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Abstract— This paper presents a gait multi-objective opti-
mization system that combines bio-inspired Central Patterns
Generators (CPGs) and a multi-objective evolutionary algo-
rithm. CPGs are modeled as autonomous differential equations,
that generate the necessary limb movement to perform the
required walking gait. In order to optimize the walking gait,
four conflicting objectives are considered, simultaneously: min-
imize the body vibration, maximize the velocity, maximize the
wide stability margin and maximize the behavioral diversity.
The results of NSGA-II for this multi-objective problem are
discussed. The effect of the inclusion of a behavioral diversity
objective in the system is also studied in terms of the walking
gait achieved. The experimental results show the effectiveness
of this multi-objective approach. The several walking gait
solutions obtained correspond to different trade-off between
the objectives.

I. INTRODUCTION
Legged robot locomotion applies nonlinear dynamical

equations of high order with a multidimensional and irregular
set of parameters. Therefore, hand-tuning is very hard to
achieve and may not ensure the best results. Biological in-
spired Evolutionary Computation (EC) appears as the natural
choice for gait optimization of legged robots. It is suitable for
large dimension constrained multi-objective problems; robust
in optimization problems where it is very difficulty to obtain
local information and the objective functions are complex;
and it is a model-free approach resistant to noise in the
evaluation function. This is very convenient since it is very
difficult to obtain the dynamical model of the legged robot.
Furthermore, it provides for a strong global search capability
with a minimum risk of getting stuck in a local minimum,
and it may easily be deployed in parallel implementations
in order to reduce the required computational time to find a
solution.

Several gait optimization for biped, quadrupeds or hexa-
pod robots have adopted EC models for optimization prob-
lems [2]. Robocup is one of the motivation engines for these
works, specially using the AIBO quadruped robot.

Gait optimization using Genetic Algorithms (GAs) is the
most used approach. In order to improve and adapt the GA to
a specific gait optimization problem, it may be necessary to
add some modifications. In [13], it is studied a crossover
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operator with interpolation. Veloso [2] uses a two-point
crossover, Gaussian mutation and overlapping populations
to preserve the best individuals. Elitism strategies are also
used in [16]. Adaptation strategies have been adopted in [2]
to avoid premature convergence to local minima. Other Evo-
lutionary Algorithms (EAs), such as Genetic Programming
(GP) and Evolution Strategies (ESs) [9], have been used in
the gait optimization problem.

In this study, we focus on the quadruped gait optimization.
We propose an approach to optimize a specific quadruped
gait, a slow crawl gait, which has to respect a large duty
factor β . This is a very important slow statically stable gait
with three legs in ground contact, suitable for postural control
and therefore required to deal with movement in uneven
terrain. In current works [2], [14], [9] the robot configuration
is the one required to achieve higher velocities: the robot
knees are completely folded and use a trot gait locomotion.
Therefore, differently from current literature, in this work the
aim is not to achieve the highest possible velocity in any gait,
but rather to achieve the highest velocity for a slow crawl
gait, which has to respect a given duty factor and certain
phase relationships.

We take inspiration from the vertebrate biological motor
systems [8] specificaaly in the concept of Central Pattern
Generators (CPGs), pools of neurons that produce coordi-
nated patterns of motor activity while being initiated and
modulated by simple command signals. We base ourselves on
previous work from others [12], [5] and from the team [16],
[15], we apply (oscillator-based) differential equations to
model a limb-CPG, that generates trajectories for hip robot
joints [15]. These CPGs are modelled as coupled oscillators
and solved using numerical integration. In order to achieve
the desired crawl gait, it is necessary to appropriately tune
the CPG parameters. The hand-tuning of these parameters is
however difficult, and can only be obtained by trail and error
or systematically. We combine the proposed CPG approach
with an optimization strategy that searches for the best set
of CPG parameters that result in the desired gait.

In this work speed, vibration and stability are the evaluated
criteria used to explore the parameter space of the network of
CPGs. The minimization of the body vibration [7], measured
by accelerometers built-in the robot body, ensures a smooth
locomotion (energy efficient) of the robot. By addressing
both a speed and an energy related objective, it generally en-
sures that unrealistic behaviors (like high vibrations, jumps,
etc.) are avoided.

