Congruences on Nilpotent-generated Partial Transformation Semigroups

(To Douglas Munn with respect and gratitude)

M. Paula O. Marques-Smith

Centro de Matematica, Universidade do Minho Braga 4710-057, Portugal

E-mail: psmith@math.uminho.pt

R.P. Sullivan*

School of Mathematics & Statistics, University of Western Australia
Nedlands 6009, Australia
E-mail: bob@maths.uwa.edu.au

Abstract. In 1987, Sullivan characterised the elements of the semigroup NP(X) generated by the nilpotents in P(X), the semigroup (under composition) consisting of all partial transformations of a set X; and in 1999, Marques-Smith and Sullivan determined all the ideals of NP(X) for arbitrary X. In this paper, we use that work to describe all the congruences on NP(X).

2000 Mathematics Subject Classification: 20M20

Keywords: congruences, nilpotent-generated semigroups, partial transformations

1 Introduction

Throughout this paper, X is a non-empty set. In addition, P(X) denotes the semigroup under composition of all partial transformations of X (that is, all transformations α whose domain dom α and range ran α are subsets of X). Note that P(X) contains a zero (namely, the empty mapping \emptyset). We say that $\alpha \in P(X)$ is nilpotent with index r if $\alpha^r = \emptyset$ and $\alpha^{r-1} \neq \emptyset$, and we let NP(X) denote the semigroup generated by all nilpotents in P(X). In like manner, if I(X) denotes the symmetric inverse semigroup on X, we write NI(X) for the semigroup generated by all nilpotents in I(X).

M.P.O. Marques-Smith, R.P. Sullivan

In [4] the authors described the ideals of NP(X) and NI(X) as a prelude to determining all congruences on these semigroups. The congruences on NI(X) were described in [5], and here we do the same for NP(X). The case when X is finite is considered in Section 3, and we cover the cases when X has infinite regular or singular cardinality in Sections 4 and 5.

2 Preliminary Results

All notation and terminology will be from [1] and [4] unless specified otherwise. In particular, if $\alpha \in P(X)$, we let $r(\alpha)$ denote the rank of α (that is, $|X\alpha|$) and put

$$D(\alpha) = X \setminus X\alpha,$$
 $d(\alpha) = |D(\alpha)|,$
 $G(\alpha) = X \setminus \text{dom } \alpha,$ $g(\alpha) = |G(\alpha)|.$

The cardinal numbers $d(\alpha)$ and $g(\alpha)$ are called the defect and the gap of α and were used by Sullivan to characterise the elements of NP(X) for arbitrary X.

To state his result for the infinite case, first we recall that a cardinal k is regular if $|\bigcup \{A_i: i \in I\}| = k$ implies either |I| = k or some A_i has cardinal k; and k is singular if it is not regular. We say that $\alpha \in P(X)$ is spread over its rank if for each cardinal $p < r(\alpha)$, there exists $y \in X$ with $|y\alpha^{-1}| > p$. The following two results summarise Corollary 3 and Theorem 4 in [6] and Lemmas 2.5 and 3.2 in [8].

Theorem 2.1. Let |X| = k be regular and $\alpha \in P(X)$. Then $\alpha \in NP(X)$ if and only if $g(\alpha) \neq 0$, $d(\alpha) = k$, and $g(\alpha) = k$ or $|y\alpha^{-1}| = k$ for some $y \in X$. Moreover, when this occurs, NP(X) is a regular semigroup and each $\alpha \in NP(X)$ is a product of three or fewer nilbotents with index at most 3.

Theorem 2.2. Let |X|=k be singular and $\alpha\in P(X)$. Then $\alpha\in NP(X)$ if and only if $g(\alpha)\neq 0$, $d(\alpha)=k$, and either $g(\alpha)\geq r(\alpha)$ or α is spread over its rank. Moreover, when this occurs, NP(X) is a regular semigroup and each $\alpha\in NP(X)$ is a product of four or fewer nilpotents with index at most 4.

For the finite case (see Theorems 1 and 2 in [6]), we need some additional notation. If X is an arbitrary set with cardinal k and $1 \le r \le k$, we write

$$P_r = \{ \alpha \in P(X) : r(\alpha) < r \},$$

$$D_r = \{ \alpha \in P(X) : r(\alpha) = r \},$$

and recall that the P_r constitute all the proper ideals of P(X) and each D_r is a \mathcal{D} -class of P(X). Moreover, if $k=n<\aleph_0$, then each $\alpha\in I(X)\cap D_{n-1}$ has a unique completion $\overline{\alpha}\in G(X)$, the symmetric group on X, defined by:

$$x\overline{\alpha} = \begin{cases} x\alpha & \text{if } x \in \text{dom } \alpha, \\ b & \text{if } x = a, \end{cases}$$

where $X \setminus \alpha = \{a\}$ and $X \setminus \alpha = \{b\}$ (see [2, p. 388]). We write

$$E_{n-1} = \{ \alpha \in I(X) \cap D_{n-1} : \overline{\alpha} \text{ is an even permutation} \}$$

Theorem 2.3. Suppose $n \geq 3$ and $\alpha \in P(X)$.

^{*}This author gratefully acknowledges the support of Centro de Matematica, Universidade do Minho and the Portuguese Foundation for Science and Technology (FCT) through the research program POCTI, during his visit in March—May 2006.

- (a) If n is even, then $\alpha \in NP(X)$ if and only if $q(\alpha) \neq 0$.
- (b) If n is odd, then $\alpha \in NP(X)$ if and only if $g(\alpha) \neq 0$ and $\alpha \in P_{n-1} \cup E_{n-1}$.

In what follows, we extend the convention introduced in [1, Vol. 2, p. 241], namely, if $\alpha \in P(X)$ is non-zero, then we write

$$\alpha = \begin{pmatrix} A_i \\ x_i \end{pmatrix}$$

and take as understood that the subscript i belongs to some (unmentioned) index set I, the abbreviation $\{x_i\}$ denotes $\{x_i: i \in I\}$, and $\operatorname{ran}\alpha = \{x_i\}$, $x_i\alpha^{-1} = A_i$, $\operatorname{dom}\alpha = \bigcup \{A_i: i \in I\}$. In particular, if $\operatorname{dom}\alpha = A$ and $\operatorname{ran}\alpha = \{b\}$, we write α more simply as A_b , or a_b if $A = \{a\}$. Also, we let id_A denote the identity on A, and we write $Y = A \cup B$ if $A \cap B = \emptyset$.

In passing, we note that although NI(X) and NP(X) are nilpotent-generated, they are almost never isomorphic. This is because the first is an inverse semigroup, but the second is not. For example, if X is infinite, then $a_a \in NI(X)$ (since its gap and defect equal |X|), but a_a has more than one inverse in NP(X): namely, if $a \in A \subseteq X$, then $a_a = a_a.A_a.a_a$ and $A_a = A_a.a_a.A_a$. Therefore, although the congruences on NI(X) were determined in [5], to describe the congruences on NP(X) is a related but different problem.

If $\alpha \in P(X)$, then $\alpha \circ \alpha^{-1}$ is an equivalence on $\operatorname{dom} \alpha$, hence it induces a partition $\{Y_i\}$ of $\operatorname{dom} \alpha$. We say that A is a cross-section of $\alpha \circ \alpha^{-1}$ (or of the corresponding partition) if $A \subseteq \bigcup Y_i$ and $|A \cap Y_i| = 1$ for each i. If ρ is a congruence on a transformation semigroup, we often write $\alpha \sim \beta$ to mean $(\alpha, \beta) \in \rho$. Also, sometimes we write $\alpha = \emptyset$ to mean $x \notin \operatorname{dom} \alpha$.

The following result is almost the same as [5, Lemma 1].

Lemma 2.4. Suppose $|X| \ge 3$ and let ρ be a non-identity congruence on NP(X). Then $\emptyset \rho$, the ρ -class containing \emptyset , is an ideal of NP(X) and it contains DP_1 , the set of all constant maps in NP(X).

