
On The Multi-Mode, Multi-Skill Resource

Constrained Project Scheduling Problem – A

Software Application

Mónica A. Santos1, Anabela P. Tereso2

Abstract We consider an extension of the Resource-Constrained Project Schedul-

ing Problem (RCPSP) to multi-level (or multi-mode) activities. Each activity must

be allocated exactly one unit of each required resource and the resource unit may

be used at any of its specified levels. The processing time of an activity is given

by the maximum of the durations that would result from a specific allocation of

resources. The objective is to find the optimal solution that minimizes the overall

project cost which includes a penalty for tardiness beyond the specified delivery

date as well as a bonus for early delivery. We give some of the most important so-

lution details and we report on the preliminary results obtained. The implementa-

tion was designed using the C# language.

1 Introduction

This paper is concerned with an extension of the Resource-Constrained Project

Scheduling Problem (RCPSP) which belongs to the NP-hard class of problems. In

the several resource constrained scheduling problem models found in the litera-

ture, there are two important aspects present in any model: the objective and the

constraints. The objective may be based on time, such as minimize the project du-

ration, or on economic aspects, such as minimize the project cost. However, suc-

cess relative to time does not imply success in economic terms. Often, time-based

objectives are in conflict with cost-based objectives. A recurrent situation encoun-

tered in practice is the need to complete a project by its due date and maximize

profit. Ozdmar and Ulusoy [1] reported in their survey of the literature, studies

where the NPV is maximized while the due date is a ‘hard’ constraint (Patterson et

al. [2][3]). There are several other multi-objective studies in the literature where

efficient solutions regarding time and cost targets are generated. Guldemond et al.

1 University of Minho, 4710-057 Braga, Portugal Email:

pg13713@alunos.uminho.pt

2 University of Minho, 4710-057 Braga, Portugal Email:

anabelat@dps.uminho.pt

mailto:pg13713@alunos.uminho.pt
mailto:anabelat@dps.uminho.pt

2

[4] presented a study related to the problem of scheduling projects with hard dead-

line jobs, defined as a Time-Constrained Project Scheduling Problem (TCPSP).

They used a non-regular objective function.

Researchers agree that a project cannot be insulated from its costs, or executed

without the scheduling of activities. As the costs depend on the activities in pro-

gress and scheduling is related to other constraints than monetary, the researchers

explicitly included cash-flows-resources-constraints in their formulations. Elma-

ghraby and Herroelen [5] lay down the following property of an optimal solution

that maximizes the NPV: the activities with positive cash flows should be sched-

uled as soon as possible and those with negative cash flow as late as possible.

They concluded that the faster conclusion of the project is not necessarily the op-

timal solution with regard to maximizing the NPV. In Mika et al. [6] study, a posi-

tive flow is associated to each activity. The objective is to maximize the NPV of

all cash flows of the project. They use two meta-heuristics that are widely used in

research: Simulated Annealing (SA) and Tabu Search (TS).

Tereso et al.’s research ([7][8][9]) is included in the minimum-cost class prob-

lems. A recent metaheuristic, the Electromagnetism-Like Mechanism (EM), de-

veloped by Birbil and Fang [10], was implemented in Tereso et al. [7] in Matlab

for multimodal activities projects, with stochastic work. Improved results in terms

of computing performance were presented later in Tereso et al. [8] with an en-

hanced implementation using the JAVA programming language and in Tereso et

al. [9], where a dynamic programming model was developed on a distributed plat-

form.

Constraints complicate the efficient optimization of problems, and the more

accurately they describe the real problem, the more difficult it is to handle it. Re-

cent models include most of the requirements described by Willis [11] for model-

ing realistic resources. These requirements include the variable need of resources

according to the duration of the activities, variable availability of resources over

the project duration and different operational modes for the activities.

A discrete time/resource function implies the representation of an activity in

different modes of operation. Each mode of operation has its own duration and

amount of renewable and non-renewable resources requirement. Boctor [12] pre-

sented a heuristic procedure for the scheduling of non-preemptive resource-limited

projects, although renewable from period to period. Each activity had a set of pos-

sible durations and resource requirements. The objective was to minimize the pro-

ject duration. A general framework to solve large-scale problems was suggested.

The heuristic rules that can be used in this framework were evaluated, and a strat-

egy to solve these problems efficiently was designed.

