] in this
programming model [8]). This also enables the development
of alternative parallelisations. For instance, a shared
memory parallelisation could be implemented by declaring
the Do method as parallel (ParallelMethod<Do()>) and by
using the for construct to schedule calls to the
TrapezoidIntegrate method among threads in the team.

IV. CHECKPOINTING WITH RUN-TIME ADAPTATION
This section describes the extensions performed to

support checkpointing and run-time adaption. We start by
describing the approach used for checkpointing and later
describe the run-time adaptation. The key aspect of this
paper is to show that there is a minimal effort to improve
our model to support checkpointing and run-time adaption
in a modular way. We also show that there is a performance
advantage of providing different versions that can better
match the target architecture and running conditions.

A. Checkpointing
Checkpointing techniques periodically save application

state into a permanent storage to be able to recover the
application state in the case of a failure.

On Grid systems the main requirements are portability
and minimisation of the information saved. Application-
level mechanisms accomplish these requirements but they
increase the burden of the programmer. Our idea is to
minimise this extra burden for programmers that develop
applications based on pluggable parallelisation.

Application-level checkpointing mechanisms require
solutions for three key issues:

1. Indication of data to be saved/recovered;
2. Identification of the points in execution where

checkpoint can be taken;
3. How to save/recover the call stack;

These are addressed in our approach by:
1. Monitoring a set of data fields (object allocations)

that are to be saved into the checkpoint data;
2. Specifying a set of safe points that are points in

execution where the checkpoint can be taken;
3. Rebuilding the call stack on application restart,

replaying the application by using safe points and
ignorable methods (described later).

Checkpointing applications is performed as follows

(Figure 2a): 1) at application start-up, the pcr module
verifies if the last execution was concluded without failures;
this is accomplished by rewriting the “main” application
method; 2) if the last execution completed successfully, the
application runs normally and the allocations module keeps
track of the address of data that must be saved; this is
accomplished by monitoring all data allocations; 3) when a
safe point in execution arises the safepoints module
increments the number of executed safe points and 4) when
a predefined set of safe points is executed the data in
addresses gathered by allocations module is saved along
with the number of executed safe points.

Application restart in the case of a failure relies on a set
of ignorable methods that can be skipped during restart.
Application restart proceeds as follows (figure 2b): 1) at
application start-up, the pcr module identifies a failure in
the last execution activating the replay mode; 2) the
ignorablemethods module skips the execution of methods
that can be safely ignored. 3) the safepoints module
increments the number of executed safe points and 4) when
the number of safe points saved in the checkpoint file is
accomplished the checkpoint data is loaded and execution
proceeds normally from that point.

In this approach the programmer must provide:
1. Application data fields to save
2. A set of safe points
3. A set of ignorable methods
The SafeData<T.field> template is used to express object

data field(s) that should be saved. Frequently these fields are
the same that are declared as partitioned in the distributed
memory parallelisation.

Our approach relies on a replay mechanism to reconstruct
the stack at application restart in the case of a failure. With
this strategy we have a portable solution since the restart
mechanism is completely implemented at application level.

Conceptually to restart the application at the same
execution point we need to save every method call and its
parameters. We avoid this additional overhead with safe
points and ignorable methods. With safe points we only need
to keep track of method executions that are in the call stack
when safe points are reached.

IgnorableMethods template allows the programmer to
specify method executions that can be safely ignored (i.e.,
during restart the execution of these methods is skipped).
This approach also provides an additional benefit: we
actually only need to keep track of the number of safe points
executed. Thus, to rebuild the call stack we only need to
replay the application until the number of safe points
executed is reached.

The SafePoints template specifies points in execution
where a checkpoint can be taken. The selection of the set of
safe points is a trade-off between checkpointing overhead
and computation lost when a failure occurs. Note that a
checkpoint might be taken only after a set of safe points.

Currently SafeData, IgnorableMethods and SafePoints
are specified by the programmer, but we are developing a
tool to help the programmer to identify those. Although there
are some proposals in the literature to automate this process,
the main issue here is that the programmer only needs to
focus on specifying checkpointing of the (base) sequential
version of the code.

To summarise, in our approach, the programmers’
burden to introduce checkpoint in their code is the
identification of safe data fields, ignorable methods and safe
points. All the additional code required to take application

!

a) b)
Figure2. a) Checkpoint and b) restart phases

snapshots and to restart the application is provided by our
system. Two important benefits arise from this approach: 1)
the base code (domain-specific code) remains unchanged
following the philosophy of pluggable parallelisation, by
providing an additional set of templates that localise fault-
tolerance related issues and 2) we automatically provide
mechanisms to perform checkpointing in shared and
distributed memory systems.

