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Abstract. The ability to locate an individual is an essential part of
many applications, specially the mobile ones. Obtaining this location
in an open environment is relatively simple through GPS (Global Posi-
tioning System), but indoors or even in dense environments this type of
location system doesn’t provide a good accuracy. There are already sys-
tems that try to suppress these limitations, but most of them need the
existence of a structured environment to work. Since Inertial Navigation
Systems (INS) try to suppress the need of a structured environment we
propose an INS based on Micro Electrical Mechanical Systems (MEMS)
that is capable of, in real time, compute the position of an individual
everywhere.

Keywords: Location Systems, Dead Reckoning, GPS, MEMS, Machine
Learning, Optimization

1 Introduction

Location information is an important source of context for ubiquitous computing
systems. Using this information, applications can provide richer, more produc-
tive and more rewarding user experiences. Also, location-awareness brings many
possibilities that make mobile devices even more effective and convenient, at
work and in leisure.

The ability of mobile applications to locate an individual can be exploited
in order to provide information to help or to assist in decision-making.Some
examples include electronic systems to help people with visual impairments [10],
support systems for a tourist guide at an exhibition [5] and navigation systems
for armies [7] [19].

In an open environment we use GPS (Global Positioning System) to retrieve
users’ location with good accuracy. However, indoors or in a more dense envi-
ronment (big cities with tall buildings, dense forests, etc) GPS doesn’t work or
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doesn’t provide satisfactory accuracy. Consequently, location-aware applications
sometimes don’t have access to the user location.

The aim of this work is to design a system capable of, in real time, determin-
ing the position of an individual (preferably in a non-structured environment),
where GPS is not capable.

The motivation for this project comes from previous publications, where a
recommendation system to support a tourist when he goes on vacations, was
presented [1] [2]. Mobile devices currently available on the market already have
built-in GPS, which provides the necessary location context to recommend places
of interest and to aid the tourist in planning trip visits [17]. However, this as-
sistance, with current technology, can only be used in environments with GPS
signal. In closed or dense environments the system can’t easily retrieve the user
location context. For example, in an art gallery if the system knows the tourist
current position inside the building, it can recommend artworks to view and
learn even more about the tourist tastes.

To remove this limitation, a system that provides precise indoor location
of people becomes necessary. Actually, there are already some proposed systems
that retrieve indoor location with good precision. However most of these solutions
force the existence of a structured environment. This can be a possible solution
when GPS isn’t available, but only indoors. In a dense forest we don’t have this
kind of systems. To retrieve the location on this type of terrain can be very
useful for position knowledge of a fireman’s team. Also, the implementation of
a structured environment using this type of technologies is very expensive and
it becomes unfeasible to incorporate this type of systems in all the buildings of
the world.

Since location without using a structured environment remains an open re-
search problem, the main goal of the proposed project is to minimize deployment
and infrastructure costs and provide location everywhere.

As users of these types of devices (and applications) are on foot, the INS is
one of the most appropriate solutions to be used. This system consists of Micro
Electrical Mechanical Systems (MEMS) devices, which can be accelerometers,
gyroscopes and other types of sensors. MEMS are small in size, which allows easy
integration into clothing. Usually, they communicate with a central module using
a wireless network (e.g., Bluetooth). These devices obtain individual movements
information independently of the building infrastructure. All this sensory set
requires the implementation of a sensor fusion. This includes algorithms that can
interpret the sensors information and thereby determine the individual position.
The collected information, in addition to the motion speed and direction, must
also be able to determine the step width and the individual position (sitting,
lying or standing).

This type of system uses the PDR (Pedestrian Dead Reckoning) technique [4].
PDR normally is composed by three key technologies: tracking of the sensor’s
behavior, walking locomotion detection and walking velocity estimation. But
unfortunately, large deviations of these sensors can affect performance, as well
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as the various forms in which a human can move, so this is the project’s biggest
challenge: to correct the sensor deviations.

A module working only with PDR is not able to ensure that the geographical
positions are accurate within a few meters. In fact, although these deviations may
be small for every millisecond, the positioning error caused by a sustainable use
of the system can exceed one meter in 10 seconds [23].

In order to provide a better contextualization of the existing work on the
field, Chapter 2 gives a brief description of the most relevant INS and indoor
location systems. In Chapter 3 we present our main objectives to implement an
INS and how we intend to complete them, presenting the main challenges and
the methodology we will use to suppress them. Finally, Chapter 4 presents some
conclusions regarding the presented problem.

2 State of the Art

Indoor localization technologies hold promise for many ambient intelligence ap-
plications to facilitate, for example, decision-making. However, many of the ex-
istent systems can’t work indoors or in too dense environments. This happens
because they work based on the location obtained by GPS.

