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Abstract

Let Q := {Q; 21, 29, 23, 24} be a quadrilateral consisting of a Jor-
dan domain Q and four points 21, 29, 23, 24 in counterclockwise order
on 0€2. We consider a domain decomposition method for computing
approximations to the conformal module m(Q) of @ in cases where
Q is “long” or, equivalently, m(Q) is “large”. This method is based
on decomposing the original quadrilateral @) into two or more compo-
nent quadrilaterals @1, Q2,... and then approximating m(Q) by the
sum ), m(Q;) of the modules of the component quadrilaterals. The
purpose of this paper is to consider ways for determining appropriate
crosscuts of subdivision (so that the sum 3, m(Q;) does indeed give
a good approximation to m(Q)) and, in particular, to show that there
are cases where the use of curved crosscuts is much more appropriate

than the straight line crosscuts that have been used so far.

AMS classification: 30C30, 65E05.
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1 Introduction

Let @ := {; 21, 29, 23, 24} be a quadrilateral consisting of a Jordan domain
Q and four points z1, 29, 23, 24 in counterclockwise order on 92 and let m(Q)
be the conformal module of Q. Also, let R, o) denote a rectangle of base
m(Q) and height 1, i.e.

Ry ={w:0 < Rw <m(Q), 0 < Jw < 1}.
Then, @ is conformally equivalent to the rectangular quadrilateral

{Rm(Q); i, 07 m(Q)a m(Q) + Z}a

in the sense that there exists a unique conformal map f : Q — R, ) that
takes the four points 2y, 2o, 23, 24 respectively onto the four vertices i, 0,
m(Q), m(Q) + i of Ry q).

This paper is concerned with the study of a domain decomposition method
(DDM) for computing the conformal modules of long quadrilaterals. The
DDM was introduced by two of the present authors (N.P. and N.S.S.) in
[10], [11], for the purpose of computing the conformal modules and associ-
ated conformal maps of a special class of quadrilaterals. The method was
also studied by the same authors in [12], [13], [14], [15] and by Gaier and
Hayman [3], [4], in connection with the computation of conformal modules,
and by Laugesen [8] in connection with the determination of the associated
conformal maps. For the computation of conformal modules, the method

consists of the following two main steps:

(i) Decomposing the original quadrilateral @ (by means of appropriate

crosscuts [;, j = 1,2,...) into two or more component quadrilaterals
Qj.j=12,....

(ii) Approximating the conformal module m(Q), of the original quadrilat-
eral, by the sum 3-; m(Q);) of the conformal modules of the component

quadrilaterals.
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(Note that
m(@) > Y m(Q) (L)

and equality occurs only when the images of all the crosscuts [; under the
conformal map f : Q@ — R, ) are straight lines parallel to the imaginary
axis. This follows form the well-known composition law for modules of curve
families; see e.g. [1, pp. 54-56] and [5, pp. 437-438].)

The problem of determining m(Q) is closely related with that of measur-
ing resistance values of electrical networks and, in this connection, the DDM

is of considerable practical interest for the following two reasons:

(i) It can be used to overcome the crowding difficulties associated with
the problem of computing the modules of long quadrilaterals, i.e. the
difficulties associated with the conventional approach of seeking to de-
termine m(Q) by first mapping Q onto the unit disc or the half plane
(see e.g. [9, §3.1] and [13, §1]).

(ii) It takes advantage of the fact that in many applications (for exam-
ple VLSI applications) a complicated original quadrilateral @ can be

decomposed into very simple components @, (see e.g. [14] and [15]).

Our work in this paper is concerned with the fact that all the available
DDM theory is based on the use of straight line crosscuts of subdivision.
Our specific objective here is to investigate whether there are cases for which
the use of curved crosscuts is more appropriate. In this context, we describe
a simple technique for determining curved crosscuts of decomposition and
show, by means of examples, that there are many cases for which the use
of such crosscuts is more appropriate than the straight lines that have been
used so far.

In presenting our results we shall adopt throughout the notations used in
[12], [13], [14]. That is:

e O and Q := {Q; 2, 29, 23, 24} will denote respectively the original do-

main and corresponding quadrilateral.
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e (,Ch, ... and @, Qs, ..., will denote respectively the “principal” sub-
domains and corresponding quadrilaterals of the decomposition under

consideration.

e The additional subdomains and associated quadrilaterals that arise
when the decomposition of () involves more than one crosscut will be

denoted by using (in an obvious manner) a multisubscript notation.

