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Abstract. The main goal of this work is to solve mathematical program with complementarity constraints (MPCC) using
nonlinear programming techniques (NLP). An hyperbolic penalty function is used to solve MPCC problems by including the
complementarity constraints in the penalty term. This penalty function [1] is twice continuously differentiable and combines
features of both exterior and interior penalty methods. A set of AMPL problems from MacMPEC [2] are tested and a
comparative study is performed.
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INTRODUCTION

Equilibrium constraints as complementarity conditions frequently appear in many Engineering and Economics appli-
cations. There are many practical problems that can be modulated using MPCC formulation, such as friction problems,
traffic congestion and process design in Engineering or game theory models like Nash and Stackelberg equilibrium,
finance and taxes in Economics. Complementarity optimization problems are most common in these areas because the
concept of complementarity is synonymous of the notion of system equilibrium. This optimization problem is hard to
solve due to the failure of the standard Mangasarian-Fromovitz constraint qualification (MFCQ) in nonlinear program-
ming [3]. Another difficulty is the combinatorial nature of the complementarity constraints, which make difficult to
develop efficient algorithms. Several strategies have been proposed to solve MPCC namely regularization, smoothing,
nonlinear program reformulation, penalty techniques and sequential quadratic programming (SQP). Fukushima and
Scholtes [4] studied the convergence of smoothing and regularization methods, respectively, determining stationary
points of a sequence of nonlinear programs. Fletcher [5], has shown that SQP methods converge locally to strongly sta-
tionary points. Hu and Ralph [6] concluded that a penalty framework shares convergence properties with regularization
and smoothing methods.

PROBLEM DEFINITION

We consider mathematical problems with complementarity constraints (MPCC):

min f (x)
s.t. ci(x) = 0, i ∈ E,

ci(x)≥ 0, i ∈ I,
0≤ x1 ⊥ x2 ≥ 0,

(1)

where x = (x0,x1,x2) is the decomposition of the problem variables into x0 ∈R
n (control variables) and (x1,x2) ∈R

2q

(state variables). f and c are the nonlinear objective function and constraint functions respectively, assumed to be
twice continuously differentiable. E and I are two disjoined finite index sets with cardinality p and m. The notation ⊥
represents complementarity, it means that x1 jx2 j = 0 for j = 1, ...,q. The complementarity condition has a disjunctive
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nature - x1 j = 0 or x2 j = 0 for j = 1, ...,q. More general complementarity constraints can be included in such
0 ≤ G(x) ⊥ H(x) ≥ 0 by adding slack variables. Adding slacks does not destroy any properties of the MPCC such
as constraint qualification or second-order condition.

One convenient way of solving MPCC problems replaces the complementarity constraints by x1,x2 ≥ 0 and
x1 jx2 j ≤ 0 for j = 1, ...,q transforming the MPCC formulation into an equivalent nonlinear program (NLP):

min f (x)
s.t. ci(x) = 0, i ∈ E,

ci(x)≥ 0, i ∈ I,
x1 ≥ 0, x2 ≥ 0,
x1 jx2 j ≤ 0, j = 1, . . . ,q.

(2)

This reformulation allows to solve MPCC problems using some NLP techniques.

OPTIMAL CONDITIONS

The NLP formulation has no feasible point that strictly satisfies the inequalities. This fact implies that the Mangasarian-
Fromovitz constraint qualification (MFCQ) is violated at every feasible point [3]. This failure has consequences: the
multiplier set is unbounded, the central path fail to exist, the active constraints normals are linearly dependent and
linearizations of the NLP formulation can be inconsistent arbitrarily close to the solution. Recent developments show
that a SQP method with an elastic mode to solve MPCC converges locally [7] and that there is a relationship between
strong stationarity defined by Scheel and Scholtes and the Karush-Kuhn-Tucker (KKT) points. This relationship
established convergence of SQP methods for MPCC formulated as NLP. Some optimality concepts used in this work
are based on the study of [5].

