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1 Introduction

Throughout this paper, X is a non-empty set, In addition, P{X) denotes the
semigroup under composition of all partial transformations of X (that is, all trans-
formations ¢ whose domain dome and range rane are subsets of X). Note that
P(X) contains a zero (namely, the empty mapping #). We say that o € P(X) is
nilpotent with index r if " = @ and o' # . and we let NP(X) denote the
semigroup generated by all nilpotents in P(X). In like manner, il J(X') denotes the
symmetric inverse semigroup on X, we write NI{X) for the semigroup gencrated
by all nilpotents in I{X).
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In [4] the authors described the ideals of NP(X) and NI(X) as a prelude to
determining all congruences on these semigroups. The congruences on NJ(X) were
deseribed in [5), and here we do the same for NP(X). The case when X is finite
is considered in Scction 3, and we cover the cases when X has infinite regular or
singular cardinality in Sections 4 and 5.

2 Preliminary Results

All notation and terminology will be from [1] and [4] unless specified otherwise, In
particular, if @ € P(X), we let r(c) denote the rank of a (that is, [Xe|) and put

D(e) = X\Xa,  d{e)=|D{a)l,
Gla) = X\doma, gla)=|G{a)]

The cardinal numbers d(a) and g(a) are called the defect and the gap of « and
were used by Sullivan to characterise the elements of N P(X) for arbitrary X.

To state his result for the infinite case, first we recall that a cardinal k is regular

if |U{A: : i € I}| = k implies cither |{] = k or some A, has cardinal k; and & is
singular il it is not regular. We say that a € P(X) is spread over its rank if for each
cardinal p < r(z), there exists y € X with |ya~! > p. The following two results
summarise Corollary 3 and Theorem 4 in [6] and Lemmas 2.5 and 3.2 in [8].
Theorem 2.1. Let |X| =k be regular and e € P(X). Then o € NP(X) if and
only if g(er) #£0, d(a) =k, and g(a) =k or [yo~"| = k for some y € X. Morcover,
when this occurs, N P(X) is a regular semigroup and each a € N P(X) is a product
of three or fewer nilpotents with index at most 3.
Theorem 2.2. Let |X| =k be singular and o € P(X). Then o € NP(X) if and
only if gla) # 0, d(a) = k, and either gla) 2 r(a) or a is spread over its rank.
Moreover, when this occurs, NP(X) is a regular semigroup and each o € NP(X)
is a product of four or fewer nilpotents with index at most 4.

For the finite case (see Theorems 1 and 2 in [6]), we need some additional
notation, If X is an arbitrary set with cardinal k& and 1 € r < k, we write

P ={ac P(X):rla) <7},
D, ={ae P(X):r{a)=r},

and recall that the P, constitute all the proper ideals of P(X) and each D, is a
P-class of P(X). Moreover, if k = n < Ry, then each @ € I{X)N Dy_q has a unique
completion @ € G(X), the symmetric group on X, defined by:

_ {1‘:1 if r € doma.
Io =

b ifr=a,
where X\doma = {a} and X\rana = {b} (see (2, p. 388]). We write
E.y={ae{X)ND,_,: & is an even permutation}.

Theorem 2.3. Supposen >3 and o € P(X).
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(a) If n is even, then a € NP(X) if and only if g{c) # 0.
(b) If nis odd, then « € NP(X) if and only if g{o) £0and a € B,_jUE,._;.

In what follows, we extend the convention introduced in [1, Vol.2, p.241),
namely, if & € P(X) is non-zero, then we write

(%)

=

E:

and take as understood that the subscript i belongs to some (unmentioned) index
set I, the abbreviation {z;} denotes {z; : i € {}, and rana = {z.}, .07 = 4,,
doma = |J{A, : i € I}. In particular, if doma = A and rana = {b}, we write a
more simply as Ay, or @, if A = {a}. Also, we let id, denote the identity on A, and
we write Y = AUBif ANB=0.

In passing, we note that although NJ(X) and NP(X) are nilpotent-generated,
they are almost never isomorphic. This is because the first is an inverse semigroup,
but the second is not. For example, if X is infinite, then a, € NI(X) (since its
gap and defect equal |X|), but a, has more than one inverse in NP(X): namely,
fae ACX, then @, = a5. 4.0, and A; = 4,.0,.4,. Therefore, although
the congruences on NI(X) were determined in [5], to describe the congruences on
NP(X) is a related but difierent problem.

If « € P(X), then a o ™! is an equivalence on doma, hence it induces a
partition {Y;} of doma. We say that A is a cross-section of a o o~ (or of the
corresponding partition) if A C |J¥; and |[ANY;| = 1 for each . If g is a congruence
on a transformation semigroup, we often write & ~ 5 to mean {a,3) € p. Also,
sometimes we write zae = ) to mean r ¢ domo,

The following result is almost the same as [5, Lemma 1].

Lemma 2.4. Suppose |X| > 3 and Jet p be a non-identity congruence on NP(X).
Then Bp, the p-class containing @, is an ideal of NP(X) and it contains DP;, the
set of all constant maps in NP(X).