Proof. Suppose $(\alpha,\beta) \in \rho$, where $\alpha \neq \beta$. Then $x\alpha \neq x\beta$ for some $x \in X$ and, without loss of generality, we can assume $x\alpha = y \neq \emptyset$. Let $a,b \in X$ and $\lambda = a_x$, $\mu = y_b$. Then λ and μ have non-zero gap (since $|X| \geq 3$) and it is easy to see that $\lambda, \mu \in NP(X)$. In fact, $\lambda \alpha \mu = a_b$ and $\lambda \beta \mu = \emptyset$ (even if $x \in \text{dom } \beta$), hence $a_b \sim \emptyset$. If $Y \subseteq X$, then $g(Y_a) \neq 0$ and, by one of the above theorems, $Y_a \in NP(X)$. Now $Y_b = Y_a.a_b$, so $Y_b \sim \emptyset$, and it follows that DP_1 is contained in $\emptyset \rho$, which is clearly an ideal of NP(X).

The proper ideals of NP(X) were described in Theorems 6 and 15 of [4] as follows. In [5, Section 2], the authors remarked that if X is infinite and $r \leq |X|$, then the proper ideals of NI(X) are simply those of I(X). However, this is not true for NP(X) because each P_r contains total transformations (that is, $\alpha \in P(X)$ with dom $\alpha = X$, so $g(\alpha) = 0$) and, by Theorems 2.1 and 2.2, these elements do not belong to NP(X).

Theorem 2.5. For any set X with (finite or infinite) cardinal $k \geq 3$, the proper

M.P.O. Marques-Smith, R.P. Sullivan

ideals of NP(X) are precisely the sets $NP_r = \{\alpha \in NP(X) : r(\alpha) < r\}$, where 1 < r < k.

Thus, if ρ is a non-identity and non-universal congruence on NP(X), then $\emptyset \rho = NP_r$ for some r such that $1 \le r \le |X|$: we call r the primary rank of ρ and denote it by $\eta(\rho)$. We also need the characterisation of Green's \mathcal{D} -relation on NP(X) given in [4, Theorem 11]. We let DP_r denote the \mathcal{D} -class of NP(X) which contains all elements with rank r.

Theorem 2.6. If X is any set (finite or infinite) and $\alpha, \beta \in NP(X)$, then $\beta = \lambda \alpha \mu$ for some $\lambda, \mu \in NP(X)$ if and only if $r(\beta) \leq r(\alpha)$. Hence, $\mathcal{D} = \mathcal{J}$ for NP(X).

The proof of the next result closely follows the one for [5, Lemma 2], so we omit most of the details. Here, as in [1, Vol. 2, p. 227], we let NP_r^* denote the Rees congruence on NP(X) determined by the ideal NP_r .

Lemma 2.7. If ρ is a non-identity congruence on NP(X) and $\eta = \eta(\rho)$, then $NP^*_{\eta} \subseteq \rho \subseteq NP^*_{\eta} \cup \mathcal{D}$.

Proof. It is easy to see that $NP^*_{\eta} \subseteq \rho$, so we let $(\alpha, \beta) \in \rho$ and assume $r(\beta) < r(\alpha) = r$.

If r is infinite, then X is infinite and we note that the γ defined in case (a) for the proof of [5, Lemma 2] has gap and defect equal to |X|. Hence, by Theorems 2.1 and 2.2 above, this γ belongs to NP(X) and, as before, we conclude that $r < \eta$.

If r is finite, then X may be finite or infinite. However, for both possibilities, the γ and γ_i defined in case (b) for the proof of [5, Lemma 2] belong to NP(X). Hence, that argument holds for this case, and we again conclude that $r < \eta$.

The \mathcal{L} - and \mathcal{R} -relations on P(X) are well known: namely, $\alpha \mathcal{L}\beta$ if and only if $\operatorname{ran}\alpha = \operatorname{ran}\beta$; and $\alpha \mathcal{R}\beta$ if and only if $\alpha \circ \alpha^{-1} = \beta \circ \beta^{-1}$.

If X is infinite, then NP(X) is a regular subsemigroup of P(X) by Theorems 2.1 and 2.2. Therefore, to prove a result which is analogous to [5, Lemma 3], we need to know that NP(X) is regular when X is finite (see [6, p. 341]).

Lemma 2.8. If X is finite and $|X| = n \ge 3$, then NP(X) is a regular semigroup.

Proof. Suppose $\alpha \in NP(X)$ and write $\operatorname{ran} \alpha = \{x_1, \dots, x_r\}$. Let $A_i = x_i \alpha^{-1}$ and choose $a_i \in A_i$ for each $i = 1, \dots, r$. If n is even, then $g(\alpha) \neq 0$, so α is not surjective. Hence, the map $\beta : x_i \mapsto a_i$ for $i = 1, \dots, r$ belongs to NP(X) and $\alpha = \alpha \beta \alpha$. The same argument can be applied when n is odd and $r(\alpha) \leq n - 2$. Also, if n is odd, $\alpha \in E_{n-1}$ and $g(\alpha) \neq 0$, then α is injective with rank n - 1, that is, $A_i = \{a_i\}$ and $\alpha : a_i \mapsto x_i$ for each i. Moreover, the completion of α is an even permutation. Clearly, this implies $\alpha^{-1} \in E_{n-1}$ and so, in this case, α is also regular in NP(X).

Lemma 2.9. Let ρ be a congruence on NP(X) and suppose $\eta(\rho)$ is finite. If $(\alpha,\beta)\in\rho$ and $\eta(\rho)\leq r(\alpha)<\aleph_0$, then $(\alpha,\beta)\in\mathcal{H}$.

Proof. The γ defined in the proof of [5, Lemma 3] belongs to NP(X) (regardless

of whether X is finite or infinite), hence we conclude, as before, that $\alpha \mathcal{L}\beta$.

To show $\alpha \mathcal{R}\beta$, first we suppose $\dim \alpha \not\subseteq \dim \beta$. Choose $x \in \dim \alpha \backslash \dim \beta$, and let A be a cross-section of $\alpha \circ \alpha^{-1}$ which contains x. Then $\mathrm{id}_A \in NP(X)$ (since $|A| = r(\alpha)$, our justification for $\delta \in NI(X)$ in the proof of [5, Lemma 3] is also valid here). Moreover, $r(\mathrm{id}_A\alpha) = r$, but $r(\mathrm{id}_A\beta) \leq r - 1$ (since $x \notin \dim \beta$). Since $\mathrm{id}_A\alpha \sim \mathrm{id}_A\beta$, Lemma 2.7 implies $r < \eta(\rho)$, a contradiction. Therefore, $\dim \alpha \subseteq \dim \beta$ and similarly $\dim \beta \subseteq \dim \alpha$, so $\dim \alpha = \dim \beta$.

Next suppose $\alpha \circ \alpha^{-1} \not\subseteq \beta \circ \beta^{-1}$. Then there exists $(x,y) \in \alpha \circ \alpha^{-1} \setminus \beta \circ \beta^{-1}$ and we let B be a cross-section of $\beta \circ \beta^{-1}$ which contains x and y. Then $\mathrm{id}_B \in NP(X)$ (since $|B| = r(\beta) = r < \aleph_0$, so the same justification as before can be applied) and $r(\mathrm{id}_B\beta) = r$, but $r(\mathrm{id}_B\alpha) \le r - 1$ (since $x\alpha = y\alpha$). Like before, this is a contradiction since $\mathrm{id}_B\alpha \sim \mathrm{id}_B\beta$. Therefore, $\alpha \circ \alpha^{-1} \subseteq \beta \circ \beta^{-1}$, and similarly for the reverse inclusion, so we have shown $\alpha \mathcal{R}\beta$.

The next result is similar to [5, Lemma 4], but we include a proof for this new context.

Lemma 2.10. Let ρ be a non-identity congruence on NP(X) and suppose $\eta(\rho)$ is finite. If $(\alpha, \beta) \in \rho$, where $\alpha \neq \beta$ and $\eta(\rho) \leq r(\alpha) < \aleph_0$, then $r(\alpha) = \eta(\rho)$.

