
Curvilinear Crosscuts of Subdivision for aDomain Decomposition Method inNumerical Conformal MappingM.I. Falc~ao, N. Papamichael and N.S. StylianopoulosAbstractLet Q := f
; z1; z2; z3; z4g be a quadrilateral consisting of a Jor-dan domain 
 and four points z1; z2; z3; z4 in counterclockwise orderon @
. We consider a domain decomposition method for computingapproximations to the conformal module m(Q) of Q in cases whereQ is \long" or, equivalently, m(Q) is \large". This method is basedon decomposing the original quadrilateral Q into two or more compo-nent quadrilaterals Q1; Q2; : : : and then approximating m(Q) by thesum Pj m(Qj) of the modules of the component quadrilaterals. Thepurpose of this paper is to consider ways for determining appropriatecrosscuts of subdivision (so that the sum Pj m(Qj) does indeed givea good approximation to m(Q)) and, in particular, to show that thereare cases where the use of curved crosscuts is much more appropriatethan the straight line crosscuts that have been used so far.AMS classi�cation: 30C30, 65E05.Key words Numerical conformal mapping, Quadrilaterals, Conformal mod-ules, Domain decomposition.



Curvilinear Crosscuts for Conformal Mapping 11 IntroductionLet Q := f
; z1; z2; z3; z4g be a quadrilateral consisting of a Jordan domain
 and four points z1, z2, z3, z4 in counterclockwise order on @
 and let m(Q)be the conformal module of Q. Also, let Rm(Q) denote a rectangle of basem(Q) and height 1, i.e.Rm(Q) := fw : 0 < <w < m(Q); 0 < =w < 1g:Then, Q is conformally equivalent to the rectangular quadrilateralfRm(Q); i; 0; m(Q); m(Q) + ig;in the sense that there exists a unique conformal map f : 
 ! Rm(Q) thattakes the four points z1, z2, z3, z4 respectively onto the four vertices i, 0,m(Q), m(Q) + i of Rm(Q).This paper is concerned with the study of a domain decomposition method(DDM) for computing the conformal modules of long quadrilaterals. TheDDM was introduced by two of the present authors (N.P. and N.S.S.) in[10], [11], for the purpose of computing the conformal modules and associ-ated conformal maps of a special class of quadrilaterals. The method wasalso studied by the same authors in [12], [13], [14], [15] and by Gaier andHayman [3], [4], in connection with the computation of conformal modules,and by Laugesen [8] in connection with the determination of the associatedconformal maps. For the computation of conformal modules, the methodconsists of the following two main steps:(i) Decomposing the original quadrilateral Q (by means of appropriatecrosscuts lj, j = 1; 2; : : :) into two or more component quadrilateralsQj, j = 1; 2; : : : .(ii) Approximating the conformal module m(Q), of the original quadrilat-eral, by the sum Pj m(Qj) of the conformal modules of the componentquadrilaterals.



Curvilinear Crosscuts for Conformal Mapping 2(Note that m(Q) �Xj m(Qj) (1.1)and equality occurs only when the images of all the crosscuts lj under theconformal map f : 
 ! Rm(Q) are straight lines parallel to the imaginaryaxis. This follows form the well-known composition law for modules of curvefamilies; see e.g. [1, pp. 54{56] and [5, pp. 437{438].)The problem of determining m(Q) is closely related with that of measur-ing resistance values of electrical networks and, in this connection, the DDMis of considerable practical interest for the following two reasons:(i) It can be used to overcome the crowding di�culties associated withthe problem of computing the modules of long quadrilaterals, i.e. thedi�culties associated with the conventional approach of seeking to de-termine m(Q) by �rst mapping 
 onto the unit disc or the half plane(see e.g. [9, x3.1] and [13, x1]).(ii) It takes advantage of the fact that in many applications (for exam-ple VLSI applications) a complicated original quadrilateral Q can bedecomposed into very simple components Qj (see e.g. [14] and [15]).Our work in this paper is concerned with the fact that all the availableDDM theory is based on the use of straight line crosscuts of subdivision.Our speci�c objective here is to investigate whether there are cases for whichthe use of curved crosscuts is more appropriate. In this context, we describea simple technique for determining curved crosscuts of decomposition andshow, by means of examples, that there are many cases for which the useof such crosscuts is more appropriate than the straight lines that have beenused so far.In presenting our results we shall adopt throughout the notations used in[12], [13], [14]. That is:� 
 and Q := f
; z1; z2; z3; z4g will denote respectively the original do-main and corresponding quadrilateral.
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2; : : : and Q1; Q2; : : :, will denote respectively the \principal" sub-domains and corresponding quadrilaterals of the decomposition underconsideration.� The additional subdomains and associated quadrilaterals that arisewhen the decomposition of Q involves more than one crosscut will bedenoted by using (in an obvious manner) a multisubscript notation.For example, the �ve component quadrilaterals of the decomposition illus-trated in Figure 1.1 are:Q1 := f
1; z1; z2; a; dg; Q2 := f
2; d; a; b; cg; Q3 := f
3; c; b; z3; z4gand Q1;2 := f
1;2; z1; z2; b; cg; Q2;3 := f
2;3; d; a; z3; z4g;where 
1;2 := 
1 [ 
2; 
2;3 := 
2 [ 
3:2 A method for determining curved cross-cutsThe available DDM theory for conformal modules, given in [12]{[15] and, inparticular, the results of Theorems 2.4 and 2.6 of [15] can be used to deriveapproximations of remarkable accuracy to the modules of very complicated