For example, the five component quadrilaterals of the decomposition illus-

trated in Figure 1.1 are:

Q= {91;21,2’2,% d}7 Qs = {92;03,@, b, C}, Q3 = {93;@ b, 2’3,24}

and
Ql,? = {QI,Q; 21, 22, ba C}a Q2,3 = {92,3; da a, z3, 24}7

where
51,2 = ﬁl U ﬁQ, 52,3 = ﬁQ U 53.

2 A method for determining curved cross-

cuts

The available DDM theory for conformal modules, given in [12]-[15] and, in
particular, the results of Theorems 2.4 and 2.6 of [15] can be used to derive

approximations of remarkable accuracy to the modules of very complicated
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quadrilaterals of the type that occur frequently in VLSI applications (see the
numerical examples given in [12], [13], [14] and [15]). These results, however,
suffer from the following two drawbacks: (a) they require that the quadrilat-
eral under consideration involves substantial symmetry (see e.g. the require-
ments of Theorems 2.4 and 2.6 of [15]); (b) they allow only for straight line
crosscuts, although there are situations where, intuitively speaking, curved

crosscuts appear to be much more appropriate.

ay

Figure 2.1

The purpose of this section is to describe a simple, and yet very effective,
device for overcoming the above drawbacks, in cases where the quadrilateral

Q = {Q; 21, 29, 23, 24} is characterised by the following (see Figure 2.1):

(i) The defining domain 2 is part of an infinite polygon P.

(ii) 09 consists of two segments of the opposite components of 9P and two

Jordan arcs ; and 7, each joining the two opposite components of OP.

(iii) The points z1, 29 and z3, 24 of @ are points on the boundary arcs 7y,

and 7, respectively.

(iv) There is a corner point b € 9Q N P through which it is, in some
sense, ‘natural” to seek to determine a crosscut [, thus decomposing )
into two “simpler” component quadrilaterals @y := {Q1; 21, 29, b, ¢} and
Qs := {Q9;¢,b, 23,24} (Of course, the crosscut [ must be determined

so that the sum m(Q;) + m(Q2) is a good approximation to m(Q).)
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With reference to Figure 2.1, let T be the Schwarz-Christoffel transfor-
mation that maps the upper half plane A onto the infinite polygon P so
that

T0)=a, T(1)=b and T(c0) = as,

where a; and ay denote the two vertices of P at infinity. Then, we claim
that an appropriate crosscut [ for the subdivision of the quadrilateral @) :=

{Q; 21, 29, 23, 24} is given in parametric form by
l:={z:2=T(™), 0<t <1} (2.1)

The above choice of [ can be justified as follows:
Let S denote the infinite strip

S={w=s+it:0<t <1}
Then, the transformation

Q:w—T(e™), (2.2)
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maps S onto P so that ®(0) = b (see Figure 2.2). This shows that the
crosscut [ of (2.1) is, in fact, the image under the conformal map ® : § — P
of the straight line A joining the points 0 and i on 98§, i.e. [ = ®(N).

Let @Q := {; 21, 29, 23, 24} be a quadrilateral of the form illustrated in
Figure 2.1 and assume that the four points zi, 29, 23, 24, are the four end
points of the arcs 7, and s, i.e. the four corners where v, and v, meet 0P
(see Figure 2.3(a)). Further, let Q := {2 w, w, w3, ws} denote the image
of Q := {21, 2, 23, 24}, under the transformation ®[~': P — S, and let
Q; and Q, denote respectively the corresponding images of the subdomains
Q; and Q, (see Figure 2.3(b)). Then, we have the following:

Theorem 2.1 For the decomposition illustrated in Figure 2.3(a)

0 <m(Q) — {m(Q1) +m(Qa)} < 5.33¢ 2™, (2.3)

provided that m* := min{m(Q,), m(Q2)} > 1.
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Proof The result follows by applying Theorem 2.2 of [15] to the decom-
position of the transformed quadrilateral @ illustrated in Figure 2.3(b) and

recalling that conformal modules are conformally invariant. [ |

We consider now the more general case, where the two points 23, z4 of the
quadrilateral @ := {Q; 21, 29, 23, 24} are not necessarily the two end points
of v5. In this case, for the statement and proof of the corresponding de-
composition result, it is convenient to introduce an auxiliary crosscut 75, as
shown in Figure 2.4(a). That is, ~4 is a Jordan arc in Q that shares the
same end points with 75 and, together with the crosscut [, divides 2 into
three subdomains Q, Qy and €5, so that Q = Q; U Qy, U Q5. Further, we
let Q 1= {Q:wy, wa, ws, we}, Uy, Qy. Q3. Ay, Ao and X, denote respectively
the images of @ := {Q; z1, 29, 23, 24}, Q1, Qa, Q3, 71, 72 and 75, under the
transformation ®~1: P — S (see Figure 2.4(b)).
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Theorem 2.2 Let Q be the quadrilateral of Figure 2.4(a) described above.