Proof. By Lemma 2.9, $(\alpha, \beta) \in \mathcal{H}$, so α and β have the same domain and range. Hence, we can write

$$\alpha = \begin{pmatrix} A_1 & \dots & A_r \\ b_1 & \dots & b_r \end{pmatrix}, \quad \beta = \begin{pmatrix} A_1 & \dots & A_r \\ b_{1\pi} & \dots & b_{r\pi} \end{pmatrix}$$

for some permutation π of $\{1,\dots,r\}$. Let $\{a_i\}$ be a cross-section of $\{A_i\}$. Since $\alpha \neq \beta$, there exists i such that $i \neq i\pi$; and since ρ is not the identity congruence, we know $\eta(\rho) \geq 2$ and thus $r \geq 2$. If γ is the identity on $\{a_1,\dots,a_{i-1},a_{i+1},\dots,a_r\}$, then $\gamma \in NI(X)$ (via the usual justification when X is finite or infinite) and so $\gamma \alpha \sim \gamma \beta$. But since $i\pi^{-1} \neq i$, ran $(\gamma \beta)$ contains b_i , whereas ran $(\gamma \alpha)$ does not. Therefore, $(\gamma \alpha, \gamma \beta) \notin \mathcal{H}$, and so by Lemma 2.9, $r(\gamma \alpha) = r - 1$ must be less than $\eta(\rho)$. Since $r(\alpha) = r \geq \eta(\rho)$ by supposition, it follows that $r = \eta(\rho)$.

3 Finite Primary Rank

In [4, p.316], the authors observed that if X is finite and r < |X|, then NI_{r+1}/NI_r is completely 0-simple. For what follows, we require a similar result for NP(X) but slightly more general (compare [5, Lemma 5]). If r is any infinite cardinal, then r' denotes the successor of r (that is, the least cardinal greater than r).

Lemma 3.1. If X is any set and $4 \le r < |X|$, then $NP_{r'}/NP_r$ is 0-bisimple, and it contains a primitive idempotent if and only if r is finite. Consequently, if r is finite, then NP_{r+1}/NP_r is completely 0-simple.

Proof. Suppose $\alpha, \beta \in NP(X)$ and $r(\alpha) = r(\beta) = r$ (finite or infinite). Choose cross-sections $\{a_p\}$ and $\{b_p\}$ of $\alpha \circ \alpha^{-1}$ and $\beta \circ \beta^{-1}$, respectively, and write

$$\alpha = \begin{pmatrix} A_p \\ x_p \end{pmatrix}, \quad \beta = \begin{pmatrix} B_p \\ y_p \end{pmatrix}, \quad \gamma = \begin{pmatrix} B_p \\ x_p \end{pmatrix}, \quad \lambda = \begin{pmatrix} A_p \\ b_p \end{pmatrix}, \quad \lambda' = \begin{pmatrix} B_p \\ a_p \end{pmatrix}.$$

M.P.O. Marques-Smith, R.P. Sullivan

If $|X|=k\geq \aleph_0$, then |P|=r< k implies $d(\gamma)=k$. Also, since $\gamma\circ\gamma^{-1}=\beta\circ\beta^{-1}$ and $r(\gamma)=r(\beta)$, the gap of γ satisfies the conditions of Theorem 2.1 or Theorem 2.2 (depending on the nature of k) and so $\gamma\in NP(X)$. Likewise, $\lambda,\lambda'\in NP(X)$. Also, $\alpha=\lambda\gamma$ and $\gamma=\lambda'\alpha$, thus $\alpha\,\mathcal{L}\,\gamma$ and similarly $\gamma\,\mathcal{R}\,\beta$. In other words, if X is infinite, then all elements of NP(X) with rank r are \mathcal{D} -related, and so $NP_{r'}/NP_r$ is 0-bisimple.

If $|X|=n<\aleph_0$, then $g(\gamma)=g(\beta)\neq 0$, so Theorem 2.3 implies that $\gamma\in NP(X)$ when n is even, and when n is odd and r< n-1. On the other hand, if n is odd and r=n-1, then α,β belong to E_{n-1} (since their gaps are non-zero). Moreover, in this case, $NP_n/NP_{n-1}=E_{n-1}\cup\{0\}$, and this is 0-bisimple by [5, Lemma 5].

Suppose r is finite and let $\alpha=\alpha\beta=\beta\alpha$ for non-zero idempotents $\alpha,\beta\in P(X)$, each with rank r. Then ran $\alpha\subseteq \operatorname{ran}\beta$, and both these sets contain r elements, so $\operatorname{ran}\alpha=\operatorname{ran}\beta$. Therefore, for each $x\in \operatorname{dom}\alpha$, $x\alpha=(x\beta)\alpha=x\beta$ (since $x\beta\in\operatorname{ran}\alpha$), hence $\operatorname{dom}\alpha\subseteq \operatorname{dom}\beta$. Also, if $y\in \operatorname{dom}\beta$, then $y\beta=x\alpha$ for some $x\in \operatorname{dom}\alpha$, so $y\alpha\beta=y\beta\alpha=x\alpha^2=x\alpha$ (since $x\alpha\in\operatorname{dom}\alpha$) and so $y\in\operatorname{dom}\alpha$. Thus, $\operatorname{dom}\alpha=\operatorname{dom}\beta$, and it follows that $\alpha=\beta$. In other words, every non-zero idempotent in NP_{r+1}/NP_r is primitive. Conversely, suppose β is a non-zero idempotent in $NP_{r'}/NP_r$ and assume $r\geq\aleph_0$. Then we can write

$$\beta = \begin{pmatrix} B_i \\ b_i \end{pmatrix}, \quad \alpha = \begin{pmatrix} B_j \\ b_j \end{pmatrix},$$

where |I| = r, $J = I \setminus \{0\}$ for some fixed $0 \in I$, and $b_i \in B_i$ for each i. Since $\beta \in NP(X)$, its gap satisfies the conditions of Theorem 2.1 or Theorem 2.2. Since $g(\alpha) \ge g(\beta)$ and $r(\alpha) = r(\beta)$, the same is true for α , and so $\alpha \in NP(X)$. In addition, $\alpha = \alpha\beta = \beta\alpha$. In other words, if $r \ge \aleph_0$, then no non-zero idempotent in $NP_{r'}/NP_r$ is primitive.

Next we prove a result which is similar to [5, Lemma 6] and, in doing so, we do not assume any prior knowledge of the congruences on a completely 0-simple semigroup.

Lemma 3.2. Suppose X is any set and r is any positive integer with $r+1 \leq |X|$. If σ is a non-universal congruence on NP_{r+1}/NP_r , then the relation σ^+ defined on NP(X) by $\sigma^+ = \mathrm{id}_{NP(X)} \cup [\sigma \cap (DP_r \times DP_r)] \cup (NP_r \times NP_r)$ is a congruence on NP(X).

Proof. Clearly, σ^+ is an equivalence, so we aim to show that it is left and right compatible with composition on NP(X). To do this, we consider only the case when $(\alpha,\beta)\in\sigma$ and $r(\alpha)=r(\beta)=r$ (the other possibilities are easy to check). First suppose $|\operatorname{ran}\alpha\cap\operatorname{ran}\beta|=s< r$ and write $B=\operatorname{ran}\beta$. Then $\operatorname{id}_B\in DI_r$ (by the usual argument) and hence, in the semigroup NP_{r+1}/NP_r , $\alpha.\operatorname{id}_B=0$ but $\beta.\operatorname{id}_B=\beta$. Since σ is a congruence on NP_{r+1}/NP_r , it follows that $(0,\beta)\in\sigma$ and hence σ is universal on NP_{r+1}/NP_r , a contradiction. Thus, s=r and this implies $\operatorname{ran}\alpha=\operatorname{ran}\beta=Y$, say. Let $\mu\in NP(X)$, and note that the ranks of $\alpha\mu$ and $\beta\mu$ are equal and at most r. In fact, if $r(\alpha\mu)=r(\beta\mu)< r$, then $(\alpha\mu,\beta\mu)\in NP_r\times NP_r\subseteq\sigma^+$, as required. On the other hand, if $r(\alpha\mu)=r(\beta\mu)=r$, then $\operatorname{ran}\alpha$ is a cross-section

of r (disjoint) sets in the partition of dom μ determined by the equivalence $\mu \circ \mu^{-1}$ on dom μ . Hence, if $\mu' = \mu|Y$, then $g(\mu') \geq d(\alpha)$, and $\mu' = \mu$ if |X| = n is finite and odd, and r = n - 1. That is, the usual argument shows that $\mu' \in \mathcal{D}I_r$. Clearly, $\alpha \mu' = \alpha \mu$ and $\beta \mu' = \beta \mu$. Therefore, $(\alpha \mu, \beta \mu) \in \sigma \cap (DP_r \times DP_r) \subseteq \sigma^+$. Hence, σ^+ is right compatible.