We apply the elitist Nondominated Sorting Genetic Algo-
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rithm [4] (NSGA-II) that uses the dominance relation and a
crowding mechanism to guide the search for the best CPG
parameters, considering the described evaluation criteria. We
used a hand-tuned gait as a seed to evolve the quadrupedal
gait.The NSGA-II, was used for biped and quadruped [10].
In [11] a multi-objective optimization for gait generation was
developed and applied MOEA. Slightly different objectives
were considered. In the overall, the method was strongly
model based in contrast to the work herein presented. Further,
we have NSGA-II seems to have better performance [4].

Recently different approaches explore the idea of explicitly
encourage diversity in the robot behavior space instead of
in the space explored by the optimization algorithms. We
follow the approach presented in [10], and define behavioral
diversity in population as a objective to optimize. This
assures the maximum diversity in the population. Herein we
compute the distance between robot behaviors instead of the
distance between genotypes [10].

Several experiments are performed in a simulated Aibo
robot in order to assess the performance of the NSGAII
on this multi-objective problem. The experimental results
demonstrate that our approach allows to find solutions with
lower vibration, higher velocity and higher wide stability
margin for a quadruped slow crawl gait when compared
to a previously hand-tuned gait. The quality of the latter
was already considered good in absolute terms but could be
improved with the NSGA-II. Further, we have observed that
it was better to introduce behavioral diversity onto the multi-
objective problem, since more diversified robot behaviors in
terms of the legs movements were achieved. In the future,
we plan to address other behavioral descriptors.

The problematic of evolving CPG parameters for robotic
locomotion has started to be tackled a long time ago [1]. But,
despite the fact that multi-objective algorithms had already
been employed to tackle gait optimization [10] and the
introduction of behavioral diversity onto the gait optimization
problem had also been considered [10], the application of the
chosen combination of technologies to quadruped walking is
new (CPGs and NSGA-II), as well as the comparison of the
conflict resolution mechanism and the number of evaluated
objectives in the considered context of gait optimization.

II. LOCOMOTION GENERATION

A. Gait Description

In this work we address the crawl gait generation. This is
a slow symmetric gait, meaning that the two legs of the same
girdle are 0.5 out of phase. This gait is singular (two or more
legs are simultaneously lifted or placed during a stride) and
regular (all the legs have the same duty factor, β ).

B. Rhythmic Movement Generation

Each hip joint of a limb, i, is directly controlled by
the xi variable that evolves from a modified Landau-Stuart
oscillator given by

ẋi = α
(
µ − r2

i
)
(xi −Oi)−ωzi, (1)

żi = α
(
µ − r2

i
)

zi +ω (xi −Oi) , (2)

where ri =
√
(xi −Oi)

2 + z2
i , amplitude of the oscillations is

given by A =
√µ , ω specifies the oscillations frequency (in

rad s−1) and relaxation to the limit cycle is given by 1
2α µ .

The z variable is an auxiliary variable required to assure
periodic motion.

This oscillator contains an Hopf bifurcation from a stable
fixed point at (xi,zi) = (Oi,0) (when µ < 0) to a structurally
stable, harmonic limit cycle, for µ > 0.

The following expression for ω allows an independent
control of speed of the ascending and descending phases of
the rhythmic signal [12], meaning an independent control of
the stance ωst and the swing durations ωsw,

ω =
ωst

1+ e−azi
+

ωsw

1+ e−azi
. (3)

The alternation speed between these two values is controlled
by a. The stance phase frequency, ωst , is determined based
on the constant swing frequency, ωsw, and on the desired
duty factor, β as follows:

ωst =
1−β

β
ωsw (4)

This set of equations models a CPG. It takes a set
of parameters, µ β , for the modulation of the generated
trajectories for each hip joint.

All these parameters will be tuned by the optimization
system described in section III, controlling the parameters
for a locomotion that maximizes a fitness. The parameters α ,
ωsw and a are set a priori. Parameter ωsw specifies the swing
phase duration, which is kept constant. Its value depends on
the desired speed of movements and on the capabilities of
the robotic platform.

C. Interlimb Coordination

We have four CPGs, one for each Hip joint. These four
CPGs are coupled in order to achieve the limb coordination
required in a walking gait pattern. The applied coupling
scheme is depicted in Figure 1 and is given by[

ẋi
żi

]
=

[
α
(
µ − r2

i
)

−ω
ω α

(
µ − r2

i
)][xi −Oi

zi

]
(5)

+∑
j ̸=i

R(θ j
i )

[
x j −O j

z j

]
.