Several localization techniques already exist to give indoor positioning, but
some of them doesn’t provide good accuracy or are too difficult to implement.
From the selected articles we have divided them into two main categories based
on their localization techniques: Radio Frequency Waves and Pedestrian Dead
Reckoning.

Radio frequency waves are solutions that estimate the location of a mobile
target in the environment by measuring one or more properties of an electro-
magnetic wave radiated by a transmitter and received by a mobile station. These
properties typically depend on the distance traveled by the signal and the sur-
rounding environment characteristics. In radio frequency we include technologies
such as IEEE 802.11, Infrared, Bluetooth and Radio-Frequency IDentification
(RFID) tags.

As examples of these systems we have: RADAR (Wireless LAN) [3], Active
Badge (Infrared) [25], a home localization system (Bluetooth) [12], a project for
the location of objects and people using RFID tags [22], among others [11]. The
main problem with these systems is that they need a structured environment in
order to work. This makes them dependent on the particular context and still
impractical and expensive.

Pedestrian Dead Reckoning systems use sensors to provide location updates,
calculated using information about a previously-estimated location. This posi-
tion estimation is commonly based on inertial sensors. Since they yield relative
positioning information only, an absolute reference is required to specify the
displacement reported by an inertial measurement in absolute coordinates.

We have divided the PDR systems into two groups: the pure ones and the
hybrid solutions. The first use only inertial sensors to give position (after hav-
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ing a reference point), and the latter use WLAN, Bluetooth and other type of
structured indoor location systems to correct the inertial sensors data.

2.1 Dead Reckoning with Structured Environments

The solutions based on inertial sensing are subject to big measurement deviations
caused by thermal changes in the sensor circuit. This is because the longer
the time indoors, the greater will be the diversion from virtual trajectory to
the real trajectory. In other words, there is error accumulation and to make a
recalibration of the sensors, some projects use a structured environment.

This structured environment can be constituted by surveillance cameras like
Kourogi [15] proposes. In his paper two enhancements for PDR performance
are introduced: map matching and dynamic estimation of walking parameters.
The users’ location and orientation are updated by fusing the measurements
from the PDR estimation and the maps. The surveillance cameras are used to
measure walking velocity in order to recalibrate the sensor parameters. Also a
particle filter [18] is used for probabilistic data fusing (based on a Bayesian filter).
Probability distribution of the users’ location is predicted from the estimated
position, orientation and its uncertainties. The results are satisfactory, but the
existence of lots of people in the building will, certainly, confuse the system.
Another problem is the cost of this system (over $1500).

Also Wi-Fi signal strength can be used to tackle the traditional drift problems
associated with inertial tracking [26]. Woodman proposes a framework consti-
tuted by a hip-mounted mobile PC which is used to log data obtained from a
foot-mounted Inertial Measurement Unit (IMU). The IMU contains three or-
thogonal gyroscopes and accelerometers, which report angular velocity and ac-
celeration respectively. The logs are then post processed on a desktop machine
(so it isn’t a real-time location system). Like Kourogi’s system, this uses Bayesian
filters to probabilistically estimate the state of a dynamic system based on noisy
measurements. The particle filter update consists of three steps: Re-sampling,
Propagation and Correction. To reduce the cubic-in-time drift problem of the
foot-mounted IMU, they apply a Zero Velocity Update (ZVU) [27], in which the
known direction of acceleration due to gravity is used to correct tilt errors which
are accumulated during the previous step. Besides Wi-Fi, it also uses a map that
acts like a collection of planar floor polygons. The system obtains the Received
Signal Strength Indication (RSSI) information by querying the Wi-Fi hardware.
Each query returns a list of visible Wi-Fi access points and corresponding RSSI
measurements. Each floor polygon corresponds to a surface in the building on
which a pedestrians foot may be grounded. Each edge of a floor polygon is either
an impassable wall or a connection to the edge of another polygon. Then the
system tries to make a correspondence between the Wi-Fi signals, the map and
the IMU. A system evaluation was performed in a three floor building, with a
total area of 8725m2, and the error proved to be 0.73m in 95% of the time.

The system proposed by Evennou and Marx [8], it is also based on an IEEE
802.11 wireless network. The absolute positional information obtained from the
wireless network was combined with the relative displacements and rotations
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reported by a gyroscope, a dual-axis accelerometer and a pressure sensor. The
information obtained from all the sensors was combined through Kalman [21]
and particle filtering. To calculate the user displacement, an accelerometer was
used to count the number of steps taken. Then, a constant estimate of the
users’ step length was used to calculate the user total displacement within the
environment. The authors showed that combining the information from the bank
of sensors yielded improved localization when compared to the usage of each
sensor separately. The authors conducted an experiment using their multi-sensor
localization system. The localization accuracies reported during such experiment
ranged from 1.5 to 3.3 meters.