Curvilinear Crosscuts for Conformal Mapping 4quadrilaterals of the type that occur frequently in VLSI applications (see thenumerical examples given in [12], [13], [14] and [15]). These results, however,su�er from the following two drawbacks: (a) they require that the quadrilat-eral under consideration involves substantial symmetry (see e.g. the require-ments of Theorems 2.4 and 2.6 of [15]); (b) they allow only for straight linecrosscuts, although there are situations where, intuitively speaking, curvedcrosscuts appear to be much more appropriate.
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Figure 2.1The purpose of this section is to describe a simple, and yet very e�ective,device for overcoming the above drawbacks, in cases where the quadrilateralQ := f
; z1; z2; z3; z4g is characterised by the following (see Figure 2.1):(i) The de�ning domain 
 is part of an in�nite polygon P.(ii) @
 consists of two segments of the opposite components of @P and twoJordan arcs 
1 and 
2 each joining the two opposite components of @P.(iii) The points z1; z2 and z3; z4 of Q are points on the boundary arcs 
1and 
2 respectively.(iv) There is a corner point b 2 @
 \ @P through which it is, in somesense, \natural" to seek to determine a crosscut l, thus decomposing Qinto two \simpler" component quadrilaterals Q1 := f
1; z1; z2; b; cg andQ2 := f
2; c; b; z3; z4g. (Of course, the crosscut l must be determinedso that the sum m(Q1) +m(Q2) is a good approximation to m(Q).)
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Figure 2.2With reference to Figure 2.1, let T be the Schwarz-Christo�el transfor-mation that maps the upper half plane H onto the in�nite polygon P sothat T (0) = a1; T (1) = b and T (1) = a2;where a1 and a2 denote the two vertices of P at in�nity. Then, we claimthat an appropriate crosscut l for the subdivision of the quadrilateral Q :=f
; z1; z2; z3; z4g is given in parametric form byl := fz : z = T (ei�t); 0 � t � 1g: (2.1)The above choice of l can be justi�ed as follows:Let S denote the in�nite stripS := fw = s+ it : 0 < t < 1g:Then, the transformation � : w ! T (e�w); (2.2)



Curvilinear Crosscuts for Conformal Mapping 6

(a)
(b)

P
z1

z2 z3
z4

b cl
1 
2
1 
2

Sb
1 b
2w1w2 w3w4�[�1]
0i�Figure 2.3maps S onto P so that �(0) = b (see Figure 2.2). This shows that thecrosscut l of (2.1) is, in fact, the image under the conformal map � : S ! Pof the straight line � joining the points 0 and i on @S, i.e. l = �(�).Let Q := f
; z1; z2; z3; z4g be a quadrilateral of the form illustrated inFigure 2.1 and assume that the four points z1; z2; z3; z4, are the four endpoints of the arcs 
1 and 
2, i.e. the four corners where 
1 and 
2 meet @P(see Figure 2.3(a)). Further, let bQ := fb
;w1; w2; w3; w4g denote the imageof Q := f
; z1; z2; z3; z4g, under the transformation �[�1] : P ! S, and letb
1 and b
2 denote respectively the corresponding images of the subdomains
1 and 
2 (see Figure 2.3(b)). Then, we have the following:Theorem 2.1 For the decomposition illustrated in Figure 2.3(a)0 � m(Q)� fm(Q1) +m(Q2)g � 5:33e�2�m� ; (2.3)provided that m� := minfm(Q1); m(Q2)g � 1:
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Figure 2.4Proof The result follows by applying Theorem 2.2 of [15] to the decom-position of the transformed quadrilateral bQ illustrated in Figure 2.3(b) andrecalling that conformal modules are conformally invariant.We consider now the more general case, where the two points z3; z4 of thequadrilateral Q := f
; z1; z2; z3; z4g are not necessarily the two end pointsof 
2. In this case, for the statement and proof of the corresponding de-composition result, it is convenient to introduce an auxiliary crosscut 
02, asshown in Figure 2.4(a). That is, 
02 is a Jordan arc in 
 that shares thesame end points with 
2 and, together with the crosscut l, divides 
 intothree subdomains 
1, 
2 and 
3, so that 
 = 
1 [ 
2 [ 
3. Further, welet bQ := fb
;w1; w2; w3; w4g, b
1, b
2, b
3, �1, �2 and �02 denote respectivelythe images of Q := f
; z1; z2; z3; z4g, 
1, 
2, 
3, 
1, 
2 and 
02, under thetransformation �[�1] : P ! S (see Figure 2.4(b)).