The linear terms are rotated onto each other by the rotation
matrix R(θ j

i ), where θ j
i is the required relative phase among

the i and j hip oscillators to perform the gait (we exploit the
fact that R(θ) = R−1(−θ)).

The generated xi solution of this network of oscillator is
used as the control trajectory for a Hip joint of the robot
limbs (i = {LF, RH, RF, LH }). These trajectories encode
the values of the joint’s angles (◦) and are sent online for the
lower level PID controllers of each limb joint.

The knee joints are controlled as simple as possible. When
the limb performs the swing (stance) phase, the knee flexes
to a fixed angle, KFL, (KFL,min).
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Fig. 1. Each leg lags one quarter of a cycle, in the sequence: Left Fore,
Right Hind, Right Fore, Left Hind. In the arrows is indicated the relative
phase among hip CPGs.

III. OPTIMIZATION SYSTEM

The proposed network of CPGs generates trajectories for
the robot limbs. Different combinations of these trajectories
for each joint in terms of amplitude, offset and frequency,
result in different gait patterns. The proposed CPGs are
based on Hopf oscillators. They have the intrinsic property
of smoothly modulate the generated trajectories according to
explicit changes in the CPG parameters: amplitude µ , offset
O and the stance knee value. Therefore, we have to tune the
CPG parameters.

We use an optimization algorithm framework based on
NSGA-II to search for the optimal set of the CPG parameters.
A scheme of the optimization system is depicted in Figure 2.

Initial

Population
Fitness

Evaluation

Optimization

Algorithm

parameters

CPGs Robot

Servos

 

Stopping

Criteria?

vibration

velocity

wsm

Best 

chromosome

yesno

Locomotion System

Fig. 2. Optimization Locomotion System

A. Multi-objective formulation

Mathematically, a multi-objective optimization problem
with s objectives and n decision variables can be formulated
as, without loss of generality:

min f(x) = ( f1(x), . . . , fs(x))
subject to g(x)≥ 0 and h(x) = 0

where x ∈ X ⊂ Rn is the decision vector defined in the
decision space X = {x ∈ Rn : l ≤ x ≤ u}, f(x) ⊂ Fs is the
objective vector defined in the objective space Fs, g(x) and
h(x) are the inequality and equality constraints, respectively.

Solving multi-objective problems is a very difficult task
due to, in general, for this class of problems, the objectives
conflict across a high-dimensional problem space and the

computational complexity of the problem. Thus, the inter-
action between the multiple objectives gives rise to a set of
efficient solutions, known as Pareto-optimal solutions.

For a multi-objective minimization problem, a solution a
is said to dominate a solution b, if and only if, ∀i∈ {1, ...,s} :
fi(a)≤ fi(b) and ∃ j ∈ {1, ...,s} : f j(a)< f j(b). A solution a
is said to be non-dominated regarding a set Yn ⊆ Xn if and
only if, there is no solution in Yn which dominates a. The
solution a is Pareto-optimal if and only if a is non-dominated
regarding Xn.

The main goal of a multi-objective algorithm is to find
a good and balanced approximation to the Pareto-optimal
set. Note that Pareto-optimal parameter vectors cannot be
improved in any objective without causing degradation in at
least one of the other objectives. In this sense they represent
globally optimal solutions.

B. Specification of Objectives

In this work, we consider four objectives to measure the
performance of a walk gait: the vibration, the wide stability
margin, the velocity and the behavioral diversity.

1) Vibration: We consider that a good gait should have
less vibration, because the robot is subjected to less strain.
In order to calculate the total vibration we sum the standard
deviation of the measures of the (ax,ay,az) accelerometers
built-in onto the robot, similarly to [7], [13], [14], as follows:

fa = std(ax)+ std(ay)+ std(az) (6)

2) Wide Stability Margin: For stability, we calculate the
wide stability margin [17] (WSM). This is a measure of
the locomotion stability that provides the shortest distance
between the projection of the center of mass in the ground
and the polygon formed by the vertical projection in the
ground of robot feet contact points. A gait is considered
better for higher WSM values.

3) Velocity: We calculate forward velocity using the trav-
eled distance of the robot during the evaluation of each
chromosome of the population, i.e. during 12 seconds. A
gait is considered better if it achieves higher velocities.