Checkpoint in shared memory systems is performed as
follows. When a checkpoint is to be taken (i.e., on a safe
point) we introduce a barrier before and another after the
safe point. When all threads have reached the first barrier
the master thread saves the data specified by the SafeData
template and the number of safe points executed. Restart is
preformed by replaying the application as on a sequential
execution, but parallel methods are still executed to rebuild
the number of threads and their corresponding call stack. A
barrier is introduced after the safe point where the
checkpoint was taken. The master thread reads the saved
data when reaching that safe point and then releases the
other threads waiting at the barrier.

Checkpoint in distributed memory systems is performed
as follows. We perform checkpoint on each process as in the
sequential case, only special care must be taken to ensure
that every process takes the snapshot on the same safe point.
We provide two implementation alternatives to save
partitioned data fields. In the first case, each process takes a
local snapshot. In that case we need to introduce two global
barriers, as in the case of the shared memory. In the second
alternative we collect the partitioned data on the master node,
which avoids the need for barriers (this is possible in our
programming model, since we know how the data is
partitioned among processes).

Collecting the data and taking the snapshot at the master
process has the advantage of making it possible to restart the
application on any of the execution modes supported by
pluggable parallelisation: 1) sequential execution; 2) parallel
execution in shared memory systems and 3) parallel
execution in distributed memory systems. This is possible
since the checkpoint data is the same in all environments.
Thus, adaptation can be performed by saving the checkpoint
data and restarting the application on a different execution
mode. An additional benefit of this approach is that we can
also checkpoint a hybrid shared/distributed memory
parallelisation. The next section describes how adaptation
can be performed without restarting the application.

B. Run-time Adaptation
The model presented in the previous section assumes that

the program was developed in such a way that we can
introduce parallel methods and object aggregates with
program transformations. This is close to the OpenMP
philosophy of introducing annotations to specify parallel
execution, but it can cover a wider set of parallelisations.
Although, we assume that these transformations are
statically applied. With this static approach we can only

delay the selection of a particular parallelisation up to load
time (e.g., using some load-time program transform
technique). To support run-time adaptability on
computational Grids we need to extend this approach to
plug these transformations during run-time. Next we
describe how to extend each of our programming
abstractions to support their application at run-time.

Data sharing constructs are the simplest to apply at run-
time, as it is ensured by design that these transformations
can be (un)plugged without affecting the program
correctness. Parallel Methods are a bit more complex, as we
need to spawn or destroy a team of threads depending if we
are plugging or unplugging the mechanism.

The aggregate abstraction is more complex to apply at
run-time, as the application state may be distributed across
the aggregate. We use the partitioning information to deal
with this issue. Thus each class field must be is marked as
Replicated, Partitioned or Local (by default, fields are
considered Local). This information is used by the run-time
system to decide how the state of the aggregate is merged
into a single instance and how to transform an instance of a
class into an aggregate. Replicated fields are duplicated on
all aggregate elements. When we transform an instance into
an aggregate we set this type of field to the same value as
the original instance. Partitioned fields usually correspond
to arrays that are partitioned across aggregate instances, so
we can use the corresponding scatter or reduce primitive.
Local fields are only local to each aggregate element, so
they are not subject to any transformation.

Adaptability protocol. The adaptability protocol relies on
application execution points where changes can be made to
the parallelisation (e.g., safe points). Thus, requests to adapt
the application parallelism structure are managed on these
safe points.

To describe the adaptability protocol we differentiate
between the expansion phase (e.g., the application will use
more resources) and the contraction phase (e.g., the
application will use less resources). In both cases we discuss
how we can change from a sequential execution into a
concurrent execution (shared memory based) to a cluster
execution (distributed memory based) and vice-versa.