Now let $\lambda \in NP(X)$ and suppose $r(\lambda \alpha) = r(\lambda \beta) = r$ for the same α, β as at the start. Let $|\operatorname{dom} \alpha \cap \operatorname{dom} \beta| = t$ and $C = \operatorname{dom} \beta$. Then a similar argument leads us to conclude that t = r and hence $\operatorname{dom} \alpha = \operatorname{dom} \beta = Z$, say. Moreover, since $r(\lambda \alpha) = r = r(\alpha)$, there exists a subset A of $\operatorname{ran} \lambda$ which is a cross-section of $Z/(\alpha \circ \alpha^{-1})$. Let $\lambda_0 = \lambda/(A\lambda^{-1})$. Then $\{x\lambda_0^{-1}: x \in A\} \subseteq \{x\lambda^{-1}: x \in \operatorname{ran} \lambda\}$ and $r(\lambda_0) = r(\lambda)$. Thus, when X is infinite, if $g(\lambda) \geq r(\lambda)$ or $|z\lambda^{-1}| \geq r(\lambda)$ for some $z \in A$, then λ_0 satisfies the same conditions and so $\lambda_0 \in DP_r$. Suppose λ is spread over its rank, but λ_0 is not, that is, there exists a cardinal $p < r(\lambda_0) \leq k$ such that $|x\lambda_0^{-1}| \leq p$ for all $x \in A$. This means that $\operatorname{dom} \lambda_0 = \bigcup \{x\lambda_0^{-1}: x \in A\}$ has cardinal at most p < k, and hence $g(\lambda_0) = k$. Therefore, in this case, λ_0 also belongs to DP_r .

In fact, the same is true when $|X|=n<\aleph_0$, including when n is odd and r=n-1 (since then $\lambda\in NP(X),\ g(\lambda)\neq 0$ and $r(\lambda)=n-1$ together imply $\lambda\in E_{n-1}$, and hence $\lambda_0=\lambda$). Since $\lambda_0\alpha=\lambda\alpha$ and $\lambda_0\beta=\lambda\beta$, we conclude that $(\lambda\alpha,\lambda\beta)\in\sigma^+$.

Remark 3.3. Recall that every non-universal congruence ρ on a 0-simple semigroup is 0-restricted, that is, $0p = \{0\}$; and clearly, by Lemma 3.1, NP_{r+1}/NP_r is 0-simple for each (finite or infinite) $r \geq 4$. Consequently, in the above result, $\sigma_1^+ = \sigma_2^+$ implies $\sigma_1 = \sigma_2$. For, if $\sigma_1^+ = \sigma_2^+$, then by their definition, $\sigma_1 \cap (DP_r \times DP_r) = \sigma_2 \cap (DP_r \times DP_r)$; and since each σ_1 is 0-restricted, this implies $\sigma_1 = \sigma_2$.

Using the results in Section 2, we now determine all congruences ρ on NP(X) for which $\eta(\rho)$ is finite. Again, our argument closely follows that for [5, Theorem 5], but we include all the details for this more general context.

Theorem 3.4. Let ρ be a non-identity and non-universal congruence on NP(X) and suppose $r = \eta(\rho)$ is finite. Then $\rho = \sigma^+$, where σ is a non-universal congruence on NP_{r+1}/NP_r .

Proof. Suppose $(\alpha, \beta) \in \rho$. By the definition of $\eta(\rho)$, if one of α , β has rank less than r, then the other also has rank less than r, and thus $(\alpha, \beta) \in NP_r^*$. By Lemma 2.7, if the rank of α or β is at least r, then $r(\alpha) = r(\beta) = s$, say. We assert that if s is infinite, then $\alpha = \beta$.

To see this, assume $s \geq \aleph_0$ and $x\alpha \neq x\beta$ for some $x \in \operatorname{dom} \alpha$ (without loss of generality). Write $x\alpha = a$ and choose a partial cross-section Y of $\alpha \circ \alpha^{-1}$ such that $x \in Y$, |Y| = r and $a \notin Y\beta$ (this is possible since $s \geq \aleph_0$ and $r < \aleph_0$, and $x \notin a\beta^{-1}$). Let $Z = Y\alpha$ and observe that $\alpha' = \operatorname{id}_Y.\alpha.\operatorname{id}_Z$ has rank r, whereas $\beta' = \operatorname{id}_Y.\beta.\operatorname{id}_Z$ has rank at most r-1 (since $a \in Z \setminus Y\beta$). Moreover, both id_Y and id_Z belong to NI(X) since their ranks are finite. Therefore, $(\alpha', \beta') \in \rho$. Since this contradicts the choice of $r = \eta(\rho)$, the assertion follows.

Consequently, if $s \geq \aleph_0$, then $(\alpha, \beta) \in \mathrm{id}_{NP(X)}$. On the other hand, if $r \leq s < \aleph_0$

M.P.O. Marques-Smith, R.P. Sullivan

and $\alpha \neq \beta$, then Lemma 2.9 implies r=s. That is, $(\alpha,\beta) \in \rho \cap (DP_r \times DP_r)$. We assert that $\sigma = \rho \cap (DP_r \times DP_r) \cup \{(0,0)\}$ is a congruence on NP_{r+1}/NP_r . For, clearly it is an equivalence on NP_{r+1}/NP_r . Also, if $(\alpha,\beta) \in \rho \cap (DP_r \times DP_r)$ and $\mu \in DP_r$, then $(\alpha\mu,\beta\mu) \in \rho$, where the ranks of $\alpha\mu$ and $\beta\mu$ are at most r. However, by the choice of $r=\eta(\rho)$, either $r(\alpha\mu)=r(\beta\mu)=r$ or both $r(\alpha\mu)$ and $r(\beta\mu)$ are less than r: in the former case, $(\alpha\mu,\beta\mu) \in \rho \cap (DP_r \times DP_r)$, and in the latter case, $\alpha\mu=\beta\mu=0$ in the Rees factor semigroup NP_{r+1}/NP_r . That is, σ is right compatible on NP_{r+1}/NP_r , and similarly it is left compatible. Thus, we have shown that $\rho \subseteq \sigma^+$ as defined in Lemma 3.2, and clearly $\sigma^+ \subseteq \rho$, so equality follows. Moreover, σ is non-universal on NP_{r+1}/NP_r : otherwise, $\rho \cap (DP_r \times DP_r) = DP_r \times DP_r$ and hence $\rho = \mathrm{id}_{NP(X)} \cup (DP_r \times DP_r) \cup (NP_r \times NP_r)$, which is not a congruence on NP(X).

We need more information about the congruences on NP_{r+1}/NP_r . In fact, by Lemma 3.1, NP_{r+1}/NP_r is a completely 0-simple semigroup for finite $r \geq 4$, and thus all of its congruences can be described (see [1, Section 10.7]). To avoid the complication which that entails, we prove the following result.

