
Translating Alloy Specifications to
UML Class Diagrams Annotated with OCL

Ana Garis1, Alcino Cunha2, and Daniel Riesco1

1 Universidad Nacional de San Luis, San Luis, Argentina
{agaris,driesco}@unsl.edu.ar

2 DI-CCTC, Universidade do Minho, Braga, Portugal
alcino@di.uminho.pt

Abstract. Model-Driven Engineering (MDE) is a Software Engineering
approach based on model transformations at different abstraction levels.
It prescribes the development of software by successively transforming
models from abstract (specifications) to more concrete ones (code). Alloy
is an increasingly popular lightweight formal specification language that
supports automatic verification. Unfortunately, its widespread industrial
adoption is hampered by the lack of an ecosystem of MDE tools, namely
code generators. This paper presents a model transformation between
Alloy and UML Class Diagrams annotated with OCL. The proposed
transformation enables current UML-based tools to also be applied to
Alloy specifications, thus unleashing its potential for MDE.

Keywords: MDE, Alloy, UML, OCL

1 Introduction

Model-Driven Engineering (MDE) is a promising Software Engineering approach
using models at different abstraction levels. Software is developed by successively
transforming models from abstract to more concrete ones.

UML and OCL have been successfully adopted in the MDE context through
the Model-Driven Architecture (MDA) initiative [15]. In order to support UML
and OCL in MDE, different tools have been developed such as code generators
and reverse engineering tools. Due to the informality and ambiguity of UML
semantics it also has been combined with formal methods to increase the confi-
dence in the software development process. Formal methods use mathematics for
specification and design of models helping to discover inconsistencies in informal
requirements. The main disadvantage of formal languages is that they require a
learning effort and thus are frequently avoided by software engineers responding
to time and cost constraints.

Alloy [12] is a lightweight formal language with a simple notation, easy to
learn, easy to use, that includes a friendly Validation and Verification (V&V)
tool. Its denotational language is based on first-order relational logic, with an
object-oriented notation similar to UML and OCL [16]. The automatic Alloy

2 Ana Garis, Alcino Cunha, and Daniel Riesco

Analyzer allows the generation of snapshots showing instances of the model as
well as the execution of operations and assertion checking.

Although very few UML software developers are familiar with formal meth-
ods, Alloy could be easily adopted by UML practitioners due to its simplicity
and its resemblance with UML. Both Alloy and UML can benefit if two-way
transformations are developed between them. On the one hand, from the UML
practitioners point of view, Alloy Analyzer could be exploited as a model verifi-
cation tool in a MDE context. On the other hand, from the Alloy practitioners
point of view, a myriad of UML tools could be used in order to unleash Alloy
potential for MDE. Specifically, there exist multiple code generators to different
platforms and programming languages, such as JEE, CORBA, Java, C, C++,
C# and Python, that could be used to refine Alloy specifications.

Further benefits could be achieved by developers familiarized with both Alloy
and UML. They could be combined in the software development process: start
by using UML Class Diagrams to specify requirements at high abstraction level,
then translate them to Alloy and formally specify invariants and operations, per-
form model validation and verification using Alloy Analyzer, and finally translate
back to UML+OCL in order to use the aforementioned code generation tools.

This paper presents a model transformation from Alloy specifications to UML
Class Diagrams annotated with OCL. Although the semantic correspondence
between elements of UML and Alloy was already analyzed in [1], the translation
from Alloy to UML+OCL has not been considered yet. This translation opens
new challenges since several Alloy expressions do not have a direct equivalent in
UML or OCL. Additionally, it requires us to explore the different Alloy idioms
in order to identify a specification style compatible with UML+OCL models.
Therefore, we define a subset of the Alloy language which includes UML+OCL
compatible expressions, and we study the semantics of the syntactic elements of
Alloy, UML Class Diagrams and OCL. We redefine the EBNF of Alloy grammar
to recognize expressions in this subset and specify the transformation rules. Our
approach is illustrated with a case study.

The rest of the document is structured as follows. Next section introduces
preliminary concepts related to Alloy. After discussing some related work, the
transformation from Alloy to UML+OCL is presented. Last section presents the
conclusions and future work.

2 Alloy

Alloy is a formal language based on first-order relational logic [12]. It is supported
by a SAT solver that enables model V&V. Alloy Analyzer is inspired by model
checkers, but it is implemented as a solver. An Alloy module consists of a module
header, a set of imports and zero or more paragraphs. The module header is a
name of the module where signatures, constraints, assertions and commands
are defined. An import allows to include additional modules. Furthermore, a
paragraph can either be a signature declaration, a constraint, an assertion or a
command.