Then, for the decomposition defined by the curved crosscut [,

0 <m(Q) — {m(Q1) + m(Qa3)} < 28.52¢7""", (2.4)
provided that m* := min{m(Q), m(Q2)} > 1.5.

Proof With reference to Figure 2.4(b), let Ay be a straight line to the left
of the arc Ay, parallel to A and joining the lines Sw = 0 and Sw = 1, and
denote by Qo the domain bounded by the straight lines Sw =1, A\g, Sw =0
and the arc \;. Also, let @071, @071,2 and @071,273 denote respectively the three

quadrilaterals defined by the domains Qg,l, 52071,2 and Q071,273, where

Qo1 =Q U, Qoio=Q1 U and Q93 = Q12U Q3.

Then, by applying Theorems 2.5 and 2.2 of [15] to the quadrilaterals Q1.2
and QLQ respectively, we find that

| m(@0,1,2,3) — {m(@o,m) +m(Q) — m(@w)} 1< 2-716_7””(@1’2), (2.5)

provided m(@ljg) > 3, and

0 < m(Qra) — {m(Q1) +m(Qa)} < 5.33¢72™", (2.6)

provided m* := min{m(Q). m(Qs)} > 1. Also, if h denotes the distance of
the straight line A from the arc A}, then the application of Theorem 2.7 of
[15] to the quadrilateral @0,172,3 gives that

0< m(@0,1,2,3) — {m(@0,1> + m(@m)} < 1.28¢ ™,

provided o > 1. Further, from Theorem 4 of [4] and Koebe’s ;-theorem we
have that
~ 1
h > m(Qz) — —log4.
T

Therefore,

0 < m(Qoi23) — {m(Qo1) + m(Q23)} < 1.28 x 16 7?2, (2.7)
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Figure 2.5

provided m(Q,) > 1.5. The result (2.4) follows easily from the three esti-
(2

mates (2.5), (2.6), (2.7), the additivity property

m(Qo,i2) > m(Qo1) +m(Qs),
and the fact that conformal modules are conformally invariant. [ |

We consider, finally, a quadrilateral @ = {; 21, 29, 23, 24} having the
general form illustrated in Figure 2.1 (where neither z;, z9 nor 23, z4 are as-
sumed to be the end points of 71 or 7,). In this case, for the statement and
proof of the corresponding result, we introduce two auxiliary crosscuts ~;
and v4, as shown in Figure 2.5. (Here, 7/, 74 are two Jordan arcs in © that
share the same end points with v; and v, respectively and, together with
the crosscut [, divide €2 into four subdomains €2, €25, Q3 and €4, so that
Q=0 UQUQ3UQ.)

Theorem 2.3 Let Q) be the quadrilateral of Figure 2.5 described above. Then,

for the decomposition defined by the curved crosscut [,

0 <m(Q) — {m(Qi2) +m(Qa4)} < 59.75e72™, (2.8)
provided that m* := min{m(Q2), m(Q3)} > 1.5.
Proof From [15, Thm. 2.5] we have that

‘ m(Q) - {m(Ql,Z,S) + m(Q2,3,4) - m(QQ,s)} |§ 2-71677%(@2’3), (2-9)
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Figure 2.6

Figure 2.7

provided m(Q23) > 3. Also, the application of Theorem 2.2 to the quadri-

laterals ()23 and Q234 gives respectively that

0 <m(Qro3) — {m(Qrs) +m(Q3)} < 28.52¢ 2™ (2.10)

and
0 <m(Qusa) — {m(Qs) + m(Qs4)} < 28.52¢ 2™, (2.11)

provided m* := min{m(Qs), m(Q3)} > 1.5. The result (2.8) follows easily
from the three estimates (2.9), (2.10), (2.11) and the additivity property

m(Qz3) > m(Q2) + m(Qs). u

Remark 2.1 It is easy to show, by using continuity arguments, that the
auxiliary arc 74 in Figure 2.4 may be taken to coincide with the boundary
arc 7y. Similarly, the two auxiliary arcs 7} and 4, in Figure 2.5, may be

taken to coincide with the boundary arcs v; and 7, respectively. This means
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that, in practice, it is much more convenient (and efficient) to apply the

results of Theorems 2.2 and 2.3 in the following form:

(i) For the decomposition of the quadrilateral QQ := {§2; 21, 29, 23, 24 } illustrated
in Figure 2.6,

0 <m(Q) — {m(Q,) + m(Qz)} < 28.52¢ 2™, (2.12)

provided that m* := min{m(Q1), m(Q%)} > 1.5, where Q} is the quadrilateral

Q; = {921 C, ba Z;v ZZ}

(ii) For the decomposition of the quadrilateral Q = {; 21, 29, 23, 24} illus-
trated in Figure 2.7,

0 <m(Q) — {m(Qy) +m(Qy)} < 59.75¢ ™™, (2.13)

provided that m* = min{m(Q7), m(Q%)} > 1.5, where Q; and Q% are the

quadrilaterals
Q7 = {27, 25,b,c} and Q= {Qa;¢,b, 23, 25 }.

Remark 2.2 Theorems 2.1-2.3 remain valid even when the domain €2 is part
of a general strip-like domain (instead of an infinite polygon P). In this case,
however, the determination of the curved crosscuts will require the conformal

map from S onto the strip-like domain.

3 Examples of curved crosscuts

If the Schwarz-Christoffel map T": ‘H — P, of Figure 2.2, is known in closed
form, then the parametric equation of the associated curved crosscut [ is

given in exact parametric form by

l:i={z:2=T(™), 0<t<1}. (3.1)

Otherwise, [ can be obtained approximately by using a numerical approxi-

mation T to T. In particular, [ can be approximated by

[ ={z:2=T(™), 0<t <1}, (3.2)
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where T is an approximation to T obtained by using the Schwarz-Christoffel
conformal mapping package SCPACK of Trefethen [18], [16]. We illustrate
the above remarks by the following examples, where in cases for which the
associated Schwarz-Christoffel transformation 7" : ‘H — P is known in closed

form, we simply state the corresponding mapping function:

Example 3.1 For a quadrilateral of the form illustrated in Figure 3.1 the

associated Schwarz-Christoffel mapping function is

T(W):%log{ifzzg}jL%log{%}, (3.3)
where SN
¢= {W+/<;2}

(see e.g. [2, p. 351], [7, p. 157]).

Example 3.2 For a quadrilateral of the form illustrated in Figure 3.2 the

associated Schwarz-Christoffel mapping function is

osh™! { (15 fz?)/m; 2} . (3.4)
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Example 3.3 For a quadrilateral of the form illustrated in Figure 3.3 the

associated Schwarz-Christoffel mapping function is

ﬂwvziﬂigiéta+@ 0<a<l (3.5)

(see e.g. [7, p. 155-156]), i.e. the crosscut [ is given in parametric form by

t !
z:—i{/(l—e”y)ady—l}, 0<t<1. (3.6)
0

Thus, in this case, [ must be determined by numerical quadrature.

Example 3.4 If for a quadrilateral of the form illustrated in Figure 2.1
the associated transformation 7' : H — P is not known exactly, then we
approximate T by

T=T oT,oTs, (3.7)

where:
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e T} is the SCPACK approximation of the conformal map of the unit disc
D onto P.

e T, is the bilinear transformation mapping D onto itself so that
TQ(—Z) = Zl, TQ(].) = ZQ and TQ(Z) = 23,

where Z;,Z, and Z; are respectively the approximate pre-images of

ay, b and ag, produced by the mapping T;.

e T3 is the bilinear transformation,

W —1
To (W) : =1
(W) Wi

(3.8)
mapping the upper half plane H onto D so that

T5(0) = —i, T3(1)=1 and T3(c0)=1.

Thus, the required crosscut [ is given in approximate parametric form by
l:={z:2=T(™),0<t<1}, (3.9)

where T = TI oTyoTs.

In order to check the above numerical process, we consider the quadrilat-
eral of Example 3.2, with x = 0.5, and compare the approximate crosscut l~,
obtained by means of (3.9), with the exact crosscut given by (3.4). We do
this by computing

e:= max [1(107%) —1(107%) |, (3.10)

and find that
£<3.04 x 10712

This is in agreement with the SCPACK error estimate which, in this case, is
2.24 x 10712,
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4 Numerical examples

In this section we present four numerical examples, illustrating the applica-

tion of the DDM with curved crosscuts. Our objectives are as follows:

(i) To compare the theoretical estimates for the DDM errors given by (2.3)
with the actual DDM errors. We do this in Example 4.1, by considering
a simple decomposition for which we can find reliable a approximation

to the module of the original quadrilateral.