Proof. Suppose (a,f) € p, whete & £ 3. Then ra # o for some # € X and,
without loss of generality, we can assume zo = y # 9. Let a,b € X and A = a,,
4t =1y, Then A and g have non-zero gap (since [X| > 3) and it is easy to see that
A € NP(X), In fact, Aap = ap and Adp = @ (even if = € dom 3), hence ay ~ 0.
'Y ¢ X, then g(¥;) # 0 and, by one of the above theorems, Y, € NP(X). Now
Ys = Ya.ap, 50 Yy, ~ @, and it follows that DP; is contained in @p, which is clearly
an ideal of NP(X). u]

The proper ideals of NP(X) were described in Theorems 6 and 15 of [4] as
follows. In [5, Section 2], the authors remarked that if X is infinite and r < 1X1,
then the proper ideals of NI(X) are simply those of I{X). However, this is not
true for N P(X) because cach P, contains total transformations (that is, o € P(X)
with doma = X, so g(a) = 0) and, by Theorems 2.1 and 2.2, these clements do
not belong to NP(X).

Theorem 2.5. For any set X with (finite or infinite) cardinal k > 3, the proper
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ideals of NP{X) are precisely the sets NP, = {a € NP(X) : r(a) < r}, where
1<r<k.

Thus, if p is a non-identity and non-universal congruence on NP(X), then 8p =
NP, for some 7 such that 1 < r < |X|: we call r the primary rank of p and denate
it by n(p). We also nced the characterisation of Green's D-relation on NP{X) given
in [4, Theorem 11]. We let DP, denote the D-class of NP(X) which contains all
elements with rank r.

Theorem 2.6. If X s any set (finite or infinite) and o, B € NP(X), then 8 = Aap
for some A, it € NP(X) if and only if () < (). Hence, D = J for NP(X).

The proof of the next result closely follows the one for [5, Lemma 2], so we
omit most of the details. Here, as in [1, Vol. 2, p. 227], we let NP} denote the Rees
congruence on NP(X) determined by the ideal NP,

Lemma 2.7. If p is a non-identity congruence on NP(X) and n = 7(p), then
NP CpCNPyUD.

Proof. Tt is casy to sec that NPy C p, so we let (o, 8) € p and assume r(f) <
rlo) =r.

If r is infinite, then X is infinite and we note that the + defined in case (a) for
the proof of [5, Lemuna 2| has gap and defect equal to | X|. Hence, by Theorems 2.1
and 2.2 above, this ¥ belongs to NP(X) and, as before, we conclude that r < .

If r is finite, then X may be finite or infinite. However, for both possibilities,
the 7 and +; defined in case (b) for the proof of [5, Lemma 2] belong to NP(X).
Hence, that argument holds for this case, and we again conclude that r < 1. D

The £- and R-relations on P(X) are well known: namely, a £ 4 if and only il
rana =rand; and aR 3 if and only if eo ™! = Fog-1,

If X is infinite, then NP(X) is a regular subsemigroup of P(X) by Theorems
2.1 and 2.2. Therefore, to prove a result which is analogous to [5, Lemma 3], we
need to know that NP(X) is regular when X is finite (see [6. p.341]).

Lemma 2.8. If X is finite and |X| =n > 3, then NP(X) is a regular semigroup.

Proof. Suppose & € NP(X) and write rano = {2y,...,2.}. Let 4, = r,a™!
and choose a; € 4, for each i = 1,....r. If n is even, then g{a) # 0, so a is not
surjective. Hence, the map 6 : x; — a, for i = 1,...,7 belongs to NP(X) and
a = affe. The same argument can be applicd when n is odd and r(o) < n - 2,
Also, il n is odd, & € E,._; and g(a) # 0, then o is injective with rank n — 1, that
is, A, = {a,} and a : g; — =z, for each i, Moreover, the completion of e is an even
permutation. Clearly, this implies o= € E,,_; and so, in this case, « is also regular
in NP(X). =}

Lemma 2.9. Let p be a congruence on NP(X) and suppose n(p) is finite, If
(o, B) € p and 7(p) < r(a) < ¥, then (a,B) € H.

Proof. The 7 defined in the proof of [5, Lemma 3] belongs to NP(X) (regardless
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of whether X is finite or infinite), hence we conclude, as before, that o £ 3.