Translating Alloy Specifications to UML Class Diagrams and OCL 3

A signature declaration represents a set of atoms. An atom is a unity with
three fundamental properties: it is indivisible, immutable and uninterpreted.
Optionally, a signature declaration can introduce fields. Fields represent sets of
tuples of atoms and are interpreted as relations between signatures. Constraints
are defined by facts, predicates and functions. Facts are invariants; i.e, their as-
sociated constraints always hold. Predicates are named constraints, which can
be used in diverse contexts. The difference between a fact and a predicate is
that the first one always holds while the second one only holds when invoked.
Finally, functions describe named expressions, which can be also reused in di-
verse contexts. Assertions allow the expression of properties that are expected
to hold as consequence of the stated facts. Commands are instructions to per-
form particular analysis. Alloy provides two commands for analysis: run and
check. Command run gives instructions to analyzer to search for an instance
of a given predicate, and command check to search for a counterexample of a
given assertion.

Alloy’s logic is quite generic and does not commit to a particular specification
style. For example, since atoms are immutable there is no standard way to model
the dynamic behavior of operations, and several idioms have been proposed to
address this issue. One of the most popular is to introduce a signature denoting
the overall state of the system, and model operations as predicates that specify
the relationship between pre- and post-states. Two variants of this idiom are
possible, known respectively as global state and local state. In the former all
mutable fields are defined in the global state signature. In the later, the state
signature is added locally as an extra column at the end of each mutable field.
The local state idiom is more modular, since fields are still declared in the
signature they naturally belong to. On the other hand, the global state idiom
forces all dynamic fields to be artificially grouped together. The designation local
state can be misleading, since the state is also global - the “local” concerns only
the location it appears in field declarations.

In this paper we will assume the local state idiom to specify operations. Note
that Alloy models conforming to the global state idiom can be easily converted
to the local one using a simple refactoring [9]. Without loss of generality, we
will also assume the distinguished state signature to be denoted as Time and all
fields to be dynamic. An operation op will be specified using a predicate pred

op[...,t,t’:Time] {...} with two special parameters t and t’ denoting, re-
spectively, the pre- and post-state. Functions will be used to model queries that
do not change the state. As such, only one of those special parameters is needed.

Figure 1 presents an example of an Alloy model conforming to the local state
idiom. It is a variant of the address book model first presented in [12]. The addr

field is a mutable relation that maps names to targets. A target is either an
address or another name. Names are either groups or aliases. For each book, the
first fact forces all names in the addr relation to be registered in the respective
names relation.

In Alloy everything is a relation. For example, variables are just unary sin-
gleton relations. As such, the relational composition operator can be used for

4 Ana Garis, Alcino Cunha, and Daniel Riesco

module addressBook

sig Time {}

abstract sig Target { }

sig Addr extends Target { }

abstract sig Name extends Target { }

sig Alias, Group extends Name { }

sig Book {

names: Name set -> Time,

addr: Name -> some Target -> Time }

fact { all t:Time | all b:Book | b.addr.t.Target in b.names.t }

fact { all t:Time | all b:Book | no n: Name | n in n.^(b.(addr.t)) }

fact { all t:Time | all b:Book | all a: Alias | lone a.(b.addr.t) }

pred add [b: Book, n: Name, a: Target, t,t’: Time] {

n in b.names.t

b.addr.t’ in b.addr.t + n->a }

fun lookup [b: Book, n: Name, t: Time] : set Addr {

n.^(b.(addr.t)) & Addr }

Fig. 1. Address book example.

various purposes. In particular, b.addr.t denotes the value of the relation addr

of book b at instant t. Note that the relation b.addr.t has type Name -> some

Target. If we compose it with the Target set, we get all names in the domain
of that relation. The second fact uses the transitive closure operator to ensure
that the addr relation is acyclic. The last fact limits the addresses of aliases to
at most one target.

In the body of operations, constraints that do not refer to t’ can be seen as
pre-conditions. For example, n in b.names.t requires names to be registered
before adding or removing new targets. Otherwise we have post-conditions. For
example, expression b.addr.t’ = b.addr.t + n->a states that, after executing
operation add, relation b.addr should have at least one additional tuple. lookup
models a query that returns the set of addresses of a given name. Again, tran-
sitive closure is used to recursively traverse relation addr. A desirable assertion
in this model could be:

assert lookupYields {

all t:Time, b:Book, n:b.names.t | some lookup[b,n,t]

}

check lookupYields for 4 but 1 Book

Translating Alloy Specifications to UML Class Diagrams and OCL 5

Unfortunately it does not hold, and the check command will produce a counter-
example.

3 Alloy and UML+OCL Integration in MDE

The translation from Alloy to UML could foster the usage of Alloy in the MDE
context. As mentioned before, a lot of UML tools have been developed to support
MDA. However, even though OCL tools have improved in the last years, they
still have several limitations regarding model V&V. Formal methods have been
proposed as a valuable alternative to improve these limitations. In fact, they
have been successfully integrated in the MDA, as shown in HOL-OCL [3], USE
[11] or UML2Alloy [1].