Expansion of Resource Usage. The first type of resource
usage expansion is to move from sequential execution to a
concurrent execution (i.e., multiple concurrent activities in a
single node). For data sharing constructs we can simply
activate the corresponding implementation, but when the
adaptation is done on the context of a Parallel Method (i.e.,
parallel region) we need to spawn multiple threads to
execute the given method. For this purpose, when running
inside a potential parallel region, we track the beginning of
the parallel region to be able to replay the parallel region for
threads beside the master thread. Thus, when the move from
sequential to concurrent execution occurs inside a parallel
region, we replay the execution inside parallel region for

each new thread, in a manner similar to the restart of the
application, but just from the beginning of the parallel
region. This is done to build the correct calling stack on
each thread in the team. A similar strategy can be used to
increase the number of running threads. Using this strategy,
based on replay, allows the mechanism to be highly portable
as it is implemented at application-level. The for work
sharing is addressed by activating the corresponding
implementation during the replay. In this way, each thread
will get the call stack that it would have if the program ran
with concurrency activated from the start. Thread local
variables are updated with the value of the main thread.

The second type of resource expansion is the move from
a single node configuration (either sequential or concurrent)
to a multi-node configuration. In both cases it involves
introducing aggregates of objects. The move from
sequential execution to a cluster-based one consists on
creating an aggregate of objects by replicating all data and
the call stack of the sequential program on each node. We
perform this task by replaying the application on the
additional nodes until they reach the same safe point (using
the same implementation strategy as for checkpointing).
Data of partitioned aggregate object fields is distributed
according to the user specified partition strategy in the
parallelisation for distributed memory systems. This
strategy is used to increase the number of nodes.

Expansions of resource usage for hybrid
shared/distributed memory parallelisation require multi-step
adaptations. For instance, when moving from a single-node
sequential execution to a multi-node of multi-core
machines, requires one first step to move from sequential
execution to a parallel execution on multiple nodes and a
second local step on each machine to move from a local
sequential execution to a concurrent execution. We address
this issue simply by composing the adaptation protocols,
first applying the protocol to move from a single node
configuration to a multi-node configuration (each involves
global coordination among nodes) and then locally applying
the protocol to move from an intra-node sequential
execution to a concurrent execution.

Contraction of Resource Usage. The first type of resource
contraction is the move from a concurrent execution to a
sequential execution. In this case all data sharing constructs
can be simply deactivated in a coordinated manner.
Coordination is required since the parallel region is being
run by multiple threads and it ensures that all threads are
synchronised in a global barrier before shutting down
threads in excess. Parallel methods are simply managed by
shutting down the additional threads and disabling work
sharing constructs. Shutdown is made gracefully by
executing methods with empty operations until the thread
gets to the end of the parallel region.

The second type of resource contraction is the move from
a multi-node configuration to a single node. The rationale of
this adaptation is similar to the move from a concurrent

execution to a sequential execution, although, in this case
there are remote data that must migrate to the local node.

As in resource expansion, there are cases of resource
contraction that require multiple-phases. For instance, when
contracting from a cluster of multi-core machines to a single
node we need first to contract the execution on each remote
node to a sequential execution and then apply the protocol
to reduce from multiple nodes to a single node.

V. EVALUATION
The proposed approach was applied to several

applications that where previously developed using the
concept of pluggable parallelisation: JGF benchmarks [8]; a
Java framework for evolutionary computation [20] and a
framework for molecular dynamics simulations [21]. In all
case studies we found that specifying the safe points,
ignorable methods and safe data fields introduces a very
small programming overhead, since the required knowledge
is acquired during the parallelisation process. More
importantly, checkpointing and run-time adaptation is
localised into specific pluggable modules.

To evaluate the proposed checkpoint and adaptation
mechanisms we present a simple application that illustrates
how this approach can be used to adapt parallel applications
and we evaluate the benefits and overheads relative to hand
written versions. These results were collected on a cluster
with two machines, dual Opteron 6174 per node (i.e., 24
cores per machine). This cluster runs Linux x86_64 and Sun
Java JDK 1.6.0_13 (more details in about this cluster in
search.di.uminho.pt).

We demonstrate the effectiveness of the approach using
the JGF SOR benchmark with pluggable parallelisation. This
benchmark is a typical scientific application, where a five-
point stencil is successively applied to a matrix. This is a
benchmark with a very short execution time so it would give
an upper bound on the mechanism overhead.

The first test measures the overhead of introducing the
code for checkpoint, when 0 or 1 checkpoints are taken.
Figure 3 shows the execution time of: 1) the “original”
benchmark; 2) when checkpointing is introduced using
classic “invasive” techniques and 3) when checkpointing is
introduced through pluggable parallelisation (PP). Presented
results include sequential execution (seq); execution with 2
to 16 lines of execution (LE) and with 2 to 32 MPI
processes (P). These results show that: 1) the overhead of
checkpointing is very low, as it would be expected, since the
overhead is basically the time required to count safe points,
which is less than 1% in most cases; 2) PP does not impose
any additional overhead when compared to traditional
invasive programming techniques; 3) there is a relevant
overhead required to save checkpointing data.