To show a®R J, first we suppose domea € dom 3. Choose 2 € domeat\dom 4,
and let A be a cross-section of a o a~! which contains . Then idy € NP(X)
(since |A| = r{a), our justification for § € NI(X) in the proof of [5, Lemma 3] is
also valid here). Moreover, r{idaa) = r, but 7(ida8) < r — 1 (since = ¢ dom f3).
Since id 4 ~ id 48, Lemma 2.7 implies r < n(p), a contradiction. Therefore, dom o
C dom # and similarly dom # C dom e, so doma = dom 3,

Next suppose o™ € Ho 571, Then there exists (z,y) € aca~1\ o3~ and
we let B be a cross-section of §o 3" which contains = and 3. Then idg € NP(X)
{since |B| = r(8) = r < o, so the same justification as before can be applicd)
and r(idgf) = r, but r(idpe) < r— 1 (since za = ya). Like before, this is a
contradiction since idge ~ idp/3. Therefore, a0 a~! C Jo 8-, and similarly for
the reverse inclusion, so we have shown aR 4. o

The next result is similar to [5, Lemma 4}, but we include a proof for this new
context,

Lemma 2.10. Let p be a non-identity congruence on N P(X) and suppose n{p) is
finite. If (e, 3) € p, where o # 3 and 7(p) < r(w) < Vo, then r(a) = 7(p).

Proof, By Lemma 2.9, (¢, ) € H, so « and 8 have the same domain and range.
Hence, we can write

A ..o A A Lo AL
= (r,, br)’ B (bu b,,r)
for some permutation 7 of {1,...,7}. Let {a.} be a cross-scction of {4,}. Since
o 7 3, there exists ¢ such that i # i7; and since p is not the identity congruence, we
know n{p) = 2 and thus r > 2. If 4 is the identity on {a;, T TR PR PR RS e
then v € NI(X) (via the usual justification when X is finite or infinite) and so
o ~ 4. But since im~! # 4, ran(v/) contains b,, whereas ran(ya) does not.
Therefore, (va.78) ¢ H, and so by Lemma 2.9, r(va) = r — 1 must be less than
n{p). Since r{a) = r > n(p) by suppesition, it follows that r = 7(p). =]

3 Finite Primary Rank

In [4, p.316], the authors observed that if X is finite and r < |X|, then NI, /NI,
is completely O-simple. For what follows, we require a similar result for NP(X) but
slightly more general (compare [5. Lemma 5)). If r is any infinite cardinal, then '
denotes the successor of 7 (that is, the least cardinal greater than +).

Lemma 3.1. If X is any set and 4 < r < |X|, then NP /N P, is 0-bisimple, and
It contains a primitive idempotent if and only if r is finite. Consequently, if r is
finite, then N P, /NPF, is completely 0-simple.

Proof. Suppose o, 8 € NP(X) and r(a) = r(8) = 7 (finite or infinite). Choose
cross-sections {a,} and {b,} of o™ and Ao 37!, respectively, and write

= () 2= () = () 2= () »-(2)
) W)’ ) b ) ap
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If | X| = k = No, then |P| = r < k implies d(7y) = k. Also, since yoy~! = fog~!
and r{v) = r(8), the gap of 7 satisfies the conditions of Theorem 2.1 or Theorem
2.2 (depending on the nature of k) and so v € NP(X). Likewise, A, X' € NP(X).
Also, @ = Ay and v = Na, thus £~ and similarly v R 4. In other words, il X is
infinite, then all elements of N P(X) with rank r are D-related, and so N P /NP,
is O-bisimple.

If |X| = n < Ro, then g() = g(A) # 0, so Theorem 2.3 implies that T e NP(X)
when 5 is even, and when n is odd and » < 7 — 1. On the other hand, il » is odd
and r =n—1, then o, 3 belong ta E,_; (since their gaps are nen-zero). Moreover,
in this case, NP, /NP,y = En_; U{0}, and this is O-bisimple by [5, Lemma i),

Suppose r is finite and let @ = o = PBo for non-zero idempotents a, 5 € P(X),
each with rank r. Then rana € ran 3, and both these sets contain r elements, so
rana = ran 8. Therefore, for each r € doma, za = (28)a = = (since 78 € tan a),
hence doma € dom 3. Also, if ¥ € dom 3, then y8 = 2o for some = € dom &, so
yaf = yBa = ra? = zo (since za € dom a) and so y € doma. Thus, doma =
dom 3, and it follows that o = 8. In other words, every non-zero idempotent
in NP,..1/NPF, is primitive. Conversely, suppose 3 is a non-zero idempotent in
NP./NP, and assume r > ¥,. Then we can write

B, B
s=(3). == (5)-
where |I| = r, J = I\{0} for some fixed 0 € I, and b; € B; for each 7. Since
f € NP(X), its gap satisfies the conditions of Theorem 2.1 or Theorem 2.2, Since
gla) = g(#) and r(a) = r(B), the same is true for o, and so ¢ € NP(X). In
addition, & = aff = Ba, In other words, if r > Mg, then no non-zero idempotent in
NP /NP, is primitive. a]

Next we prove a result which is similar to [5, Lemma 6] and, in doing so, we
do not assume any prior knowledge of the congruences on a completely O-simple
semigroup.

Lemma 3.2. Suppose X is any set and r is any positive integer withr +1 < 1X]-
If ¢ is a non-universal congruence on N Pry1/N P, then the relation o+ defined on
NP(X) by ot =idypxyU [0 N (DP. x DP)U(NP. x NP,) is a congruence on
NP(X).