Due to its suitability for V&V, Alloy is a better candidate for the early mod-
eling phase of the software development process. After the validation process
with Alloy, models can be translated to UML Class Diagrams and OCL in order
to enable MDA-UML tools as well as MDA-OCL tools. Most of the UML tools
allow transformations from UML Class Diagrams to different platforms and pro-
gramming languages, such as JEE, CORBA, Java, C, C++, C# and Python.
Additionally, there exist OCL tools for code generation, such as OCLtoSQL [4]
and DresdenOCL [5].

3.1 Related Work

The relationship between UML and OCL with Alloy has been extensively stud-
ied by Anastaskis et al. [1], resulting in a prototype named UML2Alloy. This
translation considers only the basic elements of UML Class Diagrams: classes,
attributes and associations; and excludes interfaces, dependencies and signals.

Massoni et al. also propose a UML+OCL to Alloy translation in [13]. For
classes, attributes and associations, they propose the same approach as Anas-
taskis et al. [1], but they also consider the translation of UML interfaces. The
semantics of UML cannot be fully preserved since Alloy cannot represent some
UML Class Diagram features such as visibility of attribute’s properties.

UML has also been mapped to Alloy for model V&V of particular case-
studies. We present three examples: the first one uses the Alloy Analyzer for
formal security evaluation in a methodology called Aspect-Oriented Risk-Driven
Development (AORDD) [7]; the second one describes a proposal for Alloy spec-
ification from Aspect-UML models, a UML Profile for extending UML with
Aspect-oriented concepts [14]; the third one explains an approach to translate
UML models, specified with OntoUML, for model validation using Alloy [2].
These examples make evident Alloy potential to V&V, but like in [13, 1]; they
consider the translation from UML+OCL to Alloy, not from Alloy to UML.

Shah et al. present a model transformation from Alloy to UML [18]. Specifi-
cally, they convert instances generated by Alloy Analyzer to a UML Object Di-
agram. This approach is possible in case UML2Alloy tool has been used before
to generate an Alloy specification. The transformation is based on the original

6 Ana Garis, Alcino Cunha, and Daniel Riesco

UML Class Diagram so it assumes that Alloy specifications must not change.
Even though Shah et al. have exposed a way to translate from Alloy to UML,
they only map model instances to UML Object Diagrams. Namely, they do not
consider the translation from Alloy to OCL either.

4 Model Transformation from Alloy to UML+OCL

Although model transformations from UML to Alloy have already been defined
[1, 13], the opposite translation has not. Moreover it is characterized by new
challenges, not addressed previously. An important issue to solve is the char-
acterization of source models, namely identifying a subset of Alloy that can
faithfully be translated to UML+OCL. We will first define this subset formally,
and then present the translation of both model declarations and constraints.
The address book example presented in Figure 1 will be used to illustrate our
proposal.

4.1 Characterizing source models

The Alloy subset accepted by our model transformation is defined in Figure 2.
This subset restricts models to conform to the local state idiom, informally
introduced in Section 2. In particular, the model must declare a distinguished
signature denoted Time, the last column of field declarations must be Time, all
predicates must have t and t’ as parameters, and all functions must have t

as parameter. Note that Time, t, and t’ are reserved keywords not allowed
in sigId and varId, respectively. To simplify the presentation, we are assuming
all relations to be mutable. Immutable relations (not including Time in their
declaration) could also be handled by adding frame conditions to all method
post-conditions in OCL, stating that their value remains constant. Besides these
structural restrictions, the syntax of formulas is further restricted to ensure a
sound operational semantics [10]:

– Facts must be of the form all t:Time | φ, with t the only time variable
that occurs in formula φ. This ensures that they act as invariants, instead
of arbitrary temporal formulas, and can thus be represented in OCL.

– Every relational expression occurring in a formula must be state-bound, in
the sense that each mutable relation identifier is within scope of a time
variable. To simplify the translation, we ensure this restriction by forcing
relation identifiers to be composed with either t or t’. However, a more
relaxed syntax can be defined, where each occurrence of a relation identifier is
required to be a subterm of either Φ.t or Φ.t’, where Φ denotes a relational
expression.

