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The goal of this paper is to solve Mathematical Program with Complementarity Constraints
(MPCC) using nonlinear programming (NLP) techniques. This work presents two algorithms
based on several nonlinear techniques such as Sequential Quadratic Programming (SQP),
penalty techniques and regularization schemes. A set of AMPL problems were tested and the
computational experience shows that both algorithms are effective.
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1. Introduction

Mathematical Program with Complementarity Constraints is an exciting new ap-
plication of nonlinear programming techniques. The complementarity concept is
related to the equilibrium notion and there exist lots of real situations that can be
modeled as a MPCC in Engineering, Economics and Ecology. The complexity of
the MPCC is caused by the disjunctive constraints which lead to some challenging
issues that typically are the main concern in the design of efficient solution algo-
rithms. The researchers have been spent lots of efforts studying the MPCC theory
and proposing different algorithms to solve MPCC efficiently ([1], [4], [6], [8], [9]
and [10]). One attractive way of solving MPCC is to consider its equivalent nonlin-
ear programming formulation. However this formulation has no feasible point that
satisfies the inequalities strictly, so the Mangasarian-Fromovitz constraint qual-
ification is violated at any feasible point. Fletcher et al. [4] complements these
numerical observation giving a theoretical explanation for the good performance of
the SQP method - they show that SQP is guaranted to converge quadratically near
a stationary point under relatively mild conditions. Ralph and Wright [8] described
some properties of penalized and regularized nonlinear programming formulations
of MPCC. Based on these promising results we propose two algorithms combining
the SQP and the penalty and regularization strategies to solve MPCC.

This paper is organized as follows. The next section defines the MPCC problem.
Section 3 introduces the penalty technique, the regularization scheme and the cor-
responding implemented algorithms in MATLAB environment. In Section 4 some
numerical experiments to test the algorithms, the performance profiles and some
final conclusions are carried out.
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2. Problem definition

min f(x)
s.t. ci(x) = 0, i ∈ E,

ci(x) ≥ 0, i ∈ I,
0 ≤ x1 ⊥ x2 ≥ 0,

(MPCC)

where f and c are the nonlinear objective function and the constraint functions,
respectively, assumed to be twice continuously differentiable. E and I are two
disjoined finite index sets with cardinality p and m, respectively. x = (x0, x1, x2)
is a decomposition of the variables into x0 ∈ Rn (control variables) and (x1, x2) ∈
R2 q (state variables). 0 ≤ x1 ⊥ x2 ≥ 0 : R2q → Rq are the q complementarity
constraints. The notation x1 ⊥ x2 means that x1jx2j = 0, for j = 1, . . . , q, ie, the
complementarity condition owns the disjunctive nature - x1j = 0 or x2j = 0, for
j = 1, . . . , q.

3. Penalty technique and Regularization scheme

A way to deal with the complementarity constraints is to apply a penalty tech-
nique. Using the well known sequential penalty technique [2], the original problem
(MPCC) is replaced by a nonlinear constrained optimization problem:

Pen(r): min P (x, r)
s.t. ci(x) = 0, i ∈ E,

ci(x) ≥ 0, i ∈ I,
x1 ≥ 0, x2 ≥ 0,

(Pen)

where the penalty function is P (x, r) = f(x) + r

q∑

j=1

(x1j x2j)2 and r is the penalty

parameter with r > 0, r → ∞. In this approach only complementarity terms
are penalized and a sequence of minimization problems is solved as far as r is
incremented.

Ralph and Wright [8] present several regularization, also called relaxation,
schemes and the corresponding properties in order to solve (MPCC). The same
authors study a regularization scheme that is analyzed by Scholtes [10] where
(MPCC) is approximated by the following NLP problem with a nonnegative scalar
parameter t decreasing to zero:

Reg(t): min f(x)
s.t. ci(x) = 0, i ∈ E,

ci(x) ≥ 0, i ∈ I,
x1 ≥ 0, x2 ≥ 0,
x1jx2j ≤ t, j = 1, ..., q.

(Reg)

The regularization scheme can be used by applying a NLP algorithm to Reg(t) for
a sequence of problems where t is positive and tends to zero. In this sequence, the
result of each minimization, is the initial approximation of the next minimization.