Curvilinear Crosscuts for Conformal Mapping 8Theorem 2.2 Let Q be the quadrilateral of Figure 2.4(a) described above.Then, for the decomposition de�ned by the curved crosscut l,0 � m(Q)� fm(Q1) +m(Q2;3)g � 28:52e�2�m�; (2.4)provided that m� := minfm(Q1); m(Q2)g � 1:5:Proof With reference to Figure 2.4(b), let �0 be a straight line to the leftof the arc �1, parallel to � and joining the lines =w = 0 and =w = 1, anddenote by b
0 the domain bounded by the straight lines =w = 1, �0, =w = 0and the arc �1. Also, let bQ0;1, bQ0;1;2 and bQ0;1;2;3 denote respectively the threequadrilaterals de�ned by the domains b
0;1, b
0;1;2 and b
0;1;2;3, whereb
0;1 = b
0 [ b
1; b
0;1;2 = b
0;1 [ b
2 and b
0;1;2;3 = b
0;1;2 [ b
3:Then, by applying Theorems 2.5 and 2.2 of [15] to the quadrilaterals bQ0;1;2;3and bQ1;2 respectively, we �nd thatj m( bQ0;1;2;3)� fm( bQ0;1;2) +m( bQ)�m( bQ1;2)g j� 2:71e��m(bQ1;2); (2.5)provided m( bQ1;2) � 3, and0 � m( bQ1;2)� fm( bQ1) +m( bQ2)g � 5:33e�2�m� ; (2.6)provided m� := minfm( bQ1); m( bQ2)g � 1. Also, if h denotes the distance ofthe straight line � from the arc �02, then the application of Theorem 2.7 of[15] to the quadrilateral bQ0;1;2;3 gives that0 � m( bQ0;1;2;3)� fm( bQ0;1) +m( bQ2;3)g � 1:28e�2�h;provided h � 1. Further, from Theorem 4 of [4] and Koebe's 14 -theorem wehave that h � m( bQ2)� 1� log 4:Therefore,0 � m( bQ0;1;2;3)� fm( bQ0;1) +m( bQ2;3)g � 1:28� 16e�2�m(bQ2); (2.7)
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Figure 2.5provided m( bQ2) � 1:5. The result (2.4) follows easily from the three esti-mates (2.5), (2.6), (2.7), the additivity propertym( bQ0;1;2) � m( bQ0;1) +m( bQ2);and the fact that conformal modules are conformally invariant.We consider, �nally, a quadrilateral Q := f
; z1; z2; z3; z4g having thegeneral form illustrated in Figure 2.1 (where neither z1; z2 nor z3; z4 are as-sumed to be the end points of 
1 or 
2). In this case, for the statement andproof of the corresponding result, we introduce two auxiliary crosscuts 
01and 
02, as shown in Figure 2.5. (Here, 
01, 
02 are two Jordan arcs in 
 thatshare the same end points with 
1 and 
2 respectively and, together withthe crosscut l, divide 
 into four subdomains 
1, 
2, 
3 and 
4, so that
 = 
1 [ 
2 [ 
3 [ 
4.)Theorem 2.3 Let Q be the quadrilateral of Figure 2.5 described above. Then,for the decomposition de�ned by the curved crosscut l,0 � m(Q)� fm(Q1;2) +m(Q3;4)g � 59:75e�2�m�; (2.8)provided that m� := minfm(Q2); m(Q3)g � 1:5:Proof From [15, Thm. 2.5] we have thatj m(Q)� fm(Q1;2;3) +m(Q2;3;4)�m(Q2;3)g j� 2:71e��m(Q2;3); (2.9)
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Figure 2.7provided m(Q2;3) � 3. Also, the application of Theorem 2.2 to the quadri-laterals Q1;2;3 and Q2;3;4 gives respectively that0 � m(Q1;2;3)� fm(Q1;2) +m(Q3)g � 28:52e�2�m� (2.10)and 0 � m(Q2;3;4)� fm(Q2) +m(Q3;4)g � 28:52e�2�m�; (2.11)provided m� := minfm(Q2); m(Q3)g � 1:5: The result (2.8) follows easilyfrom the three estimates (2.9), (2.10), (2.11) and the additivity propertym(Q2;3) � m(Q2) +m(Q3):Remark 2.1 It is easy to show, by using continuity arguments, that theauxiliary arc 
02 in Figure 2.4 may be taken to coincide with the boundaryarc 
2. Similarly, the two auxiliary arcs 
01 and 
02, in Figure 2.5, may betaken to coincide with the boundary arcs 
1 and 
2 respectively. This means