Besides conforming to the local state idiom, an Alloy model must satisfy
some additional restrictions due to the limitations of UML+OCL, as described
in the UML Class Diagram metamodel [17] and the OCL metamodel [16]:

Translating Alloy Specifications to UML Class Diagrams and OCL 7

module ::� module moduleId sig Time {} sigDecl� paragraph�

paragraph ::� factDecl | funDecl | predDecl

sigDecl ::� rabstracts sig sigId rextends sigIds sigBody

sigBody ::� { rfieldDecl p, fieldDeclq�s }
fieldDecl ::� setDecl | relDecl

setDecl ::� relId : set Time

relDecl ::� relId : sigId rmults -> Time | relId : psigId ->q�rmults sigId -> Time

mult ::� lone | one | some | set

factDecl ::� fact {all t:Time | all varId:sigId | form}

funDecl ::� fun funId[pvarId:sigId,q�t:Time] : set sigId { expr }

predDecl ::� pred predId[pvarId:sigId,q�t,t’:Time] { form� }
form ::� expr compOp expr | form logicOp form | form => form r, forms |

!form | intExpr intCompOp intExpr | quant varId:sigId | form

logicOp ::� && | || | <=>

compOp ::� = | in

intCompOp ::� = | < | > | =< | >=

quant ::� all | no | lone | one | some

expr ::� varId | sigId | relId.t | relId.t’ | none | univ | iden | expr relOp expr |

~expr | ^(pvarId.q�(relId.t)q | ^(pvarId.q�(relId.t’)q |

*(pvarId.q�(relId.t)) | *(pvarId.q�(relId.t’)) | funId[pvarId,q�t] |

funId[pvarId,q�t’] | {varId:sigIdp,varId:sigIdq� | form}
relOp ::� . | + | - | & | <: | :> | -> | ++

intExpr ::� integer | #expr | int[expr] | intExpr intOp intExpr

intOp ::� + | -

Fig. 2. Subset of Alloy translated to UML+OCL.

– Signature declarations can only be top-level or extend other signatures. Sig-
nature inclusion, where in is used instead of extends, is not allowed since
it is not possible to specify using UML class diagrams that a class is a non-
disjoint subset of another class.

– Field declarations must refer signature identifiers instead of arbitrary rela-
tional expressions. This ensures that the type of each column corresponds
to a single signature, instead of an arbitrary disjunction of signatures, as
prescribed in the Alloy type system [6]. Since fields will be represented by
attributes or associations in UML, without this restriction we might not be
able to determine the type of attributes or association ends.

– Multiplicity constraints can only occur in the last column (not counting
Time) of a field declaration. A field relating more than two signatures will

8 Ana Garis, Alcino Cunha, and Daniel Riesco

be represented by a qualified association in UML, and those only support
multiplicities in the association end.

– OCL requires a context (a class) for all invariants and methods. As such,
Alloy facts must be further restricted to include at least one additional uni-
versally quantified variable besides the special time variable. The type of
this variable will determine the OCL context. Moreover, functions and pred-
icates are required to have at least one parameter besides the special time
parameters. The type of the first parameter will determine the context of
the target method.

– OCL does not natively support transitive closure. So far, we only managed to
translate the transitive closure of a concrete relation, instead of an arbitrary
relational expression. The syntax is restricted accordingly.

– Predicate call is not supported, since OCL constraints can only invoke side-
effect free queries.

– Assertions and commands will not be considered, since they do not have
a counterpart in OCL. In general they only make sense for model V&V,
for which OCL is currently not well suited. We prescribe that model V&V
should be performed using the Alloy Analyzer, so those constructs can safely
be ignored when translating to OCL.

The grammar of Figure 2 also includes some additional minor restrictions,
that do not limit the expressivity of the language. For example, we do not allow
signature facts, neither atomic formulas of the form mult expr. These restrictions
simplify the presentation of the translation, and can easily be lifted by means of
trivial refactorings. For instance, the formula lone a.(b.addr.t) in Figure 1
can be refactored to #(a.(b.addr.t))=<1.

4.2 From Alloy to UML class diagrams

The relationship between UML class diagrams and Alloy declarations is straight-
forward, as noticed in [19, 13, 1]: in general, classes correspond to signatures
(preserving the inheritance relation), associations and attributes to fields, and
methods to predicates and functions. These relationships are essentially the same
when translating from Alloy to UML class diagrams, but with the novelty that
some fields may lead to non-binary associations.

As seen in Figure 2, excluding the mandatory Time column, fields can be of
two kinds:

– Sets with type A, to be translated as attributes of class A with type Boolean.
– Relations with type A1 -> . . . -> m An, to be translated as qualified asso-

ciations betweenA1 andAn, withA2, . . . , An�1 as qualifiers. The multiplicity
at the end of the association depends on m: 0..* for set; 1..* for some;
0..1 for lone; and 1..1 for one. If m is absent, the default is set.

If the relation is binary, with type A1 -> m A2, and m is either lone or one it
is more natural to encode it as attribute of A1 with type A2.

The UML class diagram corresponding to the address book example of Fig-
ure 1 is presented in Figure 3.

Translating Alloy Specifications to UML Class Diagrams and OCL 9

Fig. 3. UML class diagram corresponding to address book example

4.3 From Alloy to OCL

The model transformation from the Alloy subset described in Section 4.1 to OCL
will be encoded using an embedding function v�w. To simplify the presentation,
this function will accept and produce concrete syntax. The following convention
will be followed for naming variables denoting the various grammar elements:
x, y, z for variable identifiers; A,B,C for signature identifiers and types in gen-
eral; R,S, T for relation identifiers; φ, ψ, ϕ for formulas; Φ, Ψ, Υ for relational
expressions; and α, β, γ for integer expressions.