Heilmann [13] also worked with the multi-mode case in order to minimize the

duration of the project. In his work, besides the different modes of execution of

each activity, there is specified a maximum and minimum delay between activi-

ties. He presented a priority rule-based heuristic. Basnet [14] presented a “filtered

beam” search technique to generate makespan minimizing schedules, for multi-

mode single resource constrained projects, where there is a single renewable re-

source to consider and the multi-mode consists essentially of how many people

can be employed to finish an activity.

3

In a previous paper [15] we provided a formal model to the multi-mode, multi-

skill resource constrained project scheduling (MRCPSP-MS) problem and a

breadth-first procedure description, for an optimal allocation of resources in a pro-

ject, with multi-mode activities, minimizing its total cost, while respecting all the

restrictions. We implemented a procedure using the object oriented paradigm lan-

guage, JAVA and achieved the optimal solution for a simple 3 activities project

network, by obtaining all possible solutions and search the best between them. The

plan was to complete an adaptation of a “filtered beam” search algorithm to this

problem in the future; this report addresses this issue.

1.1 Problem description

Consider a project network in the activity-on-arc (AoA) mode of representation:

G = (N, A), with |N| = n (representing the events) and |A| = m (representing the

activities). Each activity may require the simultaneous use of several resources

with different resource consumption according to the selected execution mode -

each resource may be deployed at a different level. It is desired to determine the

optimal resources allocation to the activities that minimizes the total cost of the

project (resources + penalty for tardiness + bonus for earliness). We follow the

dictum that an activity should be initiated as soon as it is sequence-feasible.

There are |R|= ρ resources. A resource has a capacity of several units (say w

workers or m/c’s) and may be used at different levels, such as a ‘resource’ of elec-

tricians of different skill levels, or a ‘resource’ of milling machines but of different

capacities and ages. A level may also be the amount of hours used by a resource;

for example, half-time, normal time or extra-time. An activity normally requires

the simultaneous utilization of more than one resource for its execution.

The problem presented here belongs to the class of the optimization scheduling

problems with multi-level activities. This means that the activities can be sched-

uled at different modes, each mode using a different resource level, implying dif-

ferent costs and durations. Each activity must be allocated exactly one unit of each

required resource and the resource unit may be used at any of its specified levels.

The processing time of an activity is given by the maximum of the durations that

would result from a specific allocation of the resources required by the activity.

The objective is to find the optimal solution that minimizes the overall project

cost, while respecting a delivery date. Briefly, the constraints of this problem are:

 Respect the precedence among the activities.

 A unit of the resource is allocated to at most one activity at any time at a

particular level (the unit of the resource may be idle during an interval).

 Respect the capacity of the resource availability: The total units allocated at

any time should not exceed the capacity of the resource to which these units

belong.

4

 An activity can be started only when it is sequence-feasible and all the req-

uisite resources are available, each perhaps at its own level, and must con-

tinue at the same levels of all the resources without interruption or preemp-

tion.

Figure 1 presents the mathematical model for the problem. For more information

on this model refer to our previous paper [15].

Fig. 1 Mathematical Model

2 Solution Details

The initial procedure we adopted, applied to a small project, was based in a

breadth first search (BFS) algorithm. All the nodes (partial solutions) in the search

tree were evaluated at each stage before going any deeper, subsequently imple-

menting an exhaustive search that visits all nodes of the search tree. This strategy

can be applied for small projects but becomes infeasible for larger ones.

5

The branch and bound (BaB) search technique allows reducing the number of

nodes being explored. It can be seen as a polished breadth first search, since it ap-

plies some criteria in order to reduce the BFS complexity. Usually it consists of

keeping track of the best solution found so far and checking if the solution given

by that node is greater than the best known solution. So if that node cannot offer a

better solution than the solution obtained so far, the node is discarded. The BaB

process consists of two procedures: subset generation and subset elimination. The

former (the subset generation) is accomplished by branching, where a set of de-

scendent nodes, form a tree-like structure. The latter (subset elimination) is real-

ized through bounding, where upper and lower bounds are calculated for the “val-

ue” of each node. The bounding function can be strong, which is usually harder to

calculate but faster in finding the solution, or weak, which is easier to calculate but

slower in finding the solution. The BaB approach is more efficient if the bounds

can be made very tight. In our case, the objective of our problem is to minimize

the total cost of the project, that gets a bonus or a penalty cost while respecting or

exceeding the specified due date; respectively. As a result, finding a strong bound-

ing function would depend on the three project parameters cited: the penalty cost,

bonus cost and due date. The feat of the bounding function is simply in reducing

the search while not discarding potentially desirable branches. A “filtered beam”

search is a heuristic BaB procedure that uses breadth first search but only the top