Lemma 3.5. Suppose X is any set, $4 \le r < |X|$, and let σ be a non-universal congruence on NP_{r+1}/NP_r . Then for each $Y \subseteq X$ with cardinal r, there exists $N \triangleleft G(Y)$ such that $\sigma = \{(\lambda \operatorname{id}_Y.\mu, \lambda.\gamma.\mu) : \lambda, \mu \in DP_r, \gamma \in N\} \cup \{(0,0)\}.$

Proof. Clearly, NI_{r+1}/NI_r is a subsemigroup of NP_{r+1}/NP_r . Hence, the restriction $\overline{\sigma}$ of σ to NI_{r+1}/NI_r is a congruence on NI_{r+1}/NI_r . Moreover, $\overline{\sigma}$ is non-universal: otherwise, $(\alpha,0) \in \overline{\sigma} \subseteq \sigma$ for some $\alpha \in DI_r$, and then by Lemma 3.1, each $\beta \in DP_r$ equals $\lambda \alpha \mu$ for some $\lambda, \mu \in DP_r$, which implies $(\beta,0) \in \overline{\sigma}$, and thus σ is universal, a contradiction. Therefore, by [5, Lemma 7], for each $Y \subseteq X$ with cardinal r, there exists $N \triangleleft G(Y)$ such that $\overline{\sigma} = \{(\lambda'.\mathrm{id}_Y, \mu', \lambda'.\gamma.\mu') : \lambda', \mu' \in DI_r, \gamma \in N\} \cup \{(0,0)\}$. We assert that for this $N \triangleleft G(Y)$, σ equals the relation:

$$\tau = \{ (\lambda.\mathrm{id}_Y.\mu, \lambda.\gamma.\mu) : \lambda, \mu \in DP_r, \ \gamma \in N \} \cup \{ (0,0) \}.$$

To see this, note that $\overline{\sigma} \subseteq \sigma$ and, in particular, $(\operatorname{id}_Y, \gamma) \in \sigma$ for all $\gamma \in N$. Hence, $\tau \subseteq \sigma$. Conversely, suppose $(\alpha, \beta) \in \sigma$. In the proof of Lemma 3.2, we showed that $\operatorname{ran} \alpha = \operatorname{ran} \beta$, and similarly dom $\alpha = \operatorname{dom} \beta$. In fact, since r is finite, we can adapt the argument in the last paragraph of the proof of Lemma 2.9 to show that $\alpha \circ \alpha^{-1} = \beta \circ \beta^{-1}$. Thus, we can write

$$\alpha = \begin{pmatrix} A_1 & \dots & A_r \\ x_1 & \dots & x_r \end{pmatrix} \sim_{\sigma} \beta = \begin{pmatrix} A_1 & \dots & A_r \\ x_{1\pi} & \dots & x_{r\pi} \end{pmatrix},$$

where π is a permutation of $\{1,\ldots,r\}$. Clearly, if $Y=\{y_1,\ldots,y_r\}$, then

$$\alpha = \begin{pmatrix} A_i \\ y_i \end{pmatrix} \circ \operatorname{id}_Y \circ \begin{pmatrix} y_i \\ x_i \end{pmatrix}, \quad \beta = \begin{pmatrix} A_i \\ y_i \end{pmatrix} \circ \begin{pmatrix} y_i \\ y_{i\pi} \end{pmatrix} \circ \begin{pmatrix} y_i \\ x_i \end{pmatrix},$$

where the first and last mappings in these expressions for α and β are elements of DP_r by a now-standard argument (as usual, the exceptional case occurs when

|X|=n is odd and r=n-1, but then $NP_{r+1}/NP_r=E_{n-1}\cup\{0\}$ and this was discussed fully in the proof of [5, Lemma 7]). Moreover, if $a_i\in A_i$ for each $i=1,\ldots,r$, then

$$\mathrm{id}_Y = \begin{pmatrix} y_i \\ a_i \end{pmatrix} \circ \alpha \circ \begin{pmatrix} x_i \\ y_i \end{pmatrix} \ \sim_\sigma \ \begin{pmatrix} y_i \\ a_i \end{pmatrix} \circ \beta \circ \begin{pmatrix} x_i \\ y_i \end{pmatrix} = \begin{pmatrix} y_i \\ y_{i\pi} \end{pmatrix} = \gamma \ (\mathrm{say}).$$

Since this pair belongs to $\overline{\sigma}$, it follows that $\gamma \in N$ and thus $(\alpha, \beta) \in \tau$.

The next result extends [5, Corollary 1] to arbitrary sets.

Corollary 3.6. For any set X, the set of all congruences on NP(X) with finite primary rank forms a chain with respect to \subseteq .

Proof. Let ρ_1 and ρ_2 be distinct congruences on NP(X), neither of which equals the identity or the universal congruence on NI(X), and write $\eta(\rho_i) = r_i$, where r_i is a positive integer for i=1,2. Then $\rho_i = \sigma_i^+$ for some (unique) congruence σ_i on $NP_{r,+}/NP_{r_i}$, If $r_1 < r_2$, then $NP_{r_1} \subseteq NP_{r_2}$ and $\sigma_1 \cap (DP_{r_1} \times DP_{r_1}) \subseteq NP_{r_2} \times NP_{r_2}$, from which we deduce that $\rho_1 \subseteq \rho_2$. Suppose $r_1 = r_2 = r$, say. By Lemma 3.5, σ_1 is determined by some $N_1 \triangleleft G(Y)$ and σ_2 by some $N_2 \triangleleft G(Y)$, where |Y| = r (note that the same Y can be used). Since the normal subgroups of G(Y) form a chain, it follows from Lemma 3.5 that $\sigma_1 \subseteq \sigma_2$ or $\sigma_2 \subseteq \sigma_1$, and hence $\rho_1 \subseteq \rho_2$ or $\rho_2 \subseteq \rho_1$.

4 Infinite Primary Rank for NP(X) when |X| is Regular

Henceforth, X is an infinite set with cardinal k. Suppose ρ is a congruence on NP(X) and let $\overline{\rho} = \rho \cap [NI(X) \times NI(X)]$. Clearly, $\overline{\rho}$ is a congruence on NI(X); and if $\eta(\rho)$ is infinite, then $\eta(\overline{\rho})$ is also. In this event, Theorem 8 of [5] enables us to describe $\overline{\rho}$ in terms of a finite number of Rees congruences and Malcev congruences as follows.

Theorem 4.1. Suppose $|X| = k \ge \aleph_0$. If $\overline{\rho}$ is a non-universal congruence on NI(X) for which $\eta(\overline{\rho}) \ge \aleph_0$, then

$$\overline{\rho} = I_{n_1}^* \cup [\Delta_{\xi_1} \cap I_{n_2}^*] \cup \cdots \cup [\Delta_{\xi_{r-1}} \cap I_{n_r}^*] \cup [\Delta_n \cap (DI_k \times DI_k)],$$
 (1)

where $\eta_1 = \eta(\overline{\rho})$ and the cardinals ξ_i, η_i form a sequence $n \leq \xi_{r-1} < \dots < \xi_1 \leq \eta_1 < \dots < \eta_r \leq k$, in which ξ_{r-1} is infinite, either n = 1 or n is infinite, and if $n \geq \aleph_0$, then $\eta_r = k$.

Conversely, if $\overline{\rho}$ is a relation on NI(X) defined as in (1) for a sequence of cardinals with the above properties, then $\overline{\rho}$ is a non-universal congruence on NI(X).

In the above, for each proper ideal $I_r = I(X) \cap P_r = NI_r$ of NI(X), I_r^* denotes the corresponding Rees congruence on NI(X) (compare [1, Vol. 1, p. 17] and [1, Vol. 2, p. 227]). Also, as in [5], DI_r denotes the \mathcal{D} -class of NI(X) which contains all elements with rank r. In addition, for any α , $\beta \in P(X)$ and $n \geq \aleph_0$, we let

$$D(\alpha, \beta) = \{x \in X : x\alpha \neq x\beta\}, \quad \operatorname{dr}(\alpha, \beta) = \max(|D(\alpha, \beta)\alpha|, |D(\alpha, \beta)\beta|),$$
$$\Delta_n = \{(\alpha, \beta) \in P(X) \times P(X) : \operatorname{dr}(\alpha, \beta) < n\}.$$

M.P.O. Marques-Smith, R.P. Sullivan

Then by [7, Theorem 3.1], each Δ_n is a so-called *Malcev congruence* on P(X). Note that for the definition of $D(\alpha, \beta)$, we use the convention that $x\alpha = \emptyset$ if and only if $x \notin \text{dom } \alpha$.