We will assume the input model to be well-typed, according to the typing
system described in [6]. This type system is very relaxed: an error occurs when
a expression can be shown to always be empty at static time. For example, the
composition Φ.Ψ is well-defined for any relational expressions Φ: A -> B and
Ψ: C -> D, if the intersection of types B and C is non-empty. The type of
a relational expression is itself a relation: a set of tuples of atomic signatures
(i.e. signatures that are not further extended, such as Book, Addr, Alias, and
Group in our running example). The type inference rules ensure that all the
tuples in the type relation have the same length. Given a relational expression
Φ of arity |Φ|, we will denote the type of the n-th column as Φn (assuming
0 n ¤ |Φ|). The type of a column is guaranteed to be a set of atomic signatures,
each corresponding to a concrete class in UML. In the translation we sometimes
need to quantify over such types. To simplify the presentation, notation

tA1, . . . , Anu.allInstances->forAll(x|φ)

tA1, . . . , Anu.allInstances->exists(x|φ)

where tA1, . . . , Anu is an Alloy type, will be used as a shorthand for, respectively

A1.allInstances->forAll(x|φ) and . . . and An.allInstances->forAll(x|φ)

A1.allInstances->exists(x|φ) or . . . or An.allInstances->exists(x|φ)

10 Ana Garis, Alcino Cunha, and Daniel Riesco

The translation of an Alloy module is triggered by the following rule:

vmodule id sig Time {} s1 . . . sn p1 . . . pmw �

package m vp1w . . . vpmw endpackage

Fact, Function and Predicate Declarations Figure 4 details the transfor-
mations of fact, function and predicate declarations. Signature declarations are
ignored in the OCL generation, and are only used in the UML class diagram
generation detailed in the previous section.

vfact {all t:Time | all x:A | φ}w �
context A inv: vφwx

vfun f[x1:A1, . . . ,xn:An,t:Time] : set B { Φ }w �
context A1::f(x2:A2, . . . ,xn:An):Set(B)

post: B.allInstances->select(y|vxyy P Φwx1)

vpred f[x1:A1, . . . ,xn:An,t,t’:Time] { φ1 . . . φm }w �
context A1::f(x2:A2, . . . ,xn:An)

pre: vφ1wx1 if t’ does not occur in φ1

post: vφ1w
1
x1 otherwise

. . .

pre: vφmwx1 if t’ does not occur in φm
post: vφmw1x1 otherwise

Fig. 4. Translation of fact, function and predicate declarations

In OCL, all invariants and method specifications must be defined in the
context of a class. For Alloy facts, the type of the first universally quantified
variable (appart from the mandatory Time one) will determine the context of
the generated invariant. The translation of formulas must then be parametrized
with the name of the variable that will denote the self object. For functions
and predicates, the context is determined by the type of the first parameter.
In a predicate, all formulas where t’ does not occur will be translated as pre-
conditions. Otherwise, they are translated as post-conditions.

Two slightly different formula translations will be defined, due to different
meanings that variable t assumes in different contexts. In a post-condition, an
association R.t should be translated as R@pre, since t denotes the pre-state.
In invariants, functions and pre-states it denotes the only visible state, and thus
the translation just outputs R. As such, we will use vφw to translate a formula
φ that occurs in an invariant, function, or pre-condition; and vφw1 to translate a
formula φ that occurs in a post-condition.

Translating Alloy Specifications to UML Class Diagrams and OCL 11

Formulas The translation of formulas is presented in Figure 5. We omit the
definition of v�w1 because for formulas it is identical - it will only diverge when
applied to relational expressions. Most logic operators have a direct counter-
part in OCL and can thus be trivially translated. OCL does not support the
non-standard quantifiers no and one, but they can be simulated by testing the
cardinality of the subset of the type satisfying the quantified formula.

vΦ in Ψwx � Φ1
.allInstances->forAll(y1| . . .