Curvilinear Crosscuts for Conformal Mapping 11that, in practice, it is much more convenient (and e�cient) to apply theresults of Theorems 2.2 and 2.3 in the following form:(i) For the decomposition of the quadrilateral Q := f
; z1; z2; z3; z4g illustratedin Figure 2.6, 0 � m(Q)� fm(Q1) +m(Q2)g � 28:52e�2�m�; (2.12)provided that m� := minfm(Q1); m(Q�2)g � 1:5, where Q�2 is the quadrilateralQ�2 := f
2; c; b; z�3 ; z�4g:(ii) For the decomposition of the quadrilateral Q := f
; z1; z2; z3; z4g illus-trated in Figure 2.7,0 � m(Q)� fm(Q1) +m(Q2)g � 59:75e�2�m�; (2.13)provided that m� := minfm(Q�1); m(Q�2)g � 1:5, where Q�1 and Q�2 are thequadrilateralsQ�1 := f
1; z�1 ; z�2 ; b; cg and Q�2 := f
2; c; b; z�3 ; z�4g:Remark 2.2 Theorems 2.1{2.3 remain valid even when the domain 
 is partof a general strip-like domain (instead of an in�nite polygon P). In this case,however, the determination of the curved crosscuts will require the conformalmap from S onto the strip-like domain.3 Examples of curved crosscutsIf the Schwarz-Christo�el map T : H ! P, of Figure 2.2, is known in closedform, then the parametric equation of the associated curved crosscut l isgiven in exact parametric form byl := fz : z = T (ei�t); 0 � t � 1g: (3.1)Otherwise, l can be obtained approximately by using a numerical approxi-mation eT to T . In particular, l can be approximated by~l := fz : z = eT (ei�t); 0 � t � 1g; (3.2)
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Figure 3.1where eT is an approximation to T obtained by using the Schwarz-Christo�elconformal mapping package SCPACK of Trefethen [18], [16]. We illustratethe above remarks by the following examples, where in cases for which theassociated Schwarz-Christo�el transformation T : H ! P is known in closedform, we simply state the corresponding mapping function:Example 3.1 For a quadrilateral of the form illustrated in Figure 3.1 theassociated Schwarz-Christo�el mapping function isT (W ) = i�� log(1 + i��1� i��)+ 1� log(1 + �1� �) ; (3.3)where � = � W � 1W + �2�1=2(see e.g. [2, p. 351], [7, p. 157]).Example 3.2 For a quadrilateral of the form illustrated in Figure 3.2 theassociated Schwarz-Christo�el mapping function isT (W ) = 1� cosh�1 (2�2W � �2 � 11� �2 )� �� cosh�1 ((1 + �2)W � 2(1� �2)W ) ; (3.4)with 0 < � < 1 (see e.g. [7, p. 161]).
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Figure 3.3Example 3.3 For a quadrilateral of the form illustrated in Figure 3.3 theassociated Schwarz-Christo�el mapping function isT (W ) = 1� Z 1W (1� �)�� d� + i; 0 < � < 1 (3.5)(see e.g. [7, p. 155{156]), i.e. the crosscut l is given in parametric form byz = �i�Z t0 (1� ei�y)�dy � 1� ; 0 � t � 1: (3.6)Thus, in this case, l must be determined by numerical quadrature.Example 3.4 If for a quadrilateral of the form illustrated in Figure 2.1the associated transformation T : H ! P is not known exactly, then weapproximate T by eT = eT1 � T2 � T3; (3.7)where:



Curvilinear Crosscuts for Conformal Mapping 14� eT1 is the SCPACK approximation of the conformal map of the unit discD onto P.� T2 is the bilinear transformation mapping D onto itself so thatT2(�i) = eZ1; T2(1) = eZ2 and T2(i) = eZ3;where eZ1; eZ2 and eZ3 are respectively the approximate pre-images ofa1; b and a2, produced by the mapping eT1.� T3 is the bilinear transformation,T3(W ) := iW � iW + i ; (3.8)mapping the upper half plane H onto D so thatT3(0) = �i; T3(1) = 1 and T3(1) = i:Thus, the required crosscut l is given in approximate parametric form by~l := fz : z = eT (ei�t); 0 � t � 1g; (3.9)where eT = eT1 � T2 � T3.In order to check the above numerical process, we consider the quadrilat-eral of Example 3.2, with � = 0:5, and compare the approximate crosscut ~l,obtained by means of (3.9), with the exact crosscut given by (3.4). We dothis by computing " := maxj=0;:::;100 j l(10�2j)� ~l(10�2j) j; (3.10)and �nd that " � 3:04� 10�12:This is in agreement with the SCPACK error estimate which, in this case, is2:24� 10�12.