“best” nodes are kept. At each stage of the tree, it generates all successors for the

selected nodes at the current stage, but only stores a predetermined number of de-

scendent nodes at each stage, called the beam width. This paper is concerned with

the study of the adaptation of the initial algorithm, presented below, to a “filtered

beam” search procedure.

2.1 Procedure description

The procedure to be executed can be based either on the BFS algorithm or on the

Beam Search Algorithm. If the latter is the one adopted a beam width value must

be defined. We consider that activities can be in one of four states: “to begin”,

“pending”, “active” and “finished”. To get the first activities with which to initiate

the process, we search all activities that do not have any predecessors. These ac-

tivities are set to state “to begin”. All others are set to the state “pending”.

Activities in the state “to begin” are analyzed in order to check resources avail-

ability. If we have enough resources, all activities in the state “to begin” modify

the state to “in progress”, otherwise we apply, in sequence, the following rules,

until resources conflict are resolved:

1. Give priority to activities precedents of a larger number of “pending activities”.

2. Give priority to activities that use fewer resources.

3. Give priority to activities in sequence of arrival to the state “to begin”.

6

An “event” represents the starting time of one or more activities and the project

begins at event 0. Each activity must be allocated exactly one unit of each re-

source. For each active activity, we calculate all the possible combinations of re-

sources levels. Then we join all activities combinations, getting the initial combi-

nations of allocation modes for all active activities. These initial combinations

form branches through which we will get possible solutions for the project. All

combinations have a copy of resources availability information, and activities’

current state.

If the algorithm set to find best solution is the Beam Search Algorithm then:

1. If the number of combinations is less than the beam width value, all combi-

nations are kept.

2. Otherwise, the set of combinations must be reduced to the beam width val-

ue. In this case some combinations need to be discarded using the possible

rules to evaluate the ones in the top best:

Select top best combinations that have: -Minimum Duration.

-Minimum Cost.

-Minimum Cost/Duration.

In either case, we continue applying the following procedure to each combination:

3. To all activities in progress, we find the ones that will be finished first, and

set that time as the next event.

4. We update activities found in step 1 to state “finished”, and release all the

resources being used by them.

5. For all activities in the state “to begin”, we check if they can begin, the same

way we did when initiating the project. Activities in the state “to begin” are

analyzed in order to check resources availability. If no resource conflicts ex-

ists, all activities in the state “to begin” are set to state “active” and re-

sources are set as being used, otherwise we apply in sequence, the rules de-

scribed above.

6. For all activities in the state “pending”, we check for precedence relation-

ships. For all activities that are precedence-feasible their state is updated to

state “to begin”. These activities aren’t combined to the previous set of “to

begin” activities to give priority to activities that entered first in this state.

7. If there are resources available and any pending activities were set “to

begin” we apply step 5 again.

8. For all new activities “in progress” we set their start time to the next event

found in step 3, and determine all the possible combinations of its resources

levels. Then we join all found combinations for these activities, getting new

combinations to join to the actual combination being analyzed. This forms

new branches to process in order to get the project solution.

9. We continue by applying step 1 (or 3) to each new combination until all ac-

tivities are set to state “finished”.

7

10. Once all activities in a combination are set to state “finished”, we have a

valid project solution.

When the project final solutions are found, we evaluate, for each one, the finishing

time of the project and the total project cost, choosing the best one.

The BaB and the Beam Search procedures are typical methods applied to the

RCPSP. The differentiating aspects of our approach are, on one hand the defini-

tion of the set of states followed by the activities, combined with the priority rules

used to solve resource conflicts, and on the other hand the alternative evaluation

rules used to discard undesirable “branches”.

2.2 Application Development

The software was developed in C# language using Visual Studio 2010. To con-

struct the project network (in AoN), we use Graph#, an open source library for

.Net/WPF applications that is based on a previous library QuickGraph. These li-

braries support GraphML that is an XML-based file format for graphs, although

we didn’t make use of this format. The graph is automatically generated for each

project loaded in the application. To save/load existing projects we define an xml

file that embodies all project characteristics for this problem.