HYPERBOLIC PENALTY METHOD

A way to deal with the complementarity constraints is to apply a penalty technique. In this work an hyperbolic penalty
function presented by Xavier [1] is used to penalize the complementarity constraints (−x1 jx2 j ≥ 0, j = 1, . . . ,q) in (2):

P(x,u,v) = f (x)+Pt and Pt =
q

∑
j=1

u(x1 jx2 j)+
√

u2(x1 jx2 j)2 + v2

where Pt is the penalty term and u, v are parameters with u,v ≥ 0, u→ ∞,v→ 0. The graphic representation of the
penalty term, based on the geometric idea in Figure 1, is an hyperbole with asymptotes forming angles (π−u) and 0
(zero) with the horizontal axis and having v as the intercept with ordinates axis. It is a two phase penalty approach:
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FIGURE 1. a) First phase. b) Second phase

in the first stage, the initial parameter u increases, thus causing a reduction in the penalty to the points outside the
feasible region while at the same time there is a reduction in the penalty for the points inside the feasible region. This
phase continues until a feasible point is obtained. From this point on, u remains constant and the values of v decrease
sequentially.
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Since the hyperbolic penalty algorithm is a dynamic penalty, the feasibility test carried out to xk to update penalty
parameters is:

If x1 jx2 j >
−vk

1000
, j = 1, ...,q Then

vk+1 ← vk×ρ2 (0 < ρ2 < 1)
Else

uk+1 ← uk×ρ1, (ρ1 > 1)

In this approach, the complementarity terms are penalized and a sequence of the following nonlinear constrained
optimization problem is solved as far u is incremented and v decreased:

min P(x,u,v)
s.t. ci(x) = 0, i ∈ E,

ci(x)≥ 0, i ∈ I,
x1 ≥ 0, x2 ≥ 0,

(3)

NUMERICAL EXPERIMENTS

An algorithm, the hyperbolic penalty algorithm (A1), with two iterative procedures was implemented in MATLAB.
The inner iterative procedure is performed by the fmincon routine from MATLAB optimization toobox, that uses
the SQP method.

In order to compare the hyperbolic penalty function performance, another penalty algorithm (Algorithm A2) was
also implemented. This algorithm is based on the well known sequential penalty technique [8], [9]. The penalty

function is P(x,r) = f (x)+ r
q

∑
j=1

(x1 jx2 j)
2 with r > 0, r→ ∞. A sequence of minimization problems is solved as far r

is incremented. The strategy is similar to the Algorithm A2 - only the penalty functions change.
Algorithm A1: Hyperbolic Penalty Algorithm

Initialization: u0,v0;
Inner, external iterations and function evaluations counters: it_int = 0, f _count = 0,k = 0;
Tolerances definition: vmin,umax,kmax,ε1,ε2,ε3;
Problem information (amplfunc): x0, lb,ub,cl,cu,cv; Problem dimension: n,m, p,q;
REPEAT

Built penalty function P(xk,uk,vk) and constraints;
Run the MATLAB function: [x, f , lambda,out put]=fmincon(’function’,....,’constraint’);
Lagrange multipliers estimation (⊥);
Feasibility test to update v or u;
Update x, inner, external iterations and function evaluations counters:
xk+1 ← x, it_int ← it_int +out put.iterations, f _count ← f _count +out put. f count;

UNTIL Stop criterium (vmin,umax,kmax,ε1,ε2,ε3)

The initial parameters are u0 = 6, v0 = 1 and r0 = 1 for the A1 and A2 algorithm, respectively. The Algorithm A1
uses, ρ1 = 10 and ρ2 = 0.001 to update the penalty parameters whereas the Algorithm A2 uses ρ1 = 10. To estimate the

complementarity constraints Lagrange multipliers the following formulas are used: (λ⊥) =−u+
u2x1 jx2 j√

u2(x1 jx2 j)2 + v2
,

j = 1, ...,q (Algorithm A1) and (λ⊥) = 2rx1 jx2 j, j = 1, ...,q (Algorithm A2).

CONCLUSIONS

This section summarizes the numerical experiences using 75 AMPL test problems (A Modeling Language for Math-
ematical Programming) from MacMPEC [2]. On this set of problems the maximum number of variables and comple-
mentarity constraints are up to 200 and 100, respectively. In order to analyze the relative performance of algorithms,
the performance profiles of Dolan and Moré [10] were used. The performance metrics are external iterations, internal
iterations, function evaluations and Cpu time. The graphics of performance profiles are in Figures 2 and 3 using the
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log scale. Both algorithms present very good accuracy and robustness. From the figures, it is clear that the Algorithm
A2 has the highest probability of being the optimal solver for about 70% of the problems with respect to the internal
iterations. On the other hand, concerning the external iterations, function evaluations and Cpu time, the Algorithm A1
has higher probability of being the optimal solver. These numerical experiences lead to the conclusion that combina-
tion of the SQP strategy and the penalty technique are effective to solve MPCC. The hyperbolic penalty represents a
good alternative for solving MPCC with a good accuracy in the solution, when compared with the one provided from
the MacMPEC set of problems.
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FIGURE 2. a) Internal iterations. b) External iterations.
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FIGURE 3. a) Function evaluations. b) Cpu time
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