4) Behavioral Diversity: The Behavioral diversity objec-
tive is to maximize the average distance of each chromosome
to the other chromosomes of the population. We use the
Hamming distance to calculate this behavioral distance by
exclusively relying on sensory-motor values. Our implemen-
tation is similar to the one described in [10].

We consider discretized leg positions at each time step,
described by a set of effector, e, and sensor, s, data as follows.
The movement of each leg is divided into four instants during
a stride, two during the stance phase and two during the
swing phase, corresponding to the moments a leg is stretched
forward or backwards. At each time step, each of these bits
is set to 1 if the leg is in the corresponding position and 0
otherwise.

In the overall we define 16 effector values at time t, four
for each Limb, e = [{e0(t), .,en(t)}, t ∈ [0,T ]], where n = 15
and T is the observation length (T = 12s).
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TABLE I
PARAMETER BOUNDS

µFL OFL µHL OHL ωsw(rad/s) KFL(
◦) KHL(

◦)

Upper 3600 400 3600 1600 12 127 127

Lower 0.0001 -1600 0.0001 -400 1 -30 5

The sensor vector s(t) is composed from perceptions at
time t, i.e. the values coming from the considered sensors.
Herein, we only consider the WSM measures as follows

s(t) =

{
1 if WSM(t)≥ 0
0 otherwise

. (7)

This enables us to build up the behavior feature vector,
ϑ(t), with 17 elements (16 effectors and 1 sensor values).
For each time step we have ϑ(t) = [{e0(t), .,en(t),s(t)}, t ∈
[0,T ]], where n = 15. The distance value is calculated using
the Hamming distance that counts the number of bits that
differ between two binary sequences. The binary sequences
that describe the behavior of the robot at each time step
correspond to the binary versions of ϑ and are computed
as follows: ϑbin(t) = [{ebin0(t), . . . ,ebinn(t),s(t)}, t ∈ [0,T ]],
where n = 15.

The total behavior distance of the chromosome is given by
the sum of distances to each chromosome of the population:

fdist(ϑi) =


P
∑
j=0

σ(ϑi,ϑ j) ∀ i ̸= j

0 ∀ i = j
(8)

where σ(ϑi,ϑ j) is the Hamming distance between two
behavior feature vectors ϑi and ϑ j in a time step.

C. Fitness Specification

Therefore, the mathematical formulation of this multi-
objective problem involves four objectives:

f =


min( f a)
max(vel)
max(WSM)

max( fdist)

(9)

It should be noted that several constraints have to be
imposed in this problem, as described in the following
section.

D. Constraint handling

The search range of the CPG network parameters depend
on the Aibo Ers-7 robot and as such are set before hand as
shown in Table I.

Maximum and minimum values for each knee angle are
calculated in order to avoid leg collision during locomotion.
Therefore, inequality constraints have been introduced to
prevent invalid solutions.

In order to handle the simple boundary constraints, each
new generated point is projected component by component
in order to satisfy boundary constraints as follows:

xi =


li if xi < li
xi if li ≤ xi ≤ ui

ui if xi > ui

(10)

where li, ui are the lower and upper limit of i component,
respectively. In order to handle inequality constraints, the
tournament based constraint method proposed by Deb [3]
that is based on a penalty function which does not require
any penalty parameter is adopted. For comparison purposes,
tournament selection is exploited to make sure that:

1) when two feasible solutions are compared, the one with
better objective function value is chosen;

2) when one feasible and one infeasible solutions are
compared, the feasible solution is chosen;

3) when two infeasible solutions are compared the one
with smaller constraint violation is chosen.

E. NSGA-II algorithm

We used the NSGA-II [4] that is a population based
algorithm implementing techniques inspired by evolution-
ary biology such as inheritance, mutation, selection, and
crossover.A population of points that represent potential
Pareto optimal solutions to the problem being solved are,
usually, referred to as chromosomes. NSGA-II uses ranking
and crowding distance for fitness definition (see eq.9) and
calculation [4]. Each generation, solutions in the population
that are not dominated by any other solution solutions will
constitute the 1st front. Thereafter, the solutions of the 1st
front are ignored temporarily, and the remaining solutions are
processed. To the second level of non-dominated solutions
is assigned a fitness value superior to the worst computed
fitness value from the solutions in the 1st front. Solutions are
also differentiated by the crowding distance which indicates
the extent that the objective space area in which the solution
resides is crowded by other solutions.