Curvilinear Crosscuts for Conformal Mapping 154 Numerical examplesIn this section we present four numerical examples, illustrating the applica-tion of the DDM with curved crosscuts. Our objectives are as follows:(i) To compare the theoretical estimates for the DDM errors given by (2.3)with the actual DDM errors. We do this in Example 4.1, by consideringa simple decomposition for which we can �nd reliable a approximationto the module of the original quadrilateral.(ii) To consider a case where it is possible to obtain DDM results by usingstraight line crosscuts and to compare these results with those obtainedby using the DDM with curved crosscuts (Example 4.2).(iii) To present examples where the application of DDM is possible onlywhen curved crosscuts are used and to estimate the errors of the re-sulting DDM approximations (Examples 4.3 and 4.4).In our examples, if the conformal module m(Qj) of a component quadri-lateral is not known exactly, then it is computed by means of the conventionalmethod, i.e. by using the unit disc D as intermediate canonical domain (seee.g. [9, x3.1] and [17, x2]). For this purpose, we use either the Schwarz-Christo�el package SCPACK [18], [16] or the double precision version of theintegral equation conformal mapping package CONFPACK of Hough [6]y, asfollows:� If 
j is a polygon, then the approximation to m(Qj), together with anestimate of the corresponding error, is obtained by using the subroutineRESIST of SCPACK.� If 
j involves curved boundary segments, then: (a) we use CONF-PACK to compute the images of the four special points of Qj, underthe conformal map f : 
j ! D; (b) we determine the approximationyThe double precision version of CONFPACK has only become available very recently;see http://www.mis.coventry.ac.uk/�dhough/
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Figure 4.1Figure 4.1 The coordinates of the corners, starting from z1 and moving in counter-clockwise order, are (-1.5,1.), (-1.,0.5), (0.,0.5), (0.,0.), (3.,0.), (2.,1.).to m(Qj), in the usual manner, by computing the ratio of two completeelliptic integrals of the �rst kind whose moduli depend only on thesefour images. In this case, we estimate the error in the approximationto m(Qj) by means of the following \rule of thump", which takes intoaccount both the error in the approximation to f and the crowding ofpoints on the unit circle (for a discussion on the crowding phenomenonand on ways for measuring the crowding of points on the unit circle,see e.g. [9, x3.1] and [13, x1]): \If the estimate of the error in the ap-proximation to the conformal map f is of order 10�d1 and the measureof crowding is of order 10�d2, where d1 > d2, then the resulting approx-imation to the conformal module is correct to at least d1 � d2 decimalplaces."Regarding the use of CONFPACK, care must be taken in order to ful�llthe package's requirement that each boundary segment of the de�ning do-main is given by a parametric equation with non-vanishing �rst derivative.Example 4.1 Consider the decomposition of the quadrilateral illustrated inFigure 4.1, where the crosscut of subdivision has the parametric forml := fz : z = T (ei�t); 0 � t � 1g;and T is the special case � = 0:5 of the Schwarz-Christo�el mapping (3.4) inExample 3.2.



Curvilinear Crosscuts for Conformal Mapping 17The approximations to the conformal modules of the component quadri-laterals Q1 and Q2 are obtained by using CONFPACK and are as follows:m(Q1) � 2:445 809 483 4; m(Q2) � 2:362 070 967 6:These are expected to be correct to at least 9 decimal places, because: (a)the error estimates for the associated conformal maps onto the unit disc are1:0� 10�11 and 9:6� 10�12; (b) the corresponding measures of crowding are4:3�10�2 and 1:2�10�1. Therefore, we expect that the DDM approximationto m(Q) is given correct to 9 decimal places byfm(Q) := m(Q1) +m(Q2) = 4:807 880 451: (4.1)For the \actual" value of the module of the original quadrilateral we usethe subroutine RESIST of SCPACK and �nd that m(Q) is given correct to9 decimal places by m(Q) = 4:807 880 808:Therefore, the actual error in the DDM approximation (4.1) isE := m(Q)�fm(Q) = 3:57� 10�7:By contrast, (2.3) gives the theoretical error estimate0 < m(Q)�fm(Q) � 5:33e�2�minfm(Q1);m(Q2)g < 1:92� 10�6which, in conjunction with (4.1), leads to the following DDM prediction4:807 880 < m(Q) < 4:807 883:Example 4.2 Consider the decomposition illustrated in Figure 4.2, wherethe crosscuts of subdivision are all straight lines and are determined in the\best possible" way by using the relevant DDM theory. (The parametricequations of the crosscuts separating 
1 from 
2, 
2 from 
3, 
3 from 
4,
5 from 
6 and 
7 from 
8, are respectively z = 5 + it; t 2 [0; 1], z =