(ii) To consider a case where it is possible to obtain DDM results by using
straight line crosscuts and to compare these results with those obtained

by using the DDM with curved crosscuts (Example 4.2).

(iii) To present examples where the application of DDM is possible only
when curved crosscuts are used and to estimate the errors of the re-

sulting DDM approximations (Examples 4.3 and 4.4).

In our examples, if the conformal module m(Q;) of a component quadri-
lateral is not known exactly, then it is computed by means of the conventional
method, i.e. by using the unit disc D as intermediate canonical domain (see
e.g. 19, §3.1] and [17, §2]). For this purpose, we use either the Schwarz-
Christoffel package SCPACK [18], [16] or the double precision version of the
integral equation conformal mapping package CONFPACK of Hough [6]', as

follows:

e If Q; is a polygon, then the approximation to m(Q);), together with an
estimate of the corresponding error, is obtained by using the subroutine
RESIST of SCPACK.

e If Q; involves curved boundary segments, then: (a) we use CONF-
PACK to compute the images of the four special points of @;. under

the conformal map f : Q; — D; (b) we determine the approximation

fThe double precision version of CONFPACK has only become available very recently;
see http://www.mis.coventry.ac.uk/~dhough/
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Figure 4.1

Figure 4.1 The coordinates of the corners, starting from z; and moving in counter-

clockwise order, are (-1.5,1.), (-1.,0.5), (0.,0.5), (0.,0.), (3.,0.), (2.,1.).

to m(Q;), in the usual manner, by computing the ratio of two complete
elliptic integrals of the first kind whose moduli depend only on these
four images. In this case, we estimate the error in the approximation
to m(Q;) by means of the following “rule of thump”, which takes into
account both the error in the approximation to f and the crowding of
points on the unit circle (for a discussion on the crowding phenomenon
and on ways for measuring the crowding of points on the unit circle,
see e.g. [9, §3.1] and [13, §1]): “If the estimate of the error in the ap-
prozimation to the conformal map f is of order 10~% and the measure
of crowding is of order 1079, where dy > ds, then the resulting approa-
imation to the conformal module is correct to at least dy — dy decimal

places.”

Regarding the use of CONFPACK, care must be taken in order to fulfill
the package’s requirement that each boundary segment of the defining do-

main is given by a parametric equation with non-vanishing first derivative.

Example 4.1 Consider the decomposition of the quadrilateral illustrated in

Figure 4.1, where the crosscut of subdivision has the parametric form
li={z:2=T(™), 0<t <1},

and T is the special case k = 0.5 of the Schwarz-Christoffel mapping (3.4) in
Example 3.2.
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The approximations to the conformal modules of the component quadri-
laterals @1 and @5 are obtained by using CONFPACK and are as follows:

m(Qy) & 2.445 809 483 4, m(Q,) ~ 2.362 070 967 6.

These are expected to be correct to at least 9 decimal places, because: (a)
the error estimates for the associated conformal maps onto the unit disc are
1.0 x 107 and 9.6 x 107'%; (b) the corresponding measures of crowding are
4.3x1072 and 1.2x 10" !'. Therefore, we expect that the DDM approximation

to m(Q) is given correct to 9 decimal places by
7(Q) == m(Q1) + m(Qs) = 4.807 880 451. (4.1)

For the “actual” value of the module of the original quadrilateral we use
the subroutine RESIST of SCPACK and find that m(Q) is given correct to
9 decimal places by

m(Q) = 4.807 880 808.

Therefore, the actual error in the DDM approximation (4.1) is
E:=m(Q) —m(Q)=357x 10"
By contrast, (2.3) gives the theoretical error estimate
0 <m(Q) —m(Q) < 5.33¢ 2rmin{m(@Q):m(@2)} 1,99 % 107°
which, in conjunction with (4.1), leads to the following DDM prediction

4.807 830 < m(Q) < 4.807 883.

Example 4.2 Consider the decomposition illustrated in Figure 4.2, where
the crosscuts of subdivision are all straight lines and are determined in the
“best possible” way by using the relevant DDM theory. (The parametric
equations of the crosscuts separating €2; from €25, Q9 from Q3. Q3 from €,

Q5 from Qg and Q7 from Qg, are respectively z = 5 + it,t € [0,1], z =
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t+6i,t €[0,2], 2z =1t+415i,t € [0,1], z = 6.5 +it,t € [18,19] and z =
t+12.5i,t € [12,13].)