Proof. Clearly, a¥ is an equivalence, so we aim to show that it is lelt and right
compatible with composition on N P(X). To do this, we consider only the case when
(@.8) € o and r{a) = r(8) = r (the other possibilities are easy to check), First
suppose [raneNran 8| = s < r and write B = ran 4. Then idg € DI, (by the usual
argument) and hence, in the semigroup NP.y1/NP,, aidg = 0 but fidg = 8.
Since ¢ is a congruence on N P,..;/NP,, it follows that (0.3) € ¢ and hence « is
universal on NPy, /NP, a contradiction. Thus, s = r and this implies ranc =
rand =Y, say. Let p € NP(X), and note that the ranks of oy and Bu are equal
and at most r. In fact. if r(ap) = r(8p) < r, then (ap. Bu) € NP, x NP, C o+,
as required. On the other hand, il r{ay) = #(By) = r, then rana is a cross-section
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of r (disjoint) sets in the partition of dom y determined by the equivalence gop~t
on dom 1. Hence, if ;¢ = p[Y, then g(1) = d(a), and p' = g if |X| = n is finite
and odd, and r = n— 1. That is, the usual argument shows that p € DJ,. Clearly,
ap’ = ap and Bp' = Bu. Therefore, (ap, Br) € o N(DP. x DP,) C a*, Hence, ot
is right compatible.

Now let A € NP(X) and suppose r(Ax) = r{A3) = r for the same a, 3 as at
the start. Let |[domoNdompB| = t and € = domB. Then a similar argument
leads us to conclude that ¢ = r and hence doma = domf = Z, say. Moreover,
since r(Aa) = r = r(c), thete exists a subset A of ran )\ which is a cross-section ol
Zf(aoa™!). Let Ay = A[(AA™'). Then {xA;" iz € A} C {zA 1 : 2 € ran A} and
r{Ao) = r{A). Thus, when X is infinite, if g(A) > r(A) or |zA~Y] > r(A) for some
z € A, then Ag satisfies the same conditions and so Ap € DP,. Suppose A is spread
aver its rank, but A is not, that is, there exists a cardinal p < r(Ag) < k such that
[#A5!| < p [or all € A. This means that dom Ag = [J{zA; ! : = € A} has cardinal
at most p < k, and hence g(Ag) = k. Therefore, in this case, Ay also belongs to
DP..

In fact, the same is true when |X| = n < Wg, including when n is odd and
r=n—1 (since then A € NP(X), g{A) # 0 and r(A\) = n — | together imply
A€ E,_y. and hence Mg = A). Since Ao = A and Agff = A8, we conclude that
(Aer, AB) € 0, =]

Remark 3.3. Recall that every non-universal congruence p on a 0-simple semigroup
is O-restricted, that is, Op = {0}: and clearly, by Lemma 3.1, NP, /NP, is O
simple for each (finitc or infinite) r > 4. Consequently, in the above result, of = o
implies oy = &o. For, if 6] = o, then by their definition, ¢y N (DP, x DP,} =
o9 N (DP, x DP,); and since each a, is O-restricted, this implies oy = a5.

Using the results in Section 2, we now determine all congruences p on NP(X)
for which 7(p) is finite. Again, our argument closely follows that for [5, Theorem
5], but we include all the details for this more general context.

Theorem 3.4. Let p be a non-identity and non-universal congruence on NP(X)
and suppose r = 7(p) is finite. Then p = o+, wherc & is a non-universal congruence

on NP, /NP,

Proof. Suppose («, 8) € p. By the definition of n(p), if one of o, 3 has rank less
than r, then the other also has rank less than r, and thus (., 3) € NP?. By Lemma
2.7, il the rank of « or § is at least r, then r{a) = r(8) = s, say. We assert that if
8 is infinite, then o = 8,

To see this, assume s > Ry and za # 23 for some r € dome (without loss of
generality). Write ra = a and choose a partial cross-section ¥ of @ oa~! such that
r €Y, |¥| =randa ¢ Y0 (thisis possible since s > ¥ and r < Ry, and = ¢ a8~1).
Let Z = ¥ and observe that o' = idy .idz has rank r, whereas 3" = idy.f.idz
has rank at most r — 1 (since a € Z\Y ). Morcover, both idy and idz beleng to
NI(X) since their ranks are finite. Therefore, (of, ) € p. Since this contradicts
the choice of r = 7)(p). the assertion follows.

