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Abstract An introduction is provided to the theory of elasticity in general relativity.
Important tensors appearing in this context are presented. In particular, attention
is focussed on the elasticity difference tensor, for which an algebraic analysis is
performed. Applications are given to static and non-static spherically symmetric
configurations. For the latter, dynamical equations are obtained characterizing the
space-time in the context of general relativistic elasticity.

1 General Relativistic Elasticity

General relativistic elasticity was formulated in the mid-twentieth century due to
the necessity to study astrophysical problems such as deformations of neutron star
crusts. Relevant contributions to the theory of general relativistic elasticity were
given by Carter and Quintana [1], Kijowski and Magli [2], Beig and Schmidt [3],
Karlovini and Samuelsson [4] and by many other authors.

The theory is based on a configuration mapping

Ψ : M −→ X ,

a Ck (k > 1) mapping from space-time M, endowed with a Lorentz metric g of sig-
nature (−,+,+,+) and assumed to be time-orientable, to the material space X . The
material space is a three-dimensional manifold, whose points represent the parti-
cles of the material. The material metric K defined on X measures the distances
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between particles in the locally relaxed state of the material. Coordinates on M are
here denoted by {ωa}, a = 0,1,2,3, and coordinates on X by {ξ A}, A = 1,2,3.
Associated with Ψ are the pull-back operator Ψ ∗ and the push-forward operator
Ψ∗ which give rise to a 3× 4 matrix, the relativistic deformation gradient, whose
entries are ξ A

a = ∂ξ A

∂ωa . The velocity field of the matter, ua, satisfies the follow-
ing conditions: u0 > 0, uaua = −1 and uaξ A

a = 0. The pulled-back material met-
ric kab = ξ A

a ξ B
b KAB is such that kabua = 0 and Lukab = 0. It is used to construct

other relativistic elastic tensors. Let n2
1, n2

2, n2
3 be the eigenvalues of ka

b, then one
can write kab = n2

1xaxb + n2
2yayb + n2

3zazb, where x, y and z denote the eigenvec-
tors of k and n1, n2, n3 represent the linear particle densities (see [4]). Consid-
ering the orthonormal tetrad {u,x,y,z}, then the space-time metric takes the form
gab =−uaub +xaxb +yayb + zazb and hab = xaxb +yayb + zazb is the projection ten-
sor.

The relativistic strain tensor sab = 1
2 (hab − kab) contains information about the

local state of strain of the matter. The material is said to be locally relaxed at a
particular point of space-time if sab = 0.

The elasticity difference tensor Sa
bc introduced by [4] can be expressed as

Sa
bc =

1
2

k−am(Dbkmc +Dckmb−Dmkbc), (1)

where k−1am is such that k−1amkmb = ha
b and Db is the spatially projected connection

defined by Datb...
c... = hd

ahb
e...h

f
c...∇dte...

f ..., where tb...
c... is an arbitrary tensor

field, and it satisfies Dahbc = 0. A mathematical analysis of the elasticity difference
tensor is presented in [5]. It is decomposed along the eigenvectors of ka

b as follows

Sa
bc = Mbc

1
xa +Mbc

2
ya +Mbc

3
za; (2)

and for the three second-order symmetric tensors M
1

, M
2

and M
3

the eigenvalue-

eigenvector problem is studied. In particular, conditions are investigated for the three
eigenvectors, x, y, z, of the pulled-back material metric to be eigenvectors for M

1
, M

2
and M

3
.

Here, the algebraic analysis of the elasticity difference tensor is carried out for a
static and a non-static spherically symmetric space-time.

2 Applications to static and dynamical configurations

Static spherically symmetric space-time
Consider a static spherically symmetric space-time with g given by the line-

element

ds2 =−e2ν(r)dt2 + e2λ (r)dr2 + r2dθ
2 + r2 sin2

θdφ
2 (3)
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and with coordinates ωa = {t,r,θ ,φ}. The space-time can be specified by the or-
thonormal tetrad {u,x,y,z} using the basis vectors
ua =

[
1

eν(r) ,0,0,0
]
, xa =

[
0, 1

eλ (r) ,0,0
]
, ya =

[
0,0, 1

r ,0
]

and za =
[
0,0,0, 1

r sinθ

]
.

Due to the spherical symmetry, on X the coordinates are ξ A = {r̃, θ̃ , φ̃} where
r̃ = r̃(r), θ̃ = θ and φ̃ = φ . The non-zero components of the deformation gradi-
ent are dξ 1

dω1 = r̃′, dξ 2

dω2 = 1, dξ 3

dω3 = 1, where a prime represents a derivative with re-
spect to r, and the line-element of the pulled-back material metric is ds2 = r̃′2 dr2 +
r̃2 dθ 2 + r̃2 sin2θ dφ 2. Calculating the eigenvalues of ka

b, one obtains n2
1 = r̃′2 e−2λ

and n2
2 = n2

3 = r̃2

r2 . The strain tensor has three non-zero components: srr, sθθ , sφφ ,

and it vanishes if and only if r̃ = ce
∫ eλ

r dr, c > 0. Solving the eigenvalue-eigenvector
problem for M

1
, M

2
and M

3
, building up the elasticity difference tensor in (2), leads to

the results listed in Table 1.