Regarding the components of the decomposition, the modules of the
trapezoidal quadrilaterals Q4, @5, Q¢ and Q7 are known exactly in terms
of elliptic integrals (see e.g. [12, Rem. 2.4]). The modules of the other com-
ponent quadrilaterals are computed by using SCPACK, in the case of @,
and CONFPACK for 1, @3 and QJg. The numerical results are as follows:

e To 10 decimal places,
m(Q4) = 3.279 364 399 5

and
m(Qs) = m(Qg) = m(Q7) = 5.779 364 399 8.

e SCPACK gives the approximation
m(Qy) & 6.143 537 228,
which is expected to be correct to all the figures quoted.
e CONFPACK gives the approximations
m(Qq) &~ 5.945 181 13, m(Q3) =~ 6.361 255 72

and
m(Qs) ~ 8.588 927 96.

These are expected to be correct to 6,7 and 3 decimal places respec-
tively, because: (a) the error estimates for the associated conformal
maps onto the unit disc are 2.8 x 107!, 1.1 x 107'2 and 2.3 x 10717,
(b) the corresponding measures of crowding are 5.9 x 1075, 4.8 x 107°
and 9.8 x 1077,

We note that (because Qg is “long”) the crowding of points, introduced by the
conformal map Qg — D, affects seriously the accuracy of the CONFPACK
approximation to m(Qs). As a result, we can only state with certainty that

this approximation is correct to 3 decimal places.
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Figure 4.2

The coordinates of the corners, starting from z; and moving in counterclockwise order,
are (13.,0.), (13.,2.), (8.,2.), (8.,1.), (2.,1.), (2.,11.), (1.,12.), (1.,18.), (12.,18.), (12.,9.5),
(7.,9.5), (7.,8.5), (5.,8.5), (5,7.5), (13.,7.5), (13.,19), (0.,19.), (0.,0.). Ty and I'; are semi-

circles of radius 1 and 0.5 and centers at (13.,1.) and (5.,8.) respectively, and I's is given

by the parametric equation, z(t) = 2¢3 — 3t + 2 +i(t + 11), t € [0, 1].
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Regarding the DDM error, the repeated application of Theorems 2.4 and
2.6 of [15] gives that

0<m(Q)—m(Q) <2.60x 107", (4.2)

However, because of the relatively poor approximation to m(Qg), we can only

be certain of the first three decimal places in the resulting DDM sum

m(Q) := zsjm(Qj) = 47.656 359 636 9, (4.3)

i=1

i.e. we can only predict that m(Q) is given correct to 3 decimal places by
m(Q) = 47.656. (4.4)

We consider now the same quadrilateral ) but decomposed as illustrated
in Figure 4.3, where the straight line crosscuts are as before and the curved
crosscuts [y and [y are of the form given in Examples 3.2 and 3.1 respectively,
in each case with k = 0.5.

Regarding the components of this decomposition, the quadrilaterals Q3,
Q4. Q5. Q. Q7 and Qg are the same as the quadrilaterals Q9. Q3. Q4, Q5.
Q¢ and Q7 of Figure 4.2. For the modules of the other four component
quadrilaterals, CONFPACK gives the following approximations:

m(Qy) ~ 2.778 626 07,  m(Qs) ~ 3.166 555 06, (4.5)

m(Qe) ~ 3.220 092 07,  m(Q1o) ~ 5.368 814 89, (4.6)

These are expected to be correct to all the figures quoted, because: (a) the
error estimates for the associated conformal maps onto the unit disc are
1.0 x 1071 5.3 x 10711, 5.3 x 107 and 3.5 x 107; (b) the corresponding
measures of crowding are 5.5 x 1072, 4.2 x 1072, 7.4 x 1072 and 1.1 x 1073,
Therefore, we expect that the DDM approximation to m(Q) is given correct

to 7 decimal places by

m(Q) := fj m(Q;) = 47.656 338 6. (4.7)
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The error in m(Q) can be estimated by applying, as before, Theorems 2.4
and 2.6 of [15] to the various quadrilaterals associated with straight line
crosscuts, and Theorem 2.1 and estimate (2.12) of the present paper to the
quadrilaterals @1 2 and Qg 19 associated with the two curved crosscuts. More
specifically, the application of Theorems 2.4 and 2.6 of [15] gives

8

0 <m(Q) — {m(Qiz) + > m(Q;) +m(Qg10)} < 2.60x 1077, (4.8)

Jj=3

while the application of Theorem 2.1 to Q) gives

0 <m(Qra) — {m(Q1) +m(Qy)} < 5.33¢~ 2 min{m(Qu)m(Q2)} (4.9)
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(Remark: (4.5) and (4.9) imply that
5.945 181 13 < m(Q12) < 5.945 181 27.