Consequently, if s > g, then (o, 8) € idypx). On the other hand, if r < s < ¥
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and o # 3, then Lemma 2.9 implies r = 5. That is, (&, 8) € pN (DP. x DP.).
We assert that ¢ = pN (DF,. x DF) U {(0,0)} is a congruence on NP, ;/NP,.
Far, cleatly it is an equivalence on NP,y /NP,. Also, if (@, 8) € pn(DP, x DP,)
and pp € DF,, then (ap, Bu) € p, where the ranks of ap and Bu are at most r.
However, by the choice of r = n{p), either r{ap) = r(Bp) = r or both +(ey) and
7(Bu) are less than r: in the former case, (ap, Su) € p (DP, x DP,), and in the
latter case, ap = Bt = 0 in the Rees factor scmigroup NPy /NP.. That is, o
is right compatible on NP,y /NP, and similatly it is left compatible. Thus, we
have shown that p C o+ as defined in Lemma 3.2, and clearly o+ C p, so equality
follows. Moreover, o is non-universal on NPy, /N P,: otherwise, pn (DP,. x DP,)
= DPF, x DP, and hence p = idypx), U (DP: x DP.)U (NP, x NP,), which is not
a congruence on NP(X). o

We need more information about the congruences on NP,yi/NP.. In fact, by
Lemma 3.1, NPry /NP, is a completely O-simple semigroup for finite r > 4, and
thus all of its congruences can be described (see [1, Section 10.7]). To avoid the
complication which that entails, we prove the following result.

Lemma 3.5. Suppose X is any set, 4 < r < |X|, and let o be a non-universal
congruence on NP,y /NP,.. Then for cach Y € X with cardinal r, there exists
N a G(Y) such that ¢ = {(Aidy.p. Ay.p) : A p € DP., v € N}U{(0,0)}.

Proof, Clearly, NI 41/NI, is a subsemigroup of NP,,;/NP.. Hence, the re-
striction & of o to Ny /NI; is a congruence on NI /NI.. Moreover, 7 is
non-universal: otherwise, (,0) € & € o for some o € DI, and then by Lemina
3.1, each 8 € DP, equals Aau for some A, € DP,, which implics (3,0) € o, and
thus ¢ is universal, a contradiction. Therefore, by (5, Lemma 7], for each ¥ C X
with cardinal r, there exists N <0 G(Y) such that & = {(A.idy ./, Nopp') 0 Mopf €
DI, v € N}U{(0,0)}. We assert that for this N 9 G(Y), & equals the relation:

7= {(Aidy g, Ayt A, pe DP, v € NYU{ (0.0)}.

To see this, note that & C ¢ and, in particular, (idy,v) € o for all ¥ € N. Hence,
7 € . Conversely, suppose (a, ) € o. In the proof of Lemma 3.2, we showed
that rana = ran g, and similarly doma = dom . In lact, since r is finite, we can
adapt the argument in the last paragraph of the proofl of Lemma 2.9 to show that
aoa”! = o . Thus, we can write

(A A,) (AL A
ﬂu("ﬁ.--l‘r e B2 Tl v )
where 7 is a permutation of {1,...,r}. Clearly, if ¥ = {y,..., ¥}, then

s (’:) sidy o (f) n B (j:) ° (f—) ° (f) '

where the first and last mappings in these expressions [or a and 3 are elements
of DP, by a now-standard argument (as usual, the exceptional case occurs when
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|X| = nis odd and r = n — 1, but then NP.4,/NP, = En_; U {0} and this
was discussed fully in the prool of [5, Lemma 7). Moreover, if a; € A, for each
i=1,...,7, then

: fw T Lo Wi Ty _ (%Y _
r = (a) o (J) “ (ai) oo (v) = (y-‘n) =)
Since this pair belongs to @, it follows that 4 € N and thus (o, 8) € 7. o

The next result extends [5, Corollary 1] to arbitrary sets.

Corollary 3.6. For any set X, the set of all congruences on NP(X) with finite
primary rank forms a chain with respect to C,

Proof. Let py and py be distinct congruences on NP{X). neither of which equals
the identity or the universal congruence on NI(X), and write n{p;) = r;, where r;
is o positive integer for i = 1.2, Then p; = o for some (unique) congruence
o, on NP /NP, I ry < 1o, then NP, C NP, and oy N (DP, x DP.) ©
NP, x NP,,, [rom which we deduce that p; C p2. Suppose r; = ry = r, say. By
Lemna 3.5, oq is determined by some N, < G(Y) and o, by some Np < G(Y),
where |Y| = = (note that the same Y can be used). Since the normal subgroups of
G(Y) form a chain, it follows from Lemma 3.5 that o, C a3 or 3 C 01, and hence
p Cpzorpz € o

4 Infinite Primary Rank for NP(X) when |X]| is Regular

Henceforth, X is an infinite set with cardinal k. Suppose p is a congruence on
NP(X)and let § = p (1 [NI(X) x NI(X}]. Clearly, 7 is a congruence on NI(X);
and if nj(p) is infinite, then 7(7) is also. In this event, Theorem § of [5] enables us to
describe 7 in terms ol a finite number of Rees congruences and Malcev congruences
as follows.

Theorem 4.1. Suppose |X| = k > No. If  is a non-universal congruence on
NI(X) for which n(p) > R, then

p=L,ulAg NIy U U[Ae, NI JU[A, N (DI x DI, (1)

where 11 = n(p) and the cardinals &,7; form a sequence n < &y < - <& £
m < --- < B < k, in which &, is infinite, either n = 1 or n is infinite, and if
n = Mo, then o, =k,

Conversely, if p is a relation on NI(X) defined as in (1) for a sequence of
cardinals with the above properties, then p is a non-universal congruence on NI(X).