Two algorithms each one with two iterative procedures were implemented in
MATLAB - Quadratic Penalty Algorithm and Regularization Scheme Algorithm
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denoted by A1 and A2, respectively. The inner iterative procedure is performed
by the fmincon routine from MATLAB Optimization toolbox [5] which imple-
ments the SQP method. The external iterative procedure is based on the sequential
penalty technique (A1) and on the regularization scheme suggested by Ralph [8]
(A2).

Algorithm A1: Quadratic Penalty Algorithm
Initialization: r0; Tolerances definition: rmax, kmax, ε1, ε2; Inner and external iterations counters: it int, k = 0;

Problem information (amplfunc): x0, lb, ub, cl, cu, cv; Problem dimension: n, m, p, q;

REPEAT

Built penalty function P (xk, rk) and constraints;

Run the MATLAB function: [x, f, LAMBDA, output]=fmincon(’function’,....,’constraint’);

Lagrange multipliers estimation;

Update x, r, k and it int: xk+1 ← x; rk+1 ← rk × ρ1 (ρ1 > 1); k ← k + 1; it int ← it int + output.iterations;

UNTIL Stop criterium (rmax, kmax, ε1, ε2)

Algorithm A2: Regularization Scheme Algorithm
Initialization: t0; Tolerances definition: tmin, kmax, ε1, ε2; Inner and external iterations counters: it int, k = 0;

Problem information (amplfunc): x0, lb, ub, cl, cu, cv; Problem dimension: n, m, p, q;

REPEAT

Built the constraints;

Run the MATLAB function:[x, f, LAMBDA, output]=fmincon(’function’,....’constraint’);

Update it int, x: it int ← it int + output.iterations; xk+1 ← x;

Lagrange multipliers update; Update t, k: tk+1 ← tk × ρ2 (0 < ρ2 < 1); k ← k + 1;

UNTIL Stop criterium (tmin, kmax, ε1, ε2)

In algorithm A1, the formula (λ⊥)j = 2r x1j x2j , j = 1, . . . , q is used to estimate
the complementarity constraints Lagrange multipliers. The Algorithm A2 doesn’t
require the Lagrange multipliers estimation - they are updated using the output
values of the fmincon routine ((MPCC) and (Reg) have the same number of cons-
traints).

4. Numerical experiments

This section summarizes the numerical experiences using 85 AMPL test problems
from MacMPEC [7] to test the Algorithms A1 and A2. The Algorithms A1 and
A2 use r = 10× r and t = 0.05× t to update the penalty parameter and the reg-
ularization parameter, respectively. The performance profiles of Dolan and Moré
[3] are used to analyse the relative performance of the two algorithms. The per-
formance metrics are the number of internal and external iterations, respectively.
The graphics of performance profiles are in Figures 1 and 2 using log scale.

The Algorithms A1 and A2 have two and one fails, respectively, ie, both algo-
rithms present very good robustness. From the Figure 1 it is clear that the Algo-
rithm A2 has the highest probability of being the optimal solver for more than 65%
of the problems with respect to the internal iterations. Concerning to the external
iterations, Figure 2, both codes present similar performance. In order to evalu-
ate the algorithms efficiency the same problems set was solved using the fmincon
routine directly. The original problem is converted to an NLP formulation where
x1⊥x2 is replaced by x1jx2j = 0, j = 1, . . . , q. In this experience, denoted by A3
in Figure 3, twenty problems failed, compromising the robustness. A performance
profile, comparing the internal iterations, for the three experiences is in the Figure
3 - it is clear that Algorithms A1 and A2 introduce significative improvements with
respect to internal iterations.
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Figure 1. Internal iterations performance
profile
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Figure 2. External iterations performance
profile
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Figure 3. A1 vs A2 vs A3

Two distinct algorithms were implemented in MATLAB, combining the SQP
philosophy with the penalty technique and a regularization scheme, respectively.
These algorithms aim at computing a local optimal solution. The numerical results
are very promising - these nonlinear techniques combinations work very well, are
very easy to implement and both algorithms present robustness and efficiency. The
computational experience shows that penalty technique and regularization scheme
are effective for solving MPCC.
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