By contrast, if instead of [; we use a straight line crosscut joining the points
8 + ¢ and 8 in Figure 4.3, then from the resulting decomposition we get the
approximation

m(Q12) = 5.915 984 17,

which is correct only to 1 decimal place.)

Let @7, denote the auxiliary quadrilateral
Q1o = {05 C2, b2, 23, 24}
Then, by using CONFPACK, we find that to 8 decimal places,
m(Q7,) = 3.006 564 60.

Therefore, since m* := min{m(Qy), m(Q7,)} > 1.5, the application of (2.12)
to the quadrilateral Qg 19 gives that

0 < m(Qg10) — {m(Qg) + m(Qro)} < 28.52¢ 27 mintm(@).m(@io)}  (4.10)
Hence, by combining (4.8)—(4.10), we obtain the estimate
0 <m(Q) —m(Q) <578 x 1077
which, in conjunction with (4.7), implies that
47.656 338 6 < m(Q) < 47.656 339 3. (4.11)

Thus, by introducing the two curved crosscuts l; and I, (and using the as-
sociated DDM theory of the present paper) we are led to a much better
approximation to m(Q) than that obtained by using only straight line cross-
cuts, in the sense that we can now predict the value of m(Q) correct to six

decimal places.
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Figure 4.4

The coordinates of the corners, starting from z; and moving in counterclockwise order,

are (-9.5,1.), (-9.5,0.5), (-9.,0.5), (-8.5,0.75), (-7.5,0.25), (-7.,0.5), (-6.,0.5), (-5.5,0.), (3.,0.),
(3.,1.), (9.5,1.), (9.5,1.5), (9.,1.5), (8.5,1.25), (7.5,1.75), (7.,1.5), (6.,1.5), (5.5,2.), (-3.,2.),
(-3.,1.). The two boundary segments connecting the points (-6.,0.5) to (-5.5,0.) and (6.,1.5)

to (5.5,2.) are quarter-circles each of radius 0.5.

Example 4.3 The quadrilateral @ illustrated in Figure 4.4 does not involve
sufficient symmetry for the use of the DDM with straight line crosscuts. On
the other hand the direct application of CONFPACK leads to the approxi-
mation

m(Q) = 21.730. (4.12)

This, however, cannot be relied upon because (although the CONFPACK er-
ror estimate for the associate conformal map onto the unit disc is 2.2 x 107'0)
the quadrilateral @ is “long” and, as a result, the corresponding measure of
crowding is 1.2 x 107!, Thus, because of the severe crowding, CONFPACK
cannot be used directly to provide a reliable approximation to m(Q). The
same applies to the other general purpose conformal mapping packages, i.e.
to the other packages that can deal with domains involving curved bound-
ary segments. In fact, because of the severe crowding, the other two general
purpose conformal mapping packages that are available to us, i.e. the single
precision version of CONFPACK and the orthonormalisation package BKM-
PACK of Warby [19], fail completely in their attempt to compute m(Q).
Consider now the decomposition of @) illustrated in Figure 4.4, where the
curved crosscuts [; and [y are both of the form given in Example 3.2, with k =
0.5. For the modules of the three component quadrilaterals, CONFPACK
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gives the following approximations:
m(Q1) = m(Q3) ~ 11.316 809 62, m(Qs) ~ 3.166 623 557 9.

These are expected to be correct to 6 and 10 decimal places respectively,
because: (a) the error estimates for the conformal maps onto the unit disc
are 7.3 x 10713, 9.7 x 107'2; (b) the corresponding measures of crowding are
1.5x 1077, 5.5 x 10~2. Therefore, the DDM approximation to m(Q) is given,

correct to 6 decimal places, by
m(Q) :=m(Qq) + m(Q2) + m(Q3) = 25.800 243. (4.13)

For estimating the error in m(Q), we need to know the values of the con-

formal modules of the following four auxiliary quadrilaterals (see Figure 4.4):
QT = {Ql;zlazgaclab}a Q; = {Q2;aaclada02}a

Q35 :={Qog;b.c1, 23, 25}, Q3 :={Qs;02,d, 23, 23}
To this end, CONFPACK gives the following approximations to m(Q7),
m(Q3) and m(Q3):
m(Q}) = m(Q}) ~ 2.852 789 and m(Q%) ~ 3.024 515,

which are expected to be correct to all the figures shown. Regarding the
value of m(Q33), the comparison principle for conformal modules (see e.g.