Figure 4 details the cost to save checkpoint data on each
environment. It should be stressed that most time overhead
is due to the time required to save the application data (seq.)
intrinsic to any checkpoint approach.

Figure 3. Checkpoint overhead

On a shared memory environment (LE), the time required

to save the data slightly increases with the number of
threads, since it requires a barrier. The increase on
distributed memory systems is higher since the data must be
collected at the root node. In the cluster used for these
benchmarks this overhead is most noticed with 32 P since
the data must move across machines.

Figure 4. Time to save checkpoint data

The next test measures the time to perform a restart when

a failure occurs after 100 safe points (Figure 5). The figure
presents separate figures for “reply” and to “load” the
checkpoint data.

Figure 5. Restart overhead

In all cases the restart overhead is mostly due to the time

to load the checkpoint data. In distributed memory this cost

is much higher since the data must be scattered across
processors after being loaded. Again, this cost is most
noticed with 32P.

 One important point of the proposed approach is the
ability to replay the application on a different environment
adapting the execution behaviour to the new environment.
Figure 6 illustrates such case by showing the time per
iteration. In this case the application started with 2 processes
and on iteration 26 it was restarted on 8 processors,
shortening the overall application execution to more than
half.

Figure 6. Application restart increasing more resources

Figure 7 compares the benefit of performing adaptation

by restarting the application versus using our run-time
mechanism to change the number of running threads. On
each case the application starts on a set of resources (2, 4 or
8 LE) and during the execution more resources become
available (16 LE).

Figure 7. Example of the benefits of resource expansion

In all cases performing adaptation at run-time provides

the lowest execution time due to its lower overhead.
Actually, the restart overhead increases the execution time
when adapting from 8 to 16 LE.

The next benchmark aims to show the overhead of
making adaptation through traditional over-decomposition
mechanisms (e.g., providing more threads/processes than
the number of available resources). Figure 8 shows the
overhead of executing the SOR application with several
factors of over-decomposition (i.e., number of parallel tasks
per processing element).

Figure 8. Overhead of over-decomposition

These results show that over-decomposition can impose a

high overhead on execution time. For instance, using 256
processes on a 16-processor machine (of = 16) increases the
execution time from about 5 seconds to 15 seconds.

The JGF provides 3 versions of the code. A sequential
version, a thread-based and a MPI based. Pluggable
parallelisation enables changing among these three versions
during the execution. Figure 9 compares the running time of
the JGF versions against the developed version (on a cluster
with eight-core machines), by activating the parallelisation
according to resources committed to execution.

0

1

2

3

4

5

6

7

8

9

10

1 4 8 16 32

Processing*Elements

Ex
ec
ut
io
n*
Ti
m
e*
(s
)

JGF.Sequential
JGF.Threads
JGF.MPI
Adaptative

Figure 9. Overhead of adaptability

Execution time of the JGF sequential version does not

scale to more than one node, as it does not include support
for parallel execution (thus, it always has the same
execution time). The JGF Threads version provides the best
execution time for a run on 4 and 8 cores (i.e., a single
machine). Although, as expected, only the JGF MPI version
scales well on a large number of nodes, since the JGF
threads version can only use 8 cores (i.e., a single machine).
The developed version always attains a performance within
5% of the best version, but, more importantly, it can change
from one execution mode to the other during run-time.

VI. CONCLUSION
This paper presented a new approach to checkpointing

and run-time adaptability in computational Grids. The
approach is based on the ability to plug parallelisation at
run-time to offer an additional degree of adaptability,
relative to traditional implementations that rely on a fixed
parallel structure. This approach relies on modular
parallelisation than can be enabled and disabled during
execution.

In this paper we showed the feasibility of this approach
and showed that the performance penalty of this model can
be very low, when compared with similar hand written
versions.

Current implementation of this approach rely on external
tools determinate the optimal set of resources to be used by
the applications. A natural evolution is to incorporate
mechanisms to find opportunities for self-adaptation to
improve execution time, by monitoring the application and
the system state.

ACKNOWLEDGMENT
This work was developed under AspectGrid

(GRID/GRI/81880/2006), PRIA (UTAustin/CA/0056/2008)
and GAsPar (PTDC/EIA-EIA/108937/2008) projects,
supported by Portuguese FCT and European funds.