Φ|Φ|.allInstances->forAll(y|Φ||

vxy1, . . . , y|Φ|y P Φwx implies vxy1, . . . , y|Φ|y P Ψwx) . . .)

vΦ = Ψwx � vΦ in Ψwx and vΨ in Φwx

vφ && ψwx � vφwx and vψwx

vφ || ψwx � vφwx or vψwx

vφ <=> ψwx � vφ => ψwx and vψ => φwx

vφ => ψwx � vφwx implies vψwx

vφ => ψ,ϕwx � if vφwx then vψwx else vϕwx endif

v!φwx � not vφwx

vα = βwx � vαwx = vβwx

. . .

vα >= βwx � vαwx >= vβwx

vall y:A | φwx � A.allInstances->forAll(y|vφwx)

vsome y:A | φwx � A.allInstances->exists(y|vφwx)

vno y:A | φwx � A.allInstances->select(y|vφwx)->isEmpty()

vone y:A | φwx � A.allInstances->select(y|vφwx)->size() = 1

Fig. 5. Translation of formulas

The trickiest part of the translation concerns the atomic formulas Φ in Ψ ,
where Φ and Ψ are arbitrary relational expressions. This formula cannot be
encoded using set inclusion because |Φ| can be greater than 1, and, unlike Alloy,
OCL does not support the construction of arbitrary relations as normal first-
order values. As such, relational expressions will be translated by building their
standard first-order denotational semantics: a relational expression Φ will be
translated by a formula that checks if a tuple xy1, . . . , y|Φ|y belongs to the denoted
relation. The inclusion Φ in Ψ can thus be translated by a formula that checks
if all tuples of the appropriate type that belong to Φ also belong to Ψ . Note that
the type system ensures that the arity of Φ and Ψ are the same. Using the first-
order semantics of relational logic to embed Alloy in other logical frameworks is
kind of folklore. For example, a similar strategy was used recently to develop a
tool for unbounded verification of Alloy models using SMT solvers [8].

12 Ana Garis, Alcino Cunha, and Daniel Riesco

Relational Expressions The translation of relational expressions is presented
in Figure 6. As explained above, this translation basically encodes the standard
first-order semantics of relational operators. A brief explanation of the most
interesting rules follows:

– Testing if a unary tuple is a member of a variable can be done with a simple
equality test. Note that, as mentioned before, Alloy variables are singleton
unary relations. If the variable denotes the self object then this identifier
is used instead.

– Translation of field R.t membership depends on the arity of R: if it is a
set we just check the value of the generated boolean attribute; otherwise we
navigate the qualified association R.

– Translation of field membership requires an additional type checking since
Alloy allows access to a field from any signature that includes the owner of
the field. A reference like this could generate an undefined value in OCL.
As such, we translate to false when the type of each variable yi is not a
sub-type of Ri. Translation of variables and signature membership assumes
similar considerations. To simplify the presentation, these type-checkings are
not included in Figure 6.

– The semantics of the relational composition Φ.Ψ leads to a new existential
quantifier over the mediating type. We quantify over Φ|Φ| X Ψ1 because the
composition only succeeds for values belonging to the intersection of both
types. This optimization reduces the number of quantifiers in the outputted
formula.

– Testing if xy1, . . . , yny is included in the relational overriding Φ ++ Ψ is
reduced to a membership test over Ψ if xy1, . . . , yn�1y belongs to its domain;
otherwise a membership test over Φ is generated.

– In a relation defined by the comprehension {z1:A1,. . .,zn:An | φ}, the
membership test is translated by just applying the predicate φ to the tuple
variables y1, . . . , yn instead of z1, . . . , zn.

The translation of closures is not straightforward since they are not finitely
axiomatizable in first order logic, and OCL also does not support them natively.
Fortunately, there are many ways to encode the transitive closure using recur-
sive definitions. Given an arbitrary relation R: A1 -> . . . -> An, the transitive
closure of the respective (partially applied) qualified association can be imple-
mented as follows:

context A1

def: RClosureAux(y2:A2,. . .,yn�1:An�1,s:Set(An)):Set(An) =

let s’:Set(An) = s->collect(x:A1 | yn�1.R[yn�2,. . .,y2,x] in

if s->includesAll(s’) then s

else RClosureAux(y2,. . .,yn�1,s->union(s’))

endif

def: RClosure(y2:A2,. . .,yn�1:An�1):Set(An) =

RClosureAux(y2,. . .,yn�1,yn�1.R[yn�2,. . .,y2,self]))

Translating Alloy Specifications to UML Class Diagrams and OCL 13

vxyy P zwx �
y=self if z � x
y=z otherwise

vxyy P Awx � A.allInstances->includes(y)

vxy1, . . . , yny P R.twx �
y1.R[y2, . . . ,yn�1]->includes(yn) if n ¡ 1
y1.R() otherwise

vxyy P nonewx � false

vxyy P univwx � true

vxy1, y2y P idenwx � y1=y2

vxy1, . . . , yny P Φ.Ψwx � pΦ|Φ| X Ψ1q.allInstances->exists(y|

vxy1, . . . , y|Φ|�1, yy P Φwx and vxy, y|Φ|, . . . , yny P Ψwx)

vxy1, . . . , yny P Φ + Ψwx � vxy1, . . . , yny P Φwx or vxy1, . . . , yny P Ψwx

vxy1, . . . , yny P Φ - Ψwx � vxy1, . . . , yny P Φwx and (not vxy1, . . . , yny P Ψwx)