[1, p. 54]) and the rotational symmetry of Qs imply that,

m(Qy) > m({Qa; b, c1, 23, c2}) = m(Q3).
The details of the error analysis are as follows:

e Since m* := min{m(Q}), m(Q5;)} > 1.5, the application of (2.13) to Q

gives:
0 <m(Q) — {m(Q1) + m(Qys)} < 59.75¢ 27 min{m(@1).m(Qz)}

e Since m* := min{m(Q3), m(Q%)} > 1.5, the application of (2.13) to Qa3

gives:

0 < m(Qa3) — {Mm(Qs) + m(Qs)} < 59.75¢ 2 min{m(@2)m(Q3)}
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Hence, by combining the above we obtain the estimate
0<m(Q)—m(Q) <1.97 x 107,

which, in conjunction with (4.13), shows that m(Q) is given correct to 5

decimal places by
m(Q) = 25.800 24. (4.14)

This should be compared with the approximation (4.12), obtained by trying
to compute m(Q) directly.

24

R - e S

22 <3
Figure 4.5

The coordinates of the corners, starting from z; and moving in counterclockwise order,
are (-26.,5.), (-24.,-2.), (0.,0.), (6.,-1.5), (15.,0.), (45.,-2.), (43.,4.), (17.,2.), (6.,3.), (2.,1.).

The curved segment connecting the points z3 and z4 is given by the parametric equation,

2(t) = —4t3 + 2t + 45 + (4¢3 4+ 2t2 — 2)i, t € [0,1].

Example 4.4 The quadrilateral @ = {Q;z1, 29, 23, 24} illustrated in Fi-
gure 4.5 does not involve sufficient symmetry for the use of the DDM with
straight line crosscuts. Furthermore, the direct application of CONFPACK
fails completely in this case, in the sense that (because of the severe crowd-
ing) the computer fails to recognise the images of the four special points 2,
Z9, 23, 24, in the correct order on the unit circle.

Consider now the decomposition of @) illustrated in Figure 4.5, where the
curved crosscuts [y and /3 are determined by means of SCPACK, in the way
explained in Example 3.4. (The straight line crosscut Iy is auxiliary and is

needed only for the error analysis.)
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The approximations for the conformal modules of the three component
quadrilaterals ¢y, @23 and Q)4 are obtained by means of CONFPACK and

are as follows:
m(Q1) ~ 7.511 370 89, m(Q23) ~ 5.801 905 45,
and
m(Qy) ~ 8.190 834 64.

These are expected to be correct to all the figures quoted, because: (a)
the error estimates for the associated conformal maps onto the unit disc
are 4.3 x 10713, 2.0 x 107'2, 1.9 x 107'3; (b) the corresponding measures
of crowding are 1.2 x 107°, 2.3 x 107%, 3.5 x 10~°. Therefore, the DDM

approximation to m(Q) is given, correct to 8 decimal places, by
m(Q) := m(Q1) + m(Qas) +m(Qy) = 21.504 110 98. (4.15)

For estimating the error in m(Q), we need to know the values of the
conformal modules of the two auxiliary quadrilaterals Qs and 3. To this

end, the use CONFPACK gives the approximations
m(Qs) &~ 2.968 559 56 and m(Q3) = 2.826 784 66,

which are expected to be correct to all the figures shown.

The details of the error analysis are as follows:

e Since m* := min{m(Q,), m(Q2)} > 1.5, the application of Theorem 2.2 to
the decomposition of @), defined by [y, gives:

0 <m(Q) — {m(Q1) + m(Qaz4)} < 28.52e72rmin{m(@um(@2)},

e Since m* := min{m(Q3), m(Q4)} > 1.5, the application of Theorem 2.2 to
the decomposition of Q2 34, defined by I3, gives:

0 < m(Qaz4) — {m(Qas) +m(Qy)} < 28.52¢ 2rmintm(@)m(@u)},
Hence, by combining the above we obtain
0<m(Q) —m(Q) <7.8x107,
which, in conjunction with (4.15), gives that

21.504 110 9 < m(Q) < 21.504 111 8.
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