Curvilinear Crosscuts for Conformal Mapping 18t + 6i; t 2 [0; 2], z = t + 15i; t 2 [0; 1], z = 6:5 + it; t 2 [18; 19] and z =t+ 12:5i; t 2 [12; 13].)Regarding the components of the decomposition, the modules of thetrapezoidal quadrilaterals Q4, Q5, Q6 and Q7 are known exactly in termsof elliptic integrals (see e.g. [12, Rem. 2.4]). The modules of the other com-ponent quadrilaterals are computed by using SCPACK, in the case of Q2,and CONFPACK for Q1, Q3 and Q8. The numerical results are as follows:� To 10 decimal places, m(Q4) = 3:279 364 399 5and m(Q5) = m(Q6) = m(Q7) = 5:779 364 399 8:� SCPACK gives the approximationm(Q2) � 6:143 537 228;which is expected to be correct to all the �gures quoted.� CONFPACK gives the approximationsm(Q1) � 5:945 181 13; m(Q3) � 6:361 255 72and m(Q8) � 8:588 927 96:These are expected to be correct to 6,7 and 3 decimal places respec-tively, because: (a) the error estimates for the associated conformalmaps onto the unit disc are 2:8 � 10�11, 1:1 � 10�12 and 2:3 � 10�10;(b) the corresponding measures of crowding are 5:9� 10�5, 4:8� 10�5and 9:8� 10�7.We note that (because Q8 is \long") the crowding of points, introduced by theconformal map 
8 ! D, a�ects seriously the accuracy of the CONFPACKapproximation to m(Q8). As a result, we can only state with certainty thatthis approximation is correct to 3 decimal places.
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Figure 4.2The coordinates of the corners, starting from z1 and moving in counterclockwise order,are (13.,0.), (13.,2.), (8.,2.), (8.,1.), (2.,1.), (2.,11.), (1.,12.), (1.,18.), (12.,18.), (12.,9.5),(7.,9.5), (7.,8.5), (5.,8.5), (5,7.5), (13.,7.5), (13.,19), (0.,19.), (0.,0.). �1 and �3 are semi-circles of radius 1 and 0:5 and centers at (13:; 1:) and (5:; 8:) respectively, and �2 is givenby the parametric equation, z(t) = 2t3 � 3t2 + 2 + i(t + 11); t 2 [0; 1]:



Curvilinear Crosscuts for Conformal Mapping 20Regarding the DDM error, the repeated application of Theorems 2.4 and2.6 of [15] gives that 0 � m(Q)�fm(Q) < 2:60� 10�7: (4.2)However, because of the relatively poor approximation tom(Q8), we can onlybe certain of the �rst three decimal places in the resulting DDM sumfm(Q) := 8Xj=1m(Qj) = 47:656 359 636 9; (4.3)i.e. we can only predict that m(Q) is given correct to 3 decimal places bym(Q) = 47:656: (4.4)We consider now the same quadrilateral Q but decomposed as illustratedin Figure 4.3, where the straight line crosscuts are as before and the curvedcrosscuts l1 and l2 are of the form given in Examples 3.2 and 3.1 respectively,in each case with � = 0:5.Regarding the components of this decomposition, the quadrilaterals Q3,Q4, Q5, Q6, Q7 and Q8 are the same as the quadrilaterals Q2, Q3, Q4, Q5,Q6 and Q7 of Figure 4.2. For the modules of the other four componentquadrilaterals, CONFPACK gives the following approximations:m(Q1) � 2:778 626 07; m(Q2) � 3:166 555 06; (4.5)m(Q9) � 3:220 092 07; m(Q10) � 5:368 814 89: (4.6)These are expected to be correct to all the �gures quoted, because: (a) theerror estimates for the associated conformal maps onto the unit disc are1:0� 10�11, 5:3� 10�11, 5:3� 10�11 and 3:5� 10�11; (b) the correspondingmeasures of crowding are 5:5� 10�2, 4:2� 10�2, 7:4� 10�3 and 1:1� 10�3.Therefore, we expect that the DDM approximation to m(Q) is given correctto 7 decimal places byfm(Q) := 10Xj=1m(Qj) = 47:656 338 6: (4.7)
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Figure 4.3The error in fm(Q) can be estimated by applying, as before, Theorems 2.4and 2.6 of [15] to the various quadrilaterals associated with straight linecrosscuts, and Theorem 2.1 and estimate (2.12) of the present paper to thequadrilaterals Q1;2 and Q9;10 associated with the two curved crosscuts. Morespeci�cally, the application of Theorems 2.4 and 2.6 of [15] gives0 � m(Q)� fm(Q1;2) + 8Xj=3m(Qj) +m(Q9;10)g < 2:60� 10�7; (4.8)while the application of Theorem 2.1 to Q1;2 gives0 � m(Q1;2)� fm(Q1) +m(Q2)g � 5:33e�2�minfm(Q1);m(Q2)g: (4.9)