In the above, for each proper ideal I = [(X)N P, = NI of NI{X), I denotes
the corresponding Rees congruence on NI{X) (compare [1, Vol. 1, p.17] and [1,
Vol. 2, p.227]). Also, as in [5), DI, denotes the D-class of NJ(X) which contains
all elements with rank ». In addition, for any ¢, 8 € P(X) and n > Ry, we let

D{e,p)={r e X :za# 8}, drie,8)=max(|D{a, 5)al, |D(a, 8)5]),
Ap = {{a. f) € P(X) x P(X) 1 dr(a, 3) <n}.
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Then by (7, Theorem 3.1], each A, is a so-called Malcev congruence on P(X). Note
that for the definition of D(a, B), we use the convention that ra = § if and only if
z ¢ doma.

Since NI(X) € NP(X) and § C p, we know that each term in (1) is contained
in p. We assert that if | X| = k is regular, then

p=NPL U[Ay ANPLIU---U[Ag,  ANFLU[ALN(DFx DR) (2)

where the cardinals &, 7; are the same as those corresponding to 7 in (1),

In fact, since § C p, we know 7(7) < 7n(p). For the reverse inequality, suppose
(c,8) € p for some @ € NP(X) and let A be a cross-section of & o o~!. Since
k is regular and o € NP(X), Theorem 2.1 implies that g(a) # 0, and cither
gla) = k or |za™!| =k for some z € X. Clearly, in each case, ida € NI(X)
and so (id 1.0, @) € p, where ids.a belongs to NI(X) and has the same rank as o.
This implies 7(p) < 1(p) and equality follows. In addition, since I} C p. we know
(id4,0) € p for each A C X with cardinal less than 7;. Consequently, if « € NP(X)
has range A, then & = a.id4 and so (e, D) € p. In other words, NPy C p.

To consider the other terms in (1), we will need the following result:

Lemma 4.2. {7, Lemma 3.4] If o, f € P(X) and dr(e, 8) = { 2 R, then there
exists ¥ C D(o, B) such that YanY S =@ and max(|Yal,|Y3]) = (.

The next result will simplify some of our argument regarding (2). We omit its
proof since it is exactly the same as that for [5, Lemma 11].

Lemma 4.3. If the ranks of o, € NP(X) are not equal, and at least one of
them is infinite, then dr (o, 8) = max(r(o), r(5)).

Remark 4.4. This result implics that if No < & < 7 and (e, 8) € Ac N NPy, where
(o) > r{f#) and r(a) 2 Ko, then rla) = dr(a.B) < & and so (a,8) € NP}
Moreover, since £ > Ry, the same conclusion holds if r(e) and r(3) are both finite
(since, for example, D{a, A)a C rana). In other words, suppose («. 8) € AN P;,
where r(a) = r(ff) and r(a) = ®o. If we can show that there exists A € NI for
which Aa, A8 € NT(X) and r(ha) = r(a), then cither (Ao, AB) € NI{ il r(Aa} >
r{A8), or (Aee, AB) € AN NI if r(Aa) = r(AB).

We now return to the argument regarding (2). Il (o, 8) € p and dr{a,8) =
d > ty, without loss ol generality, there exists ¥ = {3} C D(a. ) such that
YanYd = 0 and |Ye| = d. Clearly, although e may not be injective, we can
assume Y is a partial cross-section of o o a~!, and then |I| = d. Let D = D{ex, )
and € = Dau DA, Then rana\C = ran \C = {e,} say, and for each j, there
exists v, € domandom 3 such that r;a = e, = r,# (this is true by our convention).

Let A be the identity on Y U {r;}. Again, since k is regular and o € NP(X),
Theorem 2.1 implies that g(a) # 0, and either g{a) = k or |za™!| = k for some
z € X. In the first case, g{A) 2 gl{a) implies A € NI(X): and in the second
case, if z equals y,a or rya for some i or j, then za~' N dom A equals y; or ry,
hence g()\} > |za™!| and so A € NI(X) (cleatly, il z ¢ Ya U {r;a}, then the same
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conclusion holds). Tt follows that dr (Ae, A3) =d and

(¥ T) (¥ y
o= (ﬂ-, CJ) n M (b' 61) ’ %)
where b; may not exist for some i {that is, when 3; ¢ dom ) and the b; may not
be distinct (for example, if 3 is not injective on V). If [{b;}| = d, write {b:} = {be}
where the by are distinet and fix v € ¥ such that ye8 = b;. I A’ is the identity on
{ve} U{ 75}, then as before, A" € NI(X) and we obtain

i (W Ty ta_ [V TS
ram (G g) = o= (i 2): @

and these are elements of NI(X) whose difference rank equals [L| = d. On the
other hand, if [{8;}| < d, then {a;}\{6:} = {a¢}, say, has cardinal d. In this event,
if ¢ is the identity on {a¢} U{ e;}, then p € NI(X) (since d(g) = d(a) = k), and

from (3) we obtain
L THE Y L T
Acep (ﬂe e,) p A (ej-) . (5)

Hence, again we find a pair in 7 whose difference rank cquals |L| = d. In other
words, if p contains a pair of elements which differ at d > Ry places, then 7 does
also, Note that with the above notation, r(8) < r(a) = r, say, and

Ya C Da=Danrana and DfNrane C DS,
Hence, |CNrana| = [(Danranae) U (DB Nrana)| = d. and
r(a) = |C Nranal + [rana\C| = [I| + |J| = r{ha) = 1(A\3).