Tournament selection is used for mating selection in
NSGA-II which among two randomly chosen solutions, the
one that dominates the other is selected. If no one dominates
the other, it is selected the one in the less crowded area. Thus,
NSGA-II selects the solutions with the higher rank as first
priority followed by the crowding distance to select from the
same rank.

The search results from the creation of new chromosomes
from old ones by the application of genetic operators. The
crossover operator takes two randomly selected chromo-
somes; one point along their common length is randomly
selected, and the characters of the two parent strings are
swapped, thus generating two new chromosomes. The muta-
tion operator, randomly selects a position in the chromosome
and, with a given probability, changes the corresponding
value. This operator introduces diversity in the population
since selection and crossover, exclusively, could not assure
the exploration of new regions in the search space. In order to
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recombine and mutate chromosomes, the Simulated Binary
Crossover (SBX) and Polynomial Mutation were considered,
respectively. These operators simulate the working of the
traditional binary operators.

IV. EXPERIMENTAL RESULTS
In order to address the desired goals and to verify the

proposed solutions, several experiments were conducted:
1) NSGA-II(3OBJ): optimization system with the

NSGA-II to optimize, simultaneously, three objectives:
vibration ( fa), velocity (vel) and wide stability margin
(WSM);

2) NSGA-II(4OBJ):optimization system with the NSGA-
II to optimize, simultaneously, four objectives: vibra-
tion ( fa), velocity (vel), wide stability margin (WSM)
and behavior distance ( fdist).

Since we are interested in the evaluation of the impact of
the behavioral diversity on the obtained solutions, we have
also calculated the behavioral distance objective ( fdist ) for
NSGA-II(3OBJ).

In this work, real representation of the variables was
considered. So, each chromosome consists of a vector of
7 real values representing the decision variables of the
problem. Further, we used a hand-tuned gait as a seed to
evolve the quadrupedal gait. In all experiments, we consider a
population size of 100 chromosomes and a maximum number
of generations of 50. The SBX crossover and polynomial
mutation probabilities were, respectively, 0.9 and 1/7.

For chromosome evaluation purpose, we consider the ers-7
AIBO dog robot that is a 18 DOFs quadruped robot made by
Sony. Simulations were carried out in Webots, a simulation
software based on ODE, an open source physics engine
for simulating 3D rigid body dynamics. The locomotion
controller generates trajectories for the hip and knee joint
angles, that is 8 DOFs of the robot, 2 DOFs in each leg. At
each sensorial cycle (30 ms), sensory information is acquired.
We apply the Euler method with 1 ms fixed integration step,
to integrate the system of equations.

Each chromosome is evaluated during 12 seconds. At
the end of each chromosome evaluation the robot is set to
its initial position and rotation, such that initial conditions
are equal for the evaluation of all chromosomes of all
populations. Results were obtained in an AMD Athlon XP
2400+2.00 Ghz (512 MB of RAM) PC.

Since we are solving a multi-objective optimization prob-
lem, we have used the hypervolume metric [6] to assess the
quality of the approximate Pareto-optimal set generated by
each algorithm. All distances and volumes are measured in
the objective space. The reference point has been selected
by taking the approximation to the Nadir point based on
the non-dominated solutions present in the final populations:
r = {1.47,0.5827,−18.1,103408}.

In Table II, we introduce the behavioral distance value
( fdist) in the computation of the hypervolume of the final
population obtained in each experiment. The best hypervol-
ume was obtained by the NSGA-II with behavioral diversity
(NSGA-II(4OBJ) experiment). This finding highlights the

relevance of including this objective in order to achieve
solutions that represent different behavior of the robot gait.

In Table II, the mean, standard deviation and best value
of behavioral diversity of final population is presented for
the different experiments conducted. As expected, it can be
seen that the highest average value for behavior diversity
was obtained in the NSGA-II(4OBJ) experiments, which
indicates the importance of the inclusion of the behavioral
diversity objective in the optimization system.