Curvilinear Crosscuts for Conformal Mapping 22(Remark: (4.5) and (4.9) imply that5:945 181 13 � m(Q1;2) � 5:945 181 27:By contrast, if instead of l1 we use a straight line crosscut joining the points8 + i and 8 in Figure 4.3, then from the resulting decomposition we get theapproximation fm(Q1;2) = 5:915 984 17;which is correct only to 1 decimal place.)Let Q�10 denote the auxiliary quadrilateralQ�10 := f
10; c2; b2; z�3 ; z4g:Then, by using CONFPACK, we �nd that to 8 decimal places,m(Q�10) = 3:006 564 60:Therefore, since m� := minfm(Q9); m(Q�10)g > 1:5, the application of (2.12)to the quadrilateral Q9;10 gives that0 � m(Q9;10)� fm(Q9) +m(Q10)g � 28:52e�2�minfm(Q9);m(Q�10)g: (4.10)Hence, by combining (4.8){(4.10), we obtain the estimate0 � m(Q)�fm(Q) < 5:78� 10�7which, in conjunction with (4.7), implies that47:656 338 6 � m(Q) < 47:656 339 3: (4.11)Thus, by introducing the two curved crosscuts l1 and l2 (and using the as-sociated DDM theory of the present paper) we are led to a much betterapproximation to m(Q) than that obtained by using only straight line cross-cuts, in the sense that we can now predict the value of m(Q) correct to sixdecimal places.



Curvilinear Crosscuts for Conformal Mapping 23c2l1 l2c1 z3z4z�4z�3ab dz1z2 z�2 
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Figure 4.4The coordinates of the corners, starting from z1 and moving in counterclockwise order,are (-9.5,1.), (-9.5,0.5), (-9.,0.5), (-8.5,0.75), (-7.5,0.25), (-7.,0.5), (-6.,0.5), (-5.5,0.), (3.,0.),(3.,1.), (9.5,1.), (9.5,1.5), (9.,1.5), (8.5,1.25), (7.5,1.75), (7.,1.5), (6.,1.5), (5.5,2.), (-3.,2.),(-3.,1.). The two boundary segments connecting the points (-6.,0.5) to (-5.5,0.) and (6.,1.5)to (5.5,2.) are quarter-circles each of radius 0.5.Example 4.3 The quadrilateral Q illustrated in Figure 4.4 does not involvesu�cient symmetry for the use of the DDM with straight line crosscuts. Onthe other hand the direct application of CONFPACK leads to the approxi-mation m(Q) � 21:730: (4.12)This, however, cannot be relied upon because (although the CONFPACK er-ror estimate for the associate conformal map onto the unit disc is 2:2�10�10)the quadrilateral Q is \long" and, as a result, the corresponding measure ofcrowding is 1:2� 10�14. Thus, because of the severe crowding, CONFPACKcannot be used directly to provide a reliable approximation to m(Q). Thesame applies to the other general purpose conformal mapping packages, i.e.to the other packages that can deal with domains involving curved bound-ary segments. In fact, because of the severe crowding, the other two generalpurpose conformal mapping packages that are available to us, i.e. the singleprecision version of CONFPACK and the orthonormalisation package BKM-PACK of Warby [19], fail completely in their attempt to compute m(Q).Consider now the decomposition of Q illustrated in Figure 4.4, where thecurved crosscuts l1 and l2 are both of the form given in Example 3.2, with � =0:5. For the modules of the three component quadrilaterals, CONFPACK