REFERENCES
[1] N. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A Grid-

Enabled Implementation of the Message Passing Interface”,
Journal of Parallel and Distributed Computing, vol. 63, no. 5,
May 2003.

[2] C. Mateos, A. Zunino, M. Campo, “A survey on approaches
to gridification”, Software Practice and Experience, vol. 38,
no. 5, April 2008.

[3] G. Wrzesinska, J. Maassen, H. Bal, “Self-Adaptive
Application on the Grid” ACM Symposium on Principles and
Practices of Parallel Programming (PPoPP 07), San Jose,
California, March, 2007.

[4] R. Fernandes, K. Pingali and P. Stodghill, “Mobile MPI
Programs in Computational Grids”, ACM Symposium on
Principles and Practices of Parallel Programming (PPoPP 06),
2006.

[5] I. Foster, “Designing and Building Parallel Programs”,
Addison-Wesley, 1995.

[6] J. Sobral, “Incrementally developing parallel applications
with AspectJ”, 20th IEEE International Parallel & Distributed
Processing Symposium (IPDPS 06), Greece, Rhodes, April
2006.

[7] J. Sobral, “Pluggable Grid Services”, 8th IEEE/ACM
International Conference on Grid Computing (Grid 07),
Austin, Texas, September 2007.

[8] R. Gonçalves, J. Sobral, “Pluggable Parallelization”, 18th
ACM international symposium on High Performance
Distributed computing, (HPDC 09), Munique, June 2009.

[9] OpenMP architecture review board, OpenMP Application
Program Interface, Version 2.5, May 2005, www.openmp.org.

[10] G. Bronevetstsky, K. Pingali, P. Stodghill, Experimental
Evaluation of Application-Level Checkpointing for OpenMP
Programs, International Conference on Supoercomputing
(ICS 06), Australia.

[11] G. Rodríguez, M. Martín, P. González, J. Touriño, R. Doallo,
CPPC: a compiler-assisted tool for portable checkpointing of
message-passing applications, Concurrency and Computation:
Practice & Experience, vol. 22, no. 6, April 2010

[12] M. Cole, Algorithmic Skeletons: structured management of
parallel computation, MIT press, 1989.

[13] S. Gorlatch and J. Dunnweber, “From Grid Middleware to
Grid Applications: Bridging the Gap with HOCs”, Future
Generation Grids, Springer, 2006.

[14] H. Vélez, Self-Adptive Skeletal Tasks Farm for
Computational Grids, Parallel Computing, vol. 32, no. 7,
September 2006.

[15] M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M.
Vanneschi, L. Veraldi and C. Zoccolo, “Dynamic
Reconfiguration of Grid-Aware Applications in ASSIST”,
Euro-Par 05, Lisbon, September 2005.

[16] S. Vadhiyar and J. Dongarra, “Self Adaptability in Grid
Computing”, Concurrency and Computation: Practice and
Experience, vol. 17, n0. 2-4, February 2005.

[17] G. Wrzesinska, R. Nieuwport, J. Maassen, H. Bal, “Fault-
tolerance, Malleability and Migration for Divide and Conquer
Applications on the Grid”, 19th IEEE International Parallel &
Distributed Processing Symposium (IPDPS 05), April 2005.

[18] J. Sobral, C. Cunha, M. Monteiro, “Aspect-Oriented
Pluggable Support for Parallel Computing”, VecPar’06, Rio
de Janeiro, Brazil, June 2006.

[19] J. Smith, J. Bull, J. Obdrzálek, “A Parallel Java Grande
Benchmark Suite”, Supercomputing Conference (SC 2001),
Denver, Nov. 2001.

[20] J. Pinho, M. Rocha, J. Sobral, Pluggable Parallelization of
Evolutionary Algorithms Applied to the Optimization of
Biological Processes, 18th Euromicro International
Conference on Parallel, Distributed and Network-Based
Computing (PDP 10), Pisa, Italy, February 2010.

[21] R. Silva, J. Sobral, Optimising Molecular Dynamics with
product-lines, 5th Workshop on Variability Modeling of
Software-Intensive Systems (VaMoS 11), Namur, Belgium,
January 2011.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. Loingtier, J. Irwin, “Aspect-Oriented Programming”
European Conference on Object-Oriented Programming
(ECOOP 01), 2001.

[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.
Griswold, “An Overview of AspectJ”, European Conference
on Object-Oriented Programming (ECOOP 01), June 2001.