Table 1 Eigenvectors and eigenvalues for M
1

, M
2

and M
3

Eigenvectors Eigenvalues

x µ1 = e−λ

n1
n′1

M
1

y µ2 = e−λ

r − e−λ

r
n2

2
n2

1
− e−λ n2

n2
1

n′2
z µ3 = µ2

x+ y µ4 = e−λ

n2
n′2

M
2

x− y µ5 =− e−λ

n2
n′2

z µ6 = 0
x+ z µ7 = µ4

M
3

x− z µ8 = µ5

y µ9 = 0

Non-static spherically symmetric space-time
Consider a non-static spherically symmetric space-time, whose metric g is given

by the line-element ds2 = −e2ν(t,r)dt2 + e2λ (t,r)dr2 + r2dθ 2 + r2 sin2
θdφ 2. On M

the coordinates are ωa = {t,r,θ ,φ}. The space-time can be specified by defining
the orthonormal tetrad {u,x,y,z} with the following basis vectors:
ua =

[
e−ν γ,−e−ν ˙̃r

r̃′ γ,0,0
]
, xa =

[
−eλ−2ν ˙̃r

r̃′ γ,e−λ γ,0,0
]
, ya =

[
0,0, 1

r ,0
]

and

za =
[
0,0,0, 1

r sinθ

]
, where γ =

√
e2ν r̃′2

e2ν r̃′2−e2λ ˙̃r2 and a dot represents a derivative

with respect to t. In this case, the coordinates on X are ξ A = {r̃, θ̃ , φ̃}, where
r̃ = r̃(t,r), θ̃ = θ and φ̃ = φ , so that the non-zero components of the relativis-
tic deformation gradient take the form ∂ξ 1

∂ω0 = ˙̃r, ∂ξ 1

∂ω1 = r̃′, ∂ξ 2

∂ω2 = 1, ∂ξ 3

∂ω3 = 1.
The line-element of the pulled-back material metric is given by ds2 = − ˙̃r′2 dt2 +
2˙̃r r̃′ dtdr + r̃′2 dr2 + r̃2 dθ 2 + r̃2 sin2θ dφ 2. Calculating the eigenvalues of ka

b, one
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obtains n2
1 = r̃′2 e−2λ − ˙̃r2 e−2ν and n2

2 = n2
3 = r̃2

r2 . The strain tensor has three more
components than in the static case: stt , str, srr, sθθ , sφφ , and it vanishes if and only
if the following condition involving the functions and λ , µ and the material radius
is satisfied: r̃′2e−2λ − ˙̃r2e−2ν = r̃2

r2 . Solving the eigenvalue-eigenvector problem in
this case, one obtains the results listed in Table 2.

Table 2 Eigenvectors and eigenvalues for M
1

, M
2

and M
3

Eigenvectors Eigenvalues

x µ1 = e2ν r̃′n′1−e2λ ˙̃rṅ1
eλ+ν n1

√
1

e2ν r̃′2−e2λ ˙̃r2

M
1

y µ2 = rn2(e2λ ˙̃rṅ2−e2ν r̃′n′2)+r̃′e2ν (n2
1−n2

2)
eλ+ν rn2

1

√
1

e2ν r̃′2−e2λ ˙̃r2

z µ3 = µ2

x+ y µ4 =− e2λ ˙̃rṅ2−e2ν r̃′n′2
eλ+ν n2

√
1

e2ν r̃′2−e2λ ˙̃r2

M
2

x− y µ5 = e2λ ˙̃rṅ2−e2ν r̃′n′2
eλ+ν n2

√
1

e2ν r̃′2−e2λ ˙̃r2

z µ6 = 0
x+ z µ7 = µ4

M
3

x− z µ8 = µ5

y µ9 = 0

Concluding remarks
Comparing the results obtained for the static case and for the non-static case, the

following conclusions and remarks can be drawn.
For spherically symmetric space-times, passing from a static to a non-static con-
figuration preserves the behaviour of the eigenvectors of the pulled-back material
metric k for the tensors M

1
, M

2
and M

3
building up the elasticity difference tensor:

x, y, z are eigenvectors for M
1

; x + y, x− y, z are eigenvectors for M
2

; x + z, x− z, y

are eigenvectors for M
3

. In particular, the eigenvectors y and z of k remain the same

for both configurations, only x changes. Furthermore, in the non-static case we can
observe that the velocity field of matter u depends on the material radius; all rel-
ativistic elastic quantities (kab, n2

1, n2
2, sab, Sa

bc) are time-dependent through λ , ν

and the material radius r̃; the condition to be satisfied for the strain tensor to vanish
involve the functions ν and ˙̃r in addition to λ and r̃′.
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