Since $NI(X) \subseteq NP(X)$ and $\overline{\rho} \subseteq \rho$, we know that each term in (1) is contained in ρ . We assert that if |X| = k is regular, then

$$\rho = NP_{n_1}^* \cup [\Delta_{\xi_1} \cap NP_{n_2}^*] \cup \dots \cup [\Delta_{\xi_{r-1}} \cap NP_{n_r}^*] \cup [\Delta_n \cap (DP_k \times DP_k)], \quad (2)$$

where the cardinals ξ_{r} , η_{t} are the same as those corresponding to $\overline{\rho}$ in (1).

In fact, since $\overline{\rho} \subseteq \rho$, we know $\eta(\overline{\rho}) \leq \eta(\rho)$. For the reverse inequality, suppose $(\alpha,\emptyset) \in \rho$ for some $\alpha \in NP(X)$ and let A be a cross-section of $\alpha \circ \alpha^{-1}$. Since k is regular and $\alpha \in NP(X)$, Theorem 2.1 implies that $g(\alpha) \neq 0$, and either $g(\alpha) = k$ or $|z\alpha^{-1}| = k$ for some $z \in X$. Clearly, in each case, $\mathrm{id}_A \in NI(X)$ and so $(\mathrm{id}_A.\alpha,\emptyset) \in \rho$, where $\mathrm{id}_A.\alpha$ belongs to NI(X) and has the same rank as α . This implies $\eta(\rho) \leq \eta(\overline{\rho})$ and equality follows. In addition, since $I_{\eta_1}^{\sigma} \subseteq \rho$, we know $(\mathrm{id}_A,\emptyset) \in \rho$ for each $A \subseteq X$ with cardinal less than η_1 . Consequently, if $\alpha \in NP(X)$ has range A, then $\alpha = \alpha.\mathrm{id}_A$ and so $(\alpha,\emptyset) \in \rho$. In other words, $NP_{\eta_1}^{\sigma} \subseteq \rho$.

To consider the other terms in (1), we will need the following result:

Lemma 4.2. [7, Lemma 3.4] If $\alpha, \beta \in P(X)$ and $\operatorname{dr}(\alpha, \beta) = \zeta \geq \aleph_0$, then there exists $Y \subseteq D(\alpha, \beta)$ such that $Y \alpha \cap Y \beta = \emptyset$ and $\max(|Y \alpha|, |Y \beta|) = \zeta$.

The next result will simplify some of our argument regarding (2). We omit its proof since it is exactly the same as that for [5, Lemma 11].

Lemma 4.3. If the ranks of $\alpha, \beta \in NP(X)$ are not equal, and at least one of them is infinite, then $dr(\alpha, \beta) = max(r(\alpha), r(\beta))$.

Remark 4.4. This result implies that if $\aleph_0 \leq \xi \leq \eta$ and $(\alpha, \beta) \in \Delta_{\xi} \cap NP_{\eta}^*$, where $r(\alpha) > r(\beta)$ and $r(\alpha) \geq \aleph_0$, then $r(\alpha) = \operatorname{dr}(\alpha, \beta) < \xi$, and so $(\alpha, \beta) \in NP_{\xi}^*$. Moreover, since $\xi \geq \aleph_0$, the same conclusion holds if $r(\alpha)$ and $r(\beta)$ are both finite (since, for example, $D(\alpha, \beta)\alpha \subseteq \operatorname{ran}\alpha$). In other words, suppose $(\alpha, \beta) \in \Delta_{\xi} \cap NP_{\eta}^*$, where $r(\alpha) \geq r(\beta)$ and $r(\alpha) \geq \aleph_0$. If we can show that there exists $\lambda \in NI_{\eta}$ for which $\lambda\alpha, \lambda\beta \in NI(X)$ and $r(\lambda\alpha) = r(\alpha)$, then either $(\lambda\alpha, \lambda\beta) \in NI_{\xi}^*$ if $r(\lambda\alpha) > r(\lambda\beta)$, or $(\lambda\alpha, \lambda\beta) \in \Delta_{\xi} \cap NI_{\eta}^*$ if $r(\lambda\alpha) = r(\lambda\beta)$.

We now return to the argument regarding (2). If $(\alpha, \beta) \in \rho$ and $\operatorname{dr}(\alpha, \beta) = d \geq \aleph_0$, without loss of generality, there exists $Y = \{y_i\} \subseteq D(\alpha, \beta)$ such that $Y\alpha \cap Y\beta = \emptyset$ and $|Y\alpha| = d$. Clearly, although α may not be injective, we can assume Y is a partial cross-section of $\alpha \circ \alpha^{-1}$, and then |I| = d. Let $D = D(\alpha, \beta)$ and $C = D\alpha \cup D\beta$. Then $\operatorname{ran} \alpha \setminus C = \operatorname{ran} \beta \setminus C = \{e_j\}$ say, and for each j, there exists $r_j \in \operatorname{dom} \alpha \cap \operatorname{dom} \beta$ such that $r_j\alpha = e_j = r_j\beta$ (this is true by our convention).

Let λ be the identity on $Y \cup \{r_j\}$. Again, since k is regular and $\alpha \in NP(X)$, Theorem 2.1 implies that $g(\alpha) \neq 0$, and either $g(\alpha) = k$ or $|z\alpha^{-1}| = k$ for some $z \in X$. In the first case, $g(\lambda) \geq g(\alpha)$ implies $\lambda \in NI(X)$; and in the second case, if z equals $y_i\alpha$ or $r_j\alpha$ for some i or j, then $z\alpha^{-1} \cap \text{dom } \lambda$ equals y_i or r_j , hence $g(\lambda) \geq |z\alpha^{-1}|$ and so $\lambda \in NI(X)$ (clearly, if $z \notin Y\alpha \cup \{r_j\alpha\}$, then the same

conclusion holds). It follows that $dr(\lambda\alpha, \lambda\beta) = d$ and

$$\lambda \alpha = \begin{pmatrix} y_i & r_j \\ a_i & e_j \end{pmatrix} \sim_{\rho} \lambda \beta = \begin{pmatrix} y_i & r_j \\ b_i & e_j \end{pmatrix}, \tag{3}$$

where b_i may not exist for some i (that is, when $y_i \notin \text{dom } \beta$) and the b_i may not be distinct (for example, if β is not injective on Y). If $|\{b_i\}| = d$, write $\{b_i\} = \{b_i\}$ where the b_ℓ are distinct and fix $y_\ell \in Y$ such that $y_\ell \beta = b_\ell$. If X' is the identity on $\{y_\ell\} \cup \{r_i\}$, then as before, $X' \in NI(X)$ and we obtain

$$\lambda' \alpha = \begin{pmatrix} y_{\ell} & r_{j} \\ a_{\ell} & e_{j} \end{pmatrix} \sim_{\rho} \lambda' \beta = \begin{pmatrix} y_{\ell} & r_{j} \\ b_{\ell} & e_{j} \end{pmatrix},$$
 (4)

and these are elements of NI(X) whose difference rank equals |L|=d. On the other hand, if $|\{b_i\}| < d$, then $\{a_i\} \setminus \{b_i\} = \{a_\ell\}$, say, has cardinal d. In this event, if μ is the identity on $\{a_\ell\} \cup \{e_j\}$, then $\mu \in NI(X)$ (since $d(\mu) \ge d(\alpha) = k$), and from (3) we obtain

$$\lambda \alpha \mu = \begin{pmatrix} y_{\ell} & r_{j} \\ a_{\ell} & e_{j} \end{pmatrix} \sim_{\rho} \lambda \beta \mu = \begin{pmatrix} r_{j} \\ e_{j} \end{pmatrix}.$$
 (5)

Hence, again we find a pair in $\overline{\rho}$ whose difference rank equals |L|=d. In other words, if ρ contains a pair of elements which differ at $d \geq \aleph_0$ places, then $\overline{\rho}$ does also. Note that with the above notation, $r(\beta) \leq r(\alpha) = r$, say, and

$$Y\alpha \subseteq D\alpha = D\alpha \cap \operatorname{ran}\alpha$$
 and $D\beta \cap \operatorname{ran}\alpha \subseteq D\beta$.

Hence, $|C \cap \operatorname{ran} \alpha| = |(D\alpha \cap \operatorname{ran} \alpha) \cup (D\beta \cap \operatorname{ran} \alpha)| = d$, and

$$r(\alpha) = |C \cap \operatorname{ran} \alpha| + |\operatorname{ran} \alpha \setminus C| = |I| + |J| = r(\lambda \alpha) \ge r(\lambda \beta).$$

Clearly, we will reach the same conclusion if λ' or μ is used in the above argument.