vxy1, . . . , yny P Φ & Ψwx � vxy1, . . . , yny P Φwx and vxy1, . . . , yny P Ψwx

vxy1, . . . , yny P Φ <: Ψwx � vxy1y P Φwx and vxy1, . . . , yny P Ψwx

vxy1, . . . , yny P Φ :> Ψwx � vxy1, . . . , yny P Φwx and vxyny P Ψwx

vxy1, . . . , yny P Φ -> Ψwx � vxy1, . . . , y|Φ|y P Φwx and vxy|Φ|�1, . . . , yny P Ψwx

vxy1, . . . , yny P Φ ++ Ψwx � if vxy1, . . . , yn�1y P Ψ.Ψ
nwx then vxy1, . . . , yny P Ψwx

else vxy1, . . . , yny P Φwx endif

vxy1, . . . , yny P ~Φwx � vxyn, . . . , y1y P Φwx

vxy1, yny P ^(y2.yn�1.R.t)wx � y1.RClosure(y2, . . . ,yn�1)->includes(yn)

vxy1, yny P *(y2.yn�1.R.t)wx � y1=yn or vxy1, yny P ^(y2.yn�1.R.t)wx

vxyy P f[y1, . . . ,yn,t]wx � y1.f(y2, . . . ,yn)->includes(y)

vxy1, . . . , yny P {z1:A1, . . . ,zn:An | φ}wx � vφry1{z1, . . . , yn{znswx

Fig. 6. Translation of relational expressions

The translation of relational expressions occurring in post-conditions is al-
most identical, with the exception of the rules presented in Figure 7, where rela-
tion identifiers within scope t are evaluated in the pre-state. RClosurePre is an
auxiliar definition similar to the one presented above, but with all occurrences
of R replaced by R@pre.

The blind application of these translation rules usually results in obfuscated
OCL specifications, mainly due to the introduction of quantifiers in the trans-
lation of the relational inclusion and composition. Fortunately, some first-order
equivalences can be applied to the resulting order to simplify it, namely:

A.allInstances->exists(y | y=z and φ) � φrz{ys

A.allInstances->forAll(y | y=z implies φ) � φrz{ys

14 Ana Garis, Alcino Cunha, and Daniel Riesco

vxy1, . . . , yny P R.tw
1
x �

y1.R@pre[y2, . . . ,yn�1]->includes(yn) if n ¡ 1
y1.R@pre() otherwise

vxy1, . . . , yny P R.t’w
1
x �

y1.R[y2, . . . ,yn�1]->includes(yn) if n ¡ 1
y1.R() otherwise

vxy1, yny P ^(y2.yn�1.R.t)w
1
x � y1.RClosurePre(y2, . . . ,yn�1)->includes(yn)

vxy1, yny P ^(y2.yn�1.R.t’)w
1
x � y1.RClosure(y2, . . . ,yn�1)->includes(yn)

vxy1, yny P *(y2.yn�1.R.t)w
1
x � y1=yn or vxy1, yny P ^(y2.yn�1.R.t)w

1
x

vxy1, yny P *(y2.yn�1.R.t’)w
1
x � y1=yn or vxy1, yny P ^(y2.yn�1.R.t’)w

1
x

vxyy P f[y1, . . . ,yn,t’]w
1
x � y1.f(y2, . . . ,yn)->includes(y)

Fig. 7. Translation of relational expressions in post-conditions

Integer expressions Figure 8 presents the translation of Alloy integer expres-
sions to OCL. Alloy expression #Φ computes the size of a relational expression
Φ of arbitrary arity. The presented rule only works for unary expressions. Using
tuples it is trivial to generalize it to arbitrary relational expressions.

vnwx � n

v#Φwx � Φ1
.allInstances->select(y|vxyy P Φwx)->size()

vint[Φ]wx � Φ1
.allInstances->select(y|vxyy P Φwx)->sum()

vα + βwx � vαwx + vβwx

vα - βwx � vαwx - vβwx

Fig. 8. Translation of integer expressions

The Address Book Case Study An excerpt of the OCL model obtained
from the address book example is presented in Figure 9. It includes the first two
invariants and the specification of operation add. Both simplification rules where
applied to the result, which was then manually rendered for better comprehen-
sion.