Clearly, we will reach the same conclusion if M or p is used in the above argument.

Therefore, by Remark 4.4, if Ry < £ < nand (e, 8) € ANNP,), then (Aa, AS) €
Ag NI} for some A € NI(X). In other words, we have shown that if there exists
(a,B) € p for which 7(8) £ v({a) = r and dr(a, ) = d < r, then there exists
(@, B) € 7 for which #(7) < r(&) = r and dr(@, §) = d. Clearly, the converse also
holds since @ C p, and [, = NI, C NP, implies that Ag N7 C A NNF},

In addition, since A, NI} C pforeachi =1,....r, we know (idaup. idy) € p.
where X = AUBUZ, |A| < n, |B] < &i-1 < n; and |Z] = k. Consequently, if
o € NP(X) has range AU B, then a.idaup = o and (. 8) € p, where = cida,
r{a) = r(f) = |4] and dr(a, 5) = |B|. From this, it follows that A¢, ,ANF; Cp
foreachi=1,...,r.

It remains to consider the last term in (1) and the corresponding one in (2).

Il n = 1in (1), then no pair of distinct elements of NI(X) with rank k is p-
equivalent. Suppose there exists (e, 8) € p M (DPg x DP;) where a # 8. Without
loss of generality, we assume aa # a8 for some a € doma, and let A = {u;} be a
cross-section of @ o a~! which contains a = aq, say. Then as before, idy € NI(X)

and we have
§ a, . a,
aar= ()~ itan = (). (®)
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where the a,8 are not necessarily distinct. If [{a;58}| = k, write {8} = {e;3},
where the a; 4 are distinct (if non-empty), 0 € J and |J| = k. Let B = {a,}. Then

idg € NI(X) and
wao=(3) we0=(3)

Sinee ap € B, idp.o # idp.8 and these are p-equivalent elements of NI(X) with
rank k. contradicting our initial assumption that n = 1.

Hence, if # = 1, then [{a;8}] < & and so {a,a\{e:f} = {a,a} = Z, say, has
cardinal k. Then idz € NP(X) (since |[X\Z| > d(a) = &), and [rom (6) we obtain

idqaidy = (aajcz ) rop ida.Ridz = 0.
T

It follows that 7(p) = k" and p is universal, contradicting our basic supposition.
Suppose instead that » > Ry in (1), and hence 5, = k (by the condition on the
cardinals). This means that if X = AUBUZ, |A| = |Z| =k and |B| < n, then

(idaug, ida) € A, N{DI; x DI),) Cp.

From this. like before, it follows that A, N (DP. x DP) C p.

Consequently, we have proved half of the following result. For its converse, we
note that just as in [5], Lemma 4.3 can be used to show that p is a congruence on
NP(X), provided the cardinals have the properties stated: the difference between
the last paragraph in the proof of [5, Theorem 8] and the current one is simply a
matter of notation (that is, ‘I" and ‘NI’ become ‘N P).

Theorem 4.5. Supposc |X| =k > ¥y and k is regular. If p is a non-universal
congruence on N P(X) for which 1j(p) > Ro, then

p= NP U[Ag NNPLIU - U[A | ANPLUAN(DPx DRY). (7)

where n; = 1(p) and the cardinals &.n, form a sequence n < £, < --- < £ £
m < <1 <k, in which n is infinite and 5, = k.

Conversely, if p is a relation en NP(X) defined as in (T) for a sequence of
cardinals with the above properties, then p is a non-universal congruence on N P(X).

5 Infinite Primary Rank for NP(X) when |X| is Singular

In this section, X is an infinite sct whose cardinal k is singular, that is, according to
[3, Lemma 10.2.2], k = 3" k,, for some distinct infinite cardinals km, where [M] < k
and ky, < k for each m € M. To describe all the congruences on NP(X) for such
X. we closely follow the argument in Section 4. In fact, here the only difierences
will occur when we need to ensure that a specific transformation belongs to NP(X),
that is, it satisfies the conditions of Theorem 2.2.