Therefore, by Remark 4.4, if $\aleph_0 \leq \xi \leq \eta$ and $(\alpha, \beta) \in \Delta_{\xi} \cap NP_{\eta}^{\bullet}$, then $(\lambda \alpha, \lambda \beta) \in \Delta_{\xi} \cap I_{\eta}^{\bullet}$ for some $\lambda \in NI(X)$. In other words, we have shown that if there exists $(\alpha, \beta) \in \rho$ for which $r(\beta) \leq r(\alpha) = r$ and $\operatorname{dr}(\alpha, \beta) = d \leq r$, then there exists $(\overline{\alpha}, \overline{\beta}) \in \overline{\rho}$ for which $r(\overline{\beta}) \leq r(\overline{\alpha}) = r$ and $\operatorname{dr}(\overline{\alpha}, \overline{\beta}) = d$. Clearly, the converse also holds since $\overline{\rho} \subseteq \rho$, and $I_{\eta} = NI_{\eta} \subseteq NP_{\eta}$ implies that $\Delta_{\xi} \cap I_{\eta}^{\bullet} \subseteq \Delta_{\xi} \cap NP_{\eta}$.

In addition, since $\Delta_{\xi_{i-1}} \cap I_{\eta_i}^n \subseteq \rho$ for each $i=1,\ldots,r$, we know $(\mathrm{id}_{A\cup B},\mathrm{id}_A) \in \rho$, where $X=A\cup B\cup Z$, $|A|<\eta_i$, $|B|<\xi_{i-1}<\eta_i$ and |Z|=k. Consequently, if $\alpha\in NP(X)$ has range $A\cup B$, then $\alpha.\mathrm{id}_{A\cup B}=\alpha$ and $(\alpha,\beta)\in \rho$, where $\beta=\alpha.\mathrm{id}_A$, $r(\alpha)=r(\beta)=|A|$ and $\mathrm{dr}(\alpha,\beta)=|B|$. From this, it follows that $\Delta_{\xi_{i-1}}\cap NP_{\eta_i}^*\subseteq \rho$ for each $i=1,\ldots,r$.

It remains to consider the last term in (1) and the corresponding one in (2).

If n=1 in (1), then no pair of distinct elements of NI(X) with rank k is $\overline{\rho}$ -equivalent. Suppose there exists $(\alpha, \beta) \in \rho \cap (DP_k \times DP_k)$ where $\alpha \neq \beta$. Without loss of generality, we assume $a\alpha \neq a\beta$ for some $a \in \text{dom } \alpha$, and let $A = \{a_i\}$ be a cross-section of $\alpha \circ \alpha^{-1}$ which contains $a = a_0$, say. Then as before, $\text{id}_A \in NI(X)$ and we have

$$id_A \cdot \alpha = \begin{pmatrix} a_i \\ a_i \alpha \end{pmatrix} \sim_{\rho} id_A \cdot \beta = \begin{pmatrix} a_i \\ a_i \beta \end{pmatrix},$$
 (6)

M.P.O. Marques-Smith, R.P. Sullivan

where the $a_i\beta$ are not necessarily distinct. If $|\{a_i\beta\}|=k$, write $\{a_i\beta\}=\{a_j\beta\}$, where the $a_j\beta$ are distinct (if non-empty), $0\in J$ and |J|=k. Let $B=\{a_j\}$. Then $\mathrm{id}_B\in NI(X)$ and

$$\mathrm{id}_B.\alpha = \begin{pmatrix} a_j \\ a_j \alpha \end{pmatrix} \sim_\rho \mathrm{id}_B.\beta = \begin{pmatrix} a_j \\ a_j \beta \end{pmatrix}.$$

Since $a_0 \in B$, $\mathrm{id}_B.\alpha \neq \mathrm{id}_B.\beta$ and these are $\overline{\rho}$ -equivalent elements of NI(X) with rank k, contradicting our initial assumption that n=1.

Hence, if n = 1, then $|\{a_i\beta\}| < k$ and so $\{a_i\alpha\}\setminus\{a_i\beta\} = \{a_j\alpha\} = Z$, say, has cardinal k. Then $\mathrm{id}_Z \in NP(X)$ (since $|X\setminus Z| > d(\alpha) = k$), and from (6) we obtain

$$\operatorname{id}_A.\alpha.\operatorname{id}_Z = \begin{pmatrix} a_j \\ a_j \alpha \end{pmatrix} \sim_{\rho} \operatorname{id}_A.\beta.\operatorname{id}_Z = \emptyset.$$

It follows that $\eta(\rho)=k'$ and ρ is universal, contradicting our basic supposition. Suppose instead that $n\geq\aleph_0$ in (1), and hence $\eta_r=k$ (by the condition on the cardinals). This means that if $X=A\dot\cup B\dot\cup Z$, |A|=|Z|=k and |B|< n, then

$$(id_{A \cup B}, id_A) \in \Delta_n \cap (DI_k \times DI_k) \subseteq \overline{\rho}.$$

From this, like before, it follows that $\Delta_n \cap (DP_k \times DP_k) \subseteq \rho$.

Consequently, we have proved half of the following result. For its converse, we note that just as in [5], Lemma 4.3 can be used to show that p is a congruence on NP(X), provided the cardinals have the properties stated: the difference between the last paragraph in the proof of [5, Theorem 8] and the current one is simply a matter of notation (that is, 'T' and 'NT' become 'NP').

Theorem 4.5. Suppose $|X| = k \ge \aleph_0$ and k is regular. If ρ is a non-universal congruence on NP(X) for which $\eta(\rho) \ge \aleph_0$, then

$$\rho = NP_{n_1}^* \cup [\Delta_{\xi_1} \cap NP_{n_2}^*] \cup \cdots \cup [\Delta_{\xi_{r-1}} \cap NP_{n_r}^*] \cup [\Delta_n \cap (DP_k \times DP_k)], \quad (7)$$

where $\eta_1 = \eta(\rho)$ and the cardinals ξ_i, η_i form a sequence $n \leq \xi_{r-1} < \cdots < \xi_1 \leq \eta_1 < \cdots < \eta_r \leq k$, in which n is infinite and $\eta_r = k$.

Conversely, if ρ is a relation on NP(X) defined as in (7) for a sequence of cardinals with the above properties, then ρ is a non-universal congruence on NP(X).

5 Infinite Primary Rank for NP(X) when |X| is Singular

In this section, X is an infinite set whose cardinal k is singular, that is, according to [3, Lemma 10.2.2], $k = \sum k_m$ for some distinct infinite cardinals k_m , where |M| < k and $k_m < k$ for each $m \in M$. To describe all the congruences on NP(X) for such X, we closely follow the argument in Section 4. In fact, here the only differences will occur when we need to ensure that a specific transformation belongs to NP(X), that is, it satisfies the conditions of Theorem 2.2.

Like before, given a congruence ρ on NP(X), we let $\overline{\rho}$ denote the restriction of ρ to NI(X), and observe that if $\eta(\rho)$ is infinite, then $\eta(\overline{\rho})$ is also. In fact, since $\overline{\rho} \subseteq \rho$, we know $\eta(\overline{\rho}) \leq \eta(\rho)$. For the reverse inequality, suppose $(\alpha, \emptyset) \in \rho$ for some

 $\alpha\in NP(X)$ and let A be a cross-section of $\alpha\circ\alpha^{-1}$. Since k is singular and $\alpha\in NP(X)$, Theorem 2.2 implies that $g(\alpha)\neq 0$, and either $g(\alpha)\geq r(\alpha)$ or α is spread over its rank. If $r(\alpha)< k$, then |A|< k, so $|X\backslash A|=k$ and hence $\mathrm{id}_A\in NI(X)$. Suppose $r(\alpha)=k$. If $g(\alpha)\geq r(\alpha)$, then $|X\backslash A|\geq g(\alpha)=k$; and if α is spread over its rank, then for each $m\in M$ (see the start of this section), there exists $y_m\in X$ such that $|y_m\alpha^{-1}|>k_m$. Since A contains exactly one element from each $y_m\alpha^{-1}$, we see that for each $m, |y_m\alpha^{-1}\backslash A|>k_m$. Hence, $k=\sum k_m\leq \sum |y_m\alpha^{-1}\backslash A|$, and it follows that $|X\backslash A|=k$. Thus, $\mathrm{id}_A\in NI(X)$ in all cases and, as in Section 4, we deduce that $\eta(\rho)\leq \eta(\overline{\rho})$ and equality follows. Moreover, since $\eta(\rho)=\eta_1< k$, we know $|X\backslash A|=k$ for each $A\subseteq X$ with cardinal less than η_1 , hence $\mathrm{id}_A\in NI_{\eta_1}$ and so, like before, we conclude that $NP_{\eta_1}^n\subseteq \rho$.