5 Concluding Remarks and Future Work

We have presented a model transformation from Alloy to UML class diagrams
annotated with OCL. We have formally characterized the Alloy local state idiom
accepted by the transformation. This idiom is sufficiently broad to encompass
most specifications. When compared to the previously developed transformations

Translating Alloy Specifications to UML Class Diagrams and OCL 15

context Book inv:

Name.allInstances->forAll(v0 |

Target.allInstances->exists(v1 | self.addr[v0]->includes(v1)

and Target.allInstances ->includes(v1)) implies

self.names->includes(v0))

context Book inv:

Name.allInstances->select(n |

n.addrClosure(self)->includes(n))->isEmpty()

context Book::add(n:Name,a:Target)

pre: self.names->includes(n)

post: Name.allInstances->forAll(v0 | Target.allInstances->forAll(v1 |

self.addr[v0]->includes(v1) implies

self.addr@pre[v0]->includes(v1) or (v0=n and v1=a)))

Fig. 9. OCL specifications of the address book example

from UML+OCL to Alloy [1, 13], this model transformation raised interesting
new challenges, namely: the translation of relational expressions of arbitrary
arity; dealing with the idiosyncrasies of Alloy’s type-system; and the encoding
of closures.

The transformation still has some limitations, most notably not allowing sig-
nature inclusion in the source Alloy model. Signature inclusion is mostly used in
Alloy to overcome the single-inheritance limitation. We intend to extend our
idiom to include such usages, and then translate it directly using multiple-
inheritance. We also intend to extend it to other Alloy idioms that allow the
specification of state-transition systems, in order to also generate UML state-
chart diagrams.

We have implemented the proposed transformation in Haskell, generating
syntax compatible with popular UML+OCL modeling applications. The tool is
available for download at http://sourceforge.net/projects/alloy2ocl. It
includes a couple of additional case-studies, but we intend to extend this set to
further validate the transformation.

Acknowledgments. This research was partially supported by QREN (the Por-
tuguese National Strategy Reference Chart) project 1621 – Evolve.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Software and Systems Modeling 9(1), 69–86 (2008)

2. Braga, B.F.B., Almeida, J.P.A., Guizzardi, G., Benevides, A.B.: Transforming On-
toUML into Alloy: towards conceptual model validation using a lightweight formal
method. Innovations in Systems and Software Engineering 6(1-2), 55–63 (2010)

16 Ana Garis, Alcino Cunha, and Daniel Riesco

3. Brucker, A.D., Wolff, B.: HOL-OCL: a formal proof environment for UML/OCL.
In: Proceedings of Fundamental Approaches to Software Engineering. LNCS, vol.
4961, pp. 97–100. Springer-Verlag (2008)

4. Demuth, B., Hussmann, H., Loecher, S.: OCL as a specification language for busi-
ness rules in database applications. In: UML 2001 – The Unified Modeling Lan-
guage. Modeling Languages, Concepts, and Tools, LNCS, vol. 2185, pp. 104–117.
Springer-Verlag (2001)

5. DresdenOCL website, http://www.dresden-ocl.org/index.php/DresdenOCL
6. Edwards, J., Jackson, D., Torlak, E.: A type system for object models. In: Pro-

ceedings of the 12th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. pp. 189–199. ACM (2004)

7. Georg, G., Anastasakis, K., Bordbar, B., Houmb, S.H., Toahchoodee, I.R.M.: Ver-
ification and trade-off analysis of security properties in UML system models. IEEE
Transactions on Software Engineering 36(3), 338–356 (2010)

8. Ghazi, A.A.E., Taghdiri, M.: Relational reasoning via SMT solving. In: Proceedings
of the 17th International Symposium on Formal Methods. LNCS, vol. 6664, pp.
133–148. Springer-Verlag (2011)

9. Gheyi, R., Massoni, T., Borba, P.: Formally introducing Alloy idioms. In: Proceed-
ings of the Brazilian Symposium on Formal Methods. pp. 22–37 (2007)

10. Giannakopoulos, T., J.Dougherty, D., Fisler, K., Krishnamurthi, S.: Towards an
operational semantics for Alloy. In: Proceedings of the 16th International Sympo-
sium on Formal Methods. LNCS, vol. 5850, pp. 483–498. Springer-Verlag (2009)

11. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE
by automatic snapshot generation. Software and Systems Modeling 4(4), 386–398
(2005)

12. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2006)

13. Massoni, T., Gheyi, R., Borba, P.: Formal refactoring for UML Class Diagrams.
In: Proceedings of the 19th Brazilian Symposium on Software Engineering. pp.
152–167 (2005)

14. Mostefaoui, F., Vachon, J.: Verification of Aspect-UML models using Alloy. In:
Proceedings of the 10th International Workshop on Aspect-Oriented Modeling.
pp. 41–48. ACM (2007)

15. OMG: MDA Guide version 1.0.1 (2003)
16. OMG: Object Constraint Language, Version 2.2 (2010)
17. OMG: UML Superstructure, Version 2.3 (2010)
18. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and back again.

In: Proceedings of the 6th International Workshop on Model-Driven Engineering,
Verification and Validation. ACM (2009)

19. Vaziri, M., Jackson, D.: Some shortcomings of OCL, the Object Constraint Lan-
guage of UML. In: Proceedings of the 34th International Conference on Technology
of Object-Oriented Languages and Systems. pp. 555–562. IEEE (2000)