TABLE II
BEHAVIOR DIVERSITY FOR THE TWO EXPERIMENTS

Experiment mean std best Hypervolume

NSGA-II(3OBJ) 1.3618e+005 2.8802e+004 2.5043e+005 9.3037e+008

NSGA-II(4OBJ) 1.4034e+005 2.1993e+004 2.2937e+005 9.6620e+008

We have used the non-parametric Mann-Whitney sta-
tistical test to compute the probability of two different
samples have the same mean value. This way we use
the behavioral diversity to calculate the similarity of the
different experiment. The p-value of the Mann-Whitney test
between NSGA-II(3OBJ) and NSGA-II(4OBJ) experiments
is 0.0682. This indicates that, in these two experiments,
the mean behavioral diversity measures of the two sets of
solutions achieved in each experiment can be considered
similar. However, it should be stressed that this comparison
reflects the central tendency of the behavioral diversity and
does not take into account the relations with the other
objectives. As previously mentioned, the hypervolume mea-
sure indicates the importance of considering the behavioral
diversity objective in the optimization procedure.

The inclusion of the behavioral diversity objective largely
increased the number of nondominated solutions found since
the objective space dimension is also increased. Solutions
having different behavioral diversity distances correspond to
similar trade-off between the other objectives. In summary,
the introduction of behavioral diversity enable us to achieve
a Pareto-optimal set that has diversified robot behaviors in
terms of the legs movements.

Further, we can observe a clear and expected trade-off
between the different objectives that indicate the conflictive
relationship among them (speed and vibration). Two of the
most interesting features of the resulting Pareto front are
the almost exponential relations between the velocity and
the WSM and the velocity and the vibration, though it is
more notorious in the former. When moving at high speeds
the vibration has high values and the stability has lower
values. The solutions have to be chosen depending on the
final endeavor and some compromises have to be accepted.

The resultant behavior and the optimal gaits for 3 different
results of Pareto front solutions, A, B and C, are shown
in the attached video.Firstly, we choose a solution that
considers maximum velocity and low WSM (point indicated
with an A). This point corresponds to a medium value of
vibration. The optimal gait generated by the chosen second
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TABLE III
PARETO FRONT SOLUTIONS

Solution Experiment
Objective functions

vibration velocity(m/s) WSM

A

NSGA-II(3OBJ) 0.121 0.117 4.09

NSGA-II(4OBJ) 0.120 0.112 0.14

B

NSGA-II(3OBJ) 0.032 0.034 24.93

NSGA-II(4OBJ) 0.059 0.086 7.71

C

NSGA-II(3OBJ) 0.088 0.015 32.61

NSGA-II(4OBJ) 0.089 0.004 32.23

solution (B) satisfies every objective functions. The vibration
is decreased by 50.83% but on the other hand the value
of the velocity and the WSM cost functions are decreased
(increased) by 23.23% and 98,21%, respectively. Finally,
the third chosen solution (C) shows a very small value for
velocity (decreased by 94.7%) with a corresponding large
value for the WSM and vibration, that increased by 76.08%
and 32.76%, respectively, relatively to solution B. Table III
shows the values of each solution for the two experiments.

Comparing the solution B of the NSGA-II(4OBJ) ex-
periment with the hand-tuned gait, the walking speed was
improved by around (40.77%), the wide stability by 36,57%
and vibration of 25.44%. The attached video shows the robot
running the evolved controller and provides for a sense of
how competent the improvement was.

V. CONCLUSIONS AND FUTURE WORKS

In this article, we have addressed the locomotion optimiza-
tion of a quadruped robot that walks with a slow walking
gait. A locomotion controller based on dynamical systems
to model CPGs, generates quadruped locomotion. These
CPG parameters are tuned by an optimization system. This
optimization system combines CPGs and a multi-objective
optimization method, NSGA-II.

Experiments were performed in the Webots robotics sim-
ulator. The aim was to compare the performance of the opti-
mization method according to the several objective functions
criteria. Further, we study the impact of the Behavior Diver-
sity objective in the performance of the NSGA-II method.
The best results were obtained by the NSGA-II experiment
that used the behavior diversity as an objective function.
However, both techniques were able to obtain a set of
parameters adequate for the implementation of a quadruped
walking gait with lower vibration, higher stability margin and
higher velocity comparatively to an already efficient (in ab-
solute terms) hand-tuned gait. Currently, we are using other
optimization methods such as Particle Swarm Optimization
(PSO) and Ant Colony Optimization (ACO). We will extend
this optimization work to address other locomotion related
problems, such as: the generation and switch among different
gaits according to the sensorial information and the control
of locomotion direction.
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