Three main classes were defined for the application. The base class is NetPro-

ject that keeps all project required information: name, activities, resources, due

date, bonus and penalty cost. Then we have the Resource class that keeps the re-

source identification availability and levels. Each resource level has a unitary cost.

The Activity class has activity identification, resources requirement and its prece-

dents. The referred classes are the most relevant to represent the project, additional

classes are used to support the evaluation of the project solution.

2.2.1 Functionalities

The application provides the functionalities described next.

 Load a Project - The project must be saved as an xml file, using a structure

that represents the project components (activities, resources, etc.).

 Create a Project - There are two main steps to create a new project:

o First the project “skeleton” is built through a wizard that ini-

tiates asking the project name and the number of resources

and activities. Next the resource data is introduced i.e. the

availability of each resource and the number of associated

levels. Finally the activities information is introduced, that is

the identification and precedents of each activity.

8

o Secondly it generates the project graph and a project grid

where the remaining project information can be introduced.

 Edit/Save a Project.

 Determinate best solution - This can be achieved using either BFS based Al-

gorithm or Beam Search Algorithm.

 Save solution to a txt file.

We present next the application look, using some prints.

Fig. 2 Application prints

3 Preliminary results

The next computational tests were performed on an Intel® Pentium® M

@1.20GHz 1.25GB RAM. Consider the following data for a 3 activities network.

Table 1 Resource Requirements, Processing Times and Resource Costs of the Project.

RESOURCE → 1 2 3 4

AVAILABILITY 2 1 3 2

↓ Activity \ Levels → 1 2 1 2 3 1 2 3 1 2 3

Unitary costs 2 4 3 5 7 1 4 5 1 3 5 j

A1(Processing time) 14 6 - - - - 12 8 5 18 12 7 3

A1(Resource cost) 28 24 - - - - 12 32 25 18 36 35

A2(Processing time) - - - 7 5 3 - - - 8 5 4 2

A2(Resource cost) - - - 21 25 21 - - - 8 15 20

A3(Processing time) 20 12 - 22 16 10 - - - - - - 2

A3(Resource cost) 40 48 - 66 80 70 - - - - - -

Assume the following rates for earliness and lateness costs: 10E , 20L

and the due date 24ST .

Using the BFS Algorithm the project obtained solution is presented in table 2.

Table 2 Solution totals, obtained using BFS Algorithm.

tn CE CT CR TC Runtime (ms)

9

16,0 80,0 0,0 230 150,0 66

Since the due date was 24, a bonus is applied. Activities execution modes are:

Activity A1 - Start: 0 End: 12 Duration: 12 Cost: 71

| R1 Level 2 (Cost: 24 Duration: 6)

| R3 Level 1 (Cost: 12 Duration: 12)

| R4 Level 3 (Cost: 35 Duration: 7)

 Activity A3 - Start: 0 End: 12 Duration: 12 Cost: 118

| R1 Level 2 (Cost: 48 Duration: 12)

| R2 Level 3 (Cost: 70 Duration: 10)

 Activity A2 - Start: 12 End: 16 Duration: 4 Cost: 41

| R2 Level 3 (Cost: 21 Duration: 3)

| R4 Level 3 (Cost: 20 Duration: 4)

Table 3 Solution totals, obtained using Beam Search Algorithm.

B
ea

m
 W

id
th

 Evaluation Type

Cost Duration Cost/Duration

t n

C
E

C
T

C
R

T
C

R
u
n

ti
m

e

(m
s)

t n

C
E

C
T

C
R

T
C

R
u
n

ti
m

e

(m
s)

t n

C
E

C
T

C
R

T
C

R
u
n

ti
m

e

(m
s)

1
5
0

2
6

0

4
0

2
0
1

2
4
1

3
3

1
6

8
0

0

2
3
0

1
5
0

5
2

2
6

0

4
0

2
0
1

2
4
1

4
2

2
0
0

2
6

0

4
0

2
0
1

2
4
1

4
8

1
6

8
0

0

2
3
0

1
5
0

6
8

2
6

0

4
0

2
0
1

2
4
1

6
9

7
0
0

2
0

4
0

0

2
4
0

2
0
0

2
5
3

1
6

8
0

0

2
3
0

1
5
0

3
1
9

2
0

4
0

0

2
4
0

2
0
0

3
7
2

9
0
0

1
6

8
0

0

2
3
1

1
5
1

4
1
9

1
6

8
0

0

2
3
0

1
5
0

4
8
2

1
6

8
0

0

2
3
1

1
5
1

6
0
7

The BFS Algorithm generates 972 combinations for the three activity network.