Curvilinear Crosscuts for Conformal Mapping 24gives the following approximations:m(Q1) = m(Q3) � 11:316 809 62; m(Q2) � 3:166 623 557 9:These are expected to be correct to 6 and 10 decimal places respectively,because: (a) the error estimates for the conformal maps onto the unit discare 7:3� 10�13, 9:7� 10�12; (b) the corresponding measures of crowding are1:5�10�7, 5:5�10�2. Therefore, the DDM approximation to m(Q) is given,correct to 6 decimal places, byfm(Q) := m(Q1) +m(Q2) +m(Q3) = 25:800 243: (4.13)For estimating the error in fm(Q), we need to know the values of the con-formal modules of the following four auxiliary quadrilaterals (see Figure 4.4):Q�1 := f
1; z1; z�2 ; c1; bg; Q�2 := f
2; a; c1; d; c2g;Q�2;3 := f
2;3; b; c1; z�3; z�4g; Q�3 := f
3; c2; d; z3; z�4g:To this end, CONFPACK gives the following approximations to m(Q�1),m(Q�2) and m(Q�3):m(Q�1) = m(Q�3) � 2:852 789 and m(Q�2) � 3:024 515;which are expected to be correct to all the �gures shown. Regarding thevalue of m(Q�2;3), the comparison principle for conformal modules (see e.g.[1, p. 54]) and the rotational symmetry of 
2 imply that,m(Q�2;3) > m(f
2; b; c1; z�3; c2g) = m(Q�2):The details of the error analysis are as follows:� Since m� := minfm(Q�1); m(Q�2;3)g > 1:5, the application of (2.13) to Qgives: 0 � m(Q)� fm(Q1) +m(Q2;3)g � 59:75e�2�minfm(Q�1);m(Q�2;3)g:� Since m� := minfm(Q�2); m(Q�3)g > 1:5, the application of (2.13) to Q2;3gives: 0 � m(Q2;3)� fm(Q2) +m(Q3)g � 59:75e�2�minfm(Q�2);m(Q�3)g:



Curvilinear Crosscuts for Conformal Mapping 25Hence, by combining the above we obtain the estimate0 � m(Q)�fm(Q) < 1:97� 10�6;which, in conjunction with (4.13), shows that m(Q) is given correct to 5decimal places by m(Q) = 25:800 24: (4.14)This should be compared with the approximation (4.12), obtained by tryingto compute m(Q) directly.z1 z4z2 z3
1 
2 
3 
4l1 l2 l3Figure 4.5The coordinates of the corners, starting from z1 and moving in counterclockwise order,are (-26.,5.), (-24.,-2.), (0.,0.), (6.,-1.5), (15.,0.), (45.,-2.), (43.,4.), (17.,2.), (6.,3.), (2.,1.).The curved segment connecting the points z3 and z4 is given by the parametric equation,z(t) = �4t3 + 2t+ 45 + (4t3 + 2t2 � 2)i; t 2 [0; 1].Example 4.4 The quadrilateral Q := f
; z1; z2; z3; z4g illustrated in Fi-gure 4.5 does not involve su�cient symmetry for the use of the DDM withstraight line crosscuts. Furthermore, the direct application of CONFPACKfails completely in this case, in the sense that (because of the severe crowd-ing) the computer fails to recognise the images of the four special points z1,z2, z3, z4, in the correct order on the unit circle.Consider now the decomposition of Q illustrated in Figure 4.5, where thecurved crosscuts l1 and l3 are determined by means of SCPACK, in the wayexplained in Example 3.4. (The straight line crosscut l2 is auxiliary and isneeded only for the error analysis.)



Curvilinear Crosscuts for Conformal Mapping 26The approximations for the conformal modules of the three componentquadrilaterals Q1, Q2;3 and Q4 are obtained by means of CONFPACK andare as follows:m(Q1) � 7:511 370 89; m(Q2;3) � 5:801 905 45;and m(Q4) � 8:190 834 64:These are expected to be correct to all the �gures quoted, because: (a)the error estimates for the associated conformal maps onto the unit discare 4:3 � 10�13, 2:0 � 10�12, 1:9 � 10�13; (b) the corresponding measuresof crowding are 1:2 � 10�5, 2:3 � 10�4, 3:5 � 10�5. Therefore, the DDMapproximation to m(Q) is given, correct to 8 decimal places, byfm(Q) := m(Q1) +m(Q2;3) +m(Q4) = 21:504 110 98: (4.15)For estimating the error in fm(Q), we need to know the values of theconformal modules of the two auxiliary quadrilaterals Q2 and Q3. To thisend, the use CONFPACK gives the approximationsm(Q2) � 2:968 559 56 and m(Q3) � 2:826 784 66;which are expected to be correct to all the �gures shown.The details of the error analysis are as follows:� Since m� := minfm(Q1); m(Q2)g > 1:5, the application of Theorem 2.2 tothe decomposition of Q, de�ned by l1, gives:0 � m(Q)� fm(Q1) +m(Q2;3;4)g � 28:52e�2�minfm(Q1);m(Q2)g:� Since m� := minfm(Q3); m(Q4)g > 1:5, the application of Theorem 2.2 tothe decomposition of Q2;3;4, de�ned by l3, gives:0 � m(Q2;3;4)� fm(Q2;3) +m(Q4)g � 28:52e�2�minfm(Q3);m(Q4)g:Hence, by combining the above we obtain0 � m(Q)�fm(Q) � 7:8� 10�7;which, in conjunction with (4.15), gives that21:504 110 9 � m(Q) � 21:504 111 8:
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