Next, both Lemmas 4.2 and 4.3 hold for any set X, so they can be applied in the present situation. In particular, Remark 4.4 remains valid.

Now using the same notation as before, we let λ be the identity on $B=Y\cup\{r_j\}$. Since k is singular and $\alpha\in NP(X)$, Theorem 2.2 implies that $g(\alpha)\neq 0$, and either $g(\alpha)\geq r(\alpha)$ or α is spread over its rank. If $r(\alpha)< k$, then |I|+|J|< k, hence $g(\lambda)=k$ and $\lambda\in NI(X)$. Suppose instead that $r(\alpha)=k$. Then the above argument for the set A applies equally here for the set B, and we deduce that $\lambda\in NI(X)$ in all cases. As at (3), this implies that $(\lambda\alpha,\lambda\beta)\in \rho$, where $\mathrm{dr}(\lambda\alpha,\lambda\beta)=d$ and, as before, the same proviso holds. Then the same λ' belongs to NI(X) (since $\{y_\ell\}\cup\{r_j\}\subseteq Y\cup\{r_j\}=B$) and we again obtain (4). On the other hand, if μ is the identity on the set $\{\alpha_\ell\}\cup\{c_j\}$ specified before, then $\mu\in NI(X)$ (since by Theorem 2.2, $d(\mu)\geq d(\alpha)=k$) and thus we again obtain (5).

Consequently, when k is singular, we have shown that there exists $(\alpha, \beta) \in \rho$ for which $r(\beta) \le r(\alpha) = r$ and $\operatorname{dr}(\alpha, \beta) = d \le r$ if and only if there exists $(\overline{\alpha}, \overline{\beta}) \in \overline{\rho}$ for which $r(\overline{\beta}) \le r(\overline{\alpha}) = r$ and $\operatorname{dr}(\overline{\alpha}, \overline{\beta}) = d$. And, like in Section 4, it follows that $\Delta_{\xi_{i-1}} \cap NP_m^* \subseteq \rho$ for each $i=1,\ldots,r$.

Finally, we compare the last term in (1) with the corresponding one in (2). We have already seen that if k is singular and A is a cross-section of $\alpha \circ \alpha^{-1}$, then $\mathrm{id}_A \in NI(X)$ and thus we obtain (6). By continuing to follow the argument in Section 4, we see that $B = \{a_j\} \subseteq A$, hence $|X \setminus B| = k$ and so $\mathrm{id}_B \in NI(X)$. This gives a contradiction like before. Since the rest of the previous argument holds verbatim, we conclude that $n \geq \aleph_0$ in (1) and hence $\eta_r = k$. Like before, it then easily follows that $\Delta_n \cap (DP_k \times DP_k) \subseteq \rho$.

Thus, we have proved a result which is exactly the same as Theorem 4.5, except |X| = k is a singular cardinal.

We now deduce a result similar to [5, Corollary 2]. Our proof follows the one for NI(X) but, since it depends on Theorem 4.5 (and the corresponding result for singular cardinals), we include all the details.

Corollary 5.1. Suppose $|X| = k \ge \aleph_0$ and write $\Delta_k^+ = \Delta_k \cap [NP(X) \times NP(X)]$. Then Δ_k^+ is the only maximal congruence on NP(X), and hence $NP(X)/\Delta_k^+$ is a congruence-free nilpotent-generated regular semigroup.

Proof. First we note that Δ_k^+ is a non-universal congruence on NP(X). Since NP(X) is nilpotent-generated and regular (by Theorems 2.1 and 2.2), M.P.O. Marques-Smith, R.P. Sullivan

and Δ_k^+ is a congruence on NP(X), it follows that $NP(X)/\Delta_k^+$ is also nilpotent-generated and regular.

Suppose $\Delta_k^+ \subseteq \rho$ for some non-universal congruence on NP(X). Now $\eta(\rho)$ equals the least cardinal greater than $r(\alpha)$ for each $\alpha \in NP(X)$ such that $(\alpha, \emptyset) \in \rho$. But if $A \subseteq X$ has cardinal less than k, then $d(\operatorname{id}_A) = k$ and $g(\operatorname{id}_A) = k > |A| = r(\operatorname{id}_A)$, so $(\operatorname{id}_A, \emptyset) \in \Delta_k^+ \subseteq \rho$. In particular, since $\aleph_0 \le |A| < k$ can occur, we deduce that $\eta(\rho) \ge \aleph_0$. Therefore, ρ has the form displayed in (7), regardless of whether k is regular or singular. Clearly, $(\alpha, \emptyset) \in \Delta_k^+ \subseteq \rho$ for each $\alpha \in NP_k$, so $\eta_1 = k$. Moreover, if $X = A \cup B \cup C$, where |A| = |C| = k and |B| < k, then both $\operatorname{id}_{A \cup B}$ and id_A have gap and defect equal to k, so they belong to DP_k and hence

$$(\mathrm{id}_{A\cup B},\mathrm{id}_A)\in\Delta_k\cap[DP_k\times DP_k].$$

It follows that $n \geq k$. Since $NP_k^* \subseteq \Delta_k^+$, this implies that each term in (7) is contained in Δ_k^+ , hence $\rho \subseteq \Delta_k^+$ and equality follows.

Finally, suppose ρ is a maximal congruence on NP(X) for which there exists $(\alpha, \beta) \in \rho$ with $dr(\alpha, \beta) = k$. Then $r(\alpha) = r(\beta) = k$. Since such pairs (α, β) do not belong to the congruences described in Theorem 3.4, we deduce that $\eta(\rho) \geq \aleph_0$. However, then (7) implies that n = k', and so we have a contradiction:

$$k' \le \xi_{r-1} < \dots < \xi_1 \le \eta_1 < \dots < \eta_r \le k.$$

Thus, $\operatorname{dr}(\alpha,\beta) < k$ for all $(\alpha,\beta) \in \rho$, hence $\rho \subseteq \Delta_k^+$, and equality follows by the maximality of ρ and the fact that Δ_k^+ is non-universal.

Reference

- A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups, Volumes 1 and 2, Mathematical Surveys, No. 7, American Mathematical Society, Providence, RI, 1961 and 1967.
- [2] G.M.S. Gomes, J.M. Howie, Nilpotents in finite symmetric inverse semigroups, Proc Edinburgh Math. Soc. 30 (1987) 383-395.
- [3] K. Hrbacek, T. Jech, Introduction to Set Theory, 2nd ed., Marcel Dekker, NY, 1984.
- [4] M.P.O. Marques-Smith, R.P. Sullivan, The ideal structure of nilpotent-generated transformation semigroups, Bull. Austral. Math. Soc. 60 (2) (1999) 303-318.
- [5] M.P.O. Marques-Smith, R.P. Sullivan, Congruences on semigroups generated by injective nilpotent transformations, Bull. Austral. Math Soc. 74 (2006) 393-409.
- [6] R.P. Sullivan, Semigroups generated by nilpotent transformations, J. Algebra 110 (2) (1987) 324–343.
- [7] R.P. Sullivan, Congruences on transformation semigroups with fixed rank, Proc. London Math. Soc. 70 (3) (1995) 556-580.
- [8] R.P. Sullivan, Nilpotents in semigroups of partial transformations, Bull. Austral. Math. Soc. 55 (3) (1997) 453-467.