We used a beam width between 150 and 900. As we can see by the results exhibit-

ed in table 3, the duration evaluation type was the best for this network, achieving

the same result as the BFS Algorithm, even with the lowest beam width. The other

evaluation types gave both the same result.

4 Conclusions

We developed a practical tool, useful to represent multi-mode projects, and to find

a solution for the problem on hand – select the best mode for each resource in each

activity in order to minimize the total cost, considering the resource cost, a penalty

for tardiness and a bonus for early completion. We must continue testing the tool,

in order to evaluate the quality of the solution obtained, since the heuristic used

10

doesn’t guarantee the optimum. Further experiments will also allow specifying the

limits of its applicability in terms of the number of activities, the number of re-

sources, and the number of alternative levels of resource application. Another use-

ful effort is to compare as well the solutions obtained with both algorithms, trying

to define a recommended beam width and evaluation type.

References

1. Ozdamar L, Ulusoy G (1995) A Survey on the Resource-Constrained Project Schedul-

ing Problem. IIE Transactions 27:574-586.

2. Patterson JH, Slowinski R, Talbot FB, Weglarz J (1989) An algorithm for a general

class of precedence and resource constrained scheduling problems. Advances in Pro-

ject Scheduling Amsterdam 3-28.

3. Patterson JH, Talbot FB et al (1990) Computational experience with a backtracking

algorithm for solving a general class of precedence and resource constrained

scheduling problems. Eur J Oper Res 49:68-7.

4. Guldemond T, Hurink J, Paulus J, Schutten J (2008) Time-constrained project sched-

uling. J Sched 11(2):137-148.

5. Elmaghraby SE, Herroelen WS (1990) The scheduling of activities to maximize the

net present value of projects. Eur J Oper Res 49:35-40.

6. Mika M, Waligora G, Weglarz G (2005) Simulated annealing and tabu search for mul-

ti-mode resource-constrained project scheduling with positive discounted cash flows

and different payment models. Eur J Oper Res, 164 (3):639-668.

7. Tereso AP, Araújo MM, Elmaghraby SE (2004) The Optimal Resource Allocation in

Stochastic Activity Networks via The Electromagnetism Approach. Ninth Internation-

al workshop on PMS’04 Nancy-France 26-28.

8. Tereso AP, Araújo MM, Elmaghraby SE (2009) Optimal resource allocation in sto-

chastic activity networks via the electromagnetic approach: a platform implementation

in Java. Control Cybern 38:745-782..

9. Tereso AP, Mota JR, Lameiro RJ (2006) Adaptive Resource Allocation Technique to

Stochastic Multimodal Projects: a distributed platform implementation in JAVA. Con-

trol Cybern 35:661-686.

10. Birbil SI, Fang SC (2003) An Electromagnetism like Mechanism for Global Optimiza-

tion. J Global Optim 25:263-282.

11. Willis RJ (1985) Critical path analysis and resource constrained project scheduling

theory and practice. Eur J Oper Res 21:149-155.

12. Boctor FF (1993) Heuristics for scheduling projects with resource restrictions and sev-

eral resource-duration modes. Int J Prod Res 31:2547-2558.

13. Heilmann R (2001) Resource–constrained project scheduling: a heuristic for the mul-

ti–mode case. OR Spectrum 23(3):335–357.

14. Basnet C, Tang G, Yamaguchi T (2001) A Beam Search Heuristic for Multi-Mode

Single Resource Constrained Project Scheduling. Proceedings of the 36
th
 Annual

ORSNZ Conference Christchurch NZ Nov-Dec 1-8.

15. Santos MA, Tereso AP (2010) On the Multi-Mode, Multi-Skill Resource Constraint

Project Scheduling Problem (MRCPSP-MS). EngOpt 2010 Lisbon Portugal Septem-

ber 6-9.