Like before, given a congruence p on NP(X), we let 7 denote the restriction of
p to NI(X), and observe that il #({p) is infinite, then 7{(p) is also. In fact, since
P C p, we know 1(5) < 1(p). For the reverse incquality, suppose (e, ) € p for some
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o € NP(X) and let A be a cross-section of aoa™!. Since k is singular and o ¢
NP(X), Theorem 2,2 implies that g(or) # 0, and either g(er) > r(c) or « is spread
over its rank. If r(a) < k, then |A| < k, so |X\A| = k and hence idy € NI(X).
Suppese r{a) = k, Il gla) > r(a), then |[X\A| > g(«) = k; and if ¢ is spread over
its rank, then for each m € M (sec the start of this section), there exists y,, € X
such that [yma™!| > km. Since A contains exactly one clement from each y,a~?,
we see that for each m, [ymo™\A| > k. Hence, k = Sk £ ¥ |pma~'\A|, and
it follows that |[X\A| = k. Thus, id4 € NI(X) in all cases and, as in Section 4, we
deduce that 7(p) < 7(p) and equality follows. Moreover, since n(p) = n, < k, we
know |[X\A| =k for each A C X with cardinal less than 1;, hence id4 € NT,, and
50, like before, we conclude that NPy C p.

Next, both Lemmas 4.2 and 4.3 hold for any set X, so they can be applied in
the present situation. In particular, Remark 4.4 remains valid.

Now using the same notation as before, we let A be the identity on B = YU {r;}.
Since k is singular and a € NP(X), Theorem 2.2 implies that g(e) # 0, and either
g{a) = rlo) or o is spread over its rank. If r(a) < k, then |I] + |J| < k, hence
g{A) = kand A e NI(X). Suppose instead that r{a) = k. Then the above argument
for the set A applies equally here for the set B, and we deduce that A € NI(X)
in all cases. As at (3), this implies that (Ao, Af) € p, where dr (Ao, AB) = d and,
as before, the same proviso holds. Then the same A belongs to NI{X) (since
{w}ulr;} € Yu({r;} = B) and we again obtain (4). On the other hand, if u is the
identity on the set {a} U{e,} specified before, then g € NI(X) (since by Theorem
2.2, d(p) = d(a) = k) and thus we again obtain (5).

Consequently, when k is singular, we have shown that there exists (a, 8) € p for
which r(8) < r(a) = r and dr(e, ) = d < 7 if and only if there exists (&, 5) € 7
for which r(8) < r{@) = r and dr (@, 8) = d. And, like in Section 4, it follows that
Ag ,ANPy Cpforeachi=1,....r.

Finally, we compare the last term in (1) with the corresponding one in (2). We
have already seen that if & is singular and A is a cross-section of o o !, then
idg € NT(X) and thus we obtain {6). By continuing to follow the argument in
Section 4, we see that B = {u;} C A, hence |X\B| = k and so idg € NI(X).
This gives a contradiction like before. Since the rest of the previous argument holds
verbatim, we conclude that n > ¥ in (1) and hence 5, = k. Like before, it then
easily follows that A, N (DP, x DF,) C p.

Thus, we have proved a result which is exactly the same as Theorem 4.5, except
|X] = k is a singular cardinal,

We now deduce a result similar to [5. Corollary 2]. Our proof follows the one
for NI(X) but, since it depends on Theorem 4.5 (and the corresponding result for
singular cardinals), we include all the details.

Corollary 5.1. Suppose |X| =k = Ng and write A} = AN [NP(X) x NP(X)).
Then A} is the only maximal congruence on NP(X), and hence NP(X)/A} isa
congruence-free nilpotent-generated regular semigroup.

Proof. First we note that Af is a non-universal congruence on N P(X).
Since NP(X) is nilpotent-generated and regular (by Theorems 2.1 and 2.2),
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and A} is a congruence on NP(X), it follows that NP(X)/A} is also nilpotent-
generated and regular.

Suppose A} C p for some non-universal congruence on NP(X). Now 5(p) equals
the least cardinal greater than r(a) for each & € NP(X) such that (e, 0) € p. But
if A € X has cardinal less than k, then d{id4) = k and g(ida) = k > 14| = r(id4),
so (id4,8) € A} C p. In particular, since ¥ < |4] < k can oceur, we deduce
that 7(p) > Rqo. Therefore, p has the form displayed in (7), regardless of whether
k is regular or singular. Clearly, (,0) € A} C p for each o € NP, som = k.
Moreover, if X = AUBUC, where |4| = |C] = k and |B| < k, then both id 45
and id,y have gap and defect equal to k, so they belong to D Py and hence

(idAuB, ida) e Apn [DP;; x Dpk].

It follows that n > k. Since NP} C AJ, this implies that each term in (7) is
contained in A}, henee p € A} and equality follows.

Finally, suppese p is a maximal congruence on NP(X) for which there exists
(e, B) € p with dr(a,8) = k. Then r(a) = r(#) = k. Since such pairs (e, 8) do
not belong to the congruences described in Theorem 3.4, we deduce that n(p) > K.
However, then (7) implies that n = k', and so we have a contradiction:

K<ba<<bSm< < Sk

Thus, dr (@, 8) < k for all (o, 3) € p, hence p € Af. and equality lollows by the
maximality of p and the fact that A} is non-universal. ]
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