Renaudin [20] proposes a solution based on RFID tags and inertial MEMS.
This system was developed with the intuition to be used by firemen’s. MEMS and
RFID are hybridized in a structure based on an Extended Kalman Filter and a
geographical database. While progressing indoors, the fire fighters deploy RFID
tags that are used to correct the large errors affecting MEMS performances.
The first team of fire fighters attaches a RFID tag each time it passes a door
and when moving from one floor to another, at the beginning and at the end
of the stairway. Upon installation, the geographical coordinates of the tag are
associated with the tag ID. The RFID tag database is a collection of location
coordinates of all the building doors and stairs. This information is then built
over the evacuation emergency maps. So, the Extended Kalman Filter uses the
3D coordinates of each detected RFID tag to relocate the trajectory.

The IMU is composed by three sensor modules. The module attached on the
shank has a gyroscope, measuring the angular rate of the shank in the sagittal
plane, and an accelerometer oriented in the vertical plane that allows the gait
analysis. The trunk module contains a triad of gyroscopes, magnetometers and
accelerometers providing the orientation information. The thigh module contains
an accelerometer measuring the frontal acceleration, which permits posture anal-
ysis. The algorithms that compute the route use all the information available in
a database to extract the optimum walking path.

The proposed pedestrian navigation solution has been tested on the campus
of the ”Ecole Polytechnique Federale de Lausanne”, in Switzerland. As expected,
the PDR position error grows with time, whereas this hybrid positioning solution
remains under a certain limit close to 5 meters.

2.2 Pure Dead Reckoning

Like we have already seen, there are already systems prepared for indoor posi-
tioning. But if we want a system that can provide our location anywhere and
doesn’t rely in a structured environment, another solution should be used.

One possibility is the use of hybrid solutions based on INS and GPS sig-
nal. INS complements the GPS giving location where GPS can’t (indoor or in
dense environment). The INS uses as start location point the GPS last known
coordinate.

As example of an INS system of this type we have NavMote [9] that inte-
grates, MEMS and GPS, in a wireless-device that is in the person’s abdominal
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area. This device consists of an accelerometer and a magnetic compass inte-
grated in a generic wireless controller board, with the radio, a processing unit,
and power storage all integrated. This device records user movements and stores
them in the system. Sensor data are constantly being stored in a 4MB flash mem-
ory which allows an operation time of 1.7 hours with a sampling frequency of 30
Hz. Subsequently, the compressed data is transferred to the main system when
the wireless-device comes within range of a sensor network (called NetMote).
These sensor networks can be spread along the building. On the main system,
data are processed into an estimate of the pedestrian trajectory based on a PDR
algorithm. The main system is also responsible for trajectory displaying, map
matching and other purposes.

This PDR approach uses the acceleration signal pattern to detect the step oc-
currences and the magnetic compass to provide continuous azimuth information.
Based on a simplified kinematic model of a person’s gait, the walked distance is
provided by summing up the size of each step over the step count. The system
showed an error of only 3%. However, this solution doesn’t provide user loca-
tion in real time. For a 3 minute walk, 45 seconds of download time from the
wireless-device to the main system and 25 seconds of system filtration time are
typical. So the system is mainly used to track or monitor the user’s position
with potential security applications rather than to provide high-level interactive
travel support.

Walder [24] proposes a system to be used on emergency situations, in large
buildings and underground structures. It combines inertial measurements (us-
ing 3D accelerometer, gyroscope and 3D magnetometer) of moving persons with
building floor plans (CAD drawings) enriched with additional data (e.g., po-
sitions of fire extinguishers, room allocation). Because the proposed INS is not
accurate enough, the system tries to improve positioning by a permanent interac-
tion between the mobile positioning sensors and floor plans stored in the building
information model. The system is composed by four components: position deter-
mination, position verification and correction, user interface and communication.
The position determination reads raw sensor data and then computes position
coordinates. Once computed, a position is verified and corrected, based on the
tagged floor plans, if necessary.

The correction of noise and drift is performed by a comparison of real integra-
tion with an assumed step length after each step. A normalized step length can
be defined as a system parameter, taking into account the user’s body size and
weight. This step length will be adapted during the movement, depending on the
movement pattern, the moving direction (e.g., curve radius) or the recognized
environment (e.g., stairs). In the worst case scenario, when the automatic cor-
rection doesn’t work properly, the user can communicate his current position to
the system. Identifying his position by giving information related to his current
location (like near a fire extinguisher). For the location of the mobile units to be
spread among themselves and to the control and command centers, mechanisms
from mobile ad hoc networks and wireless sensor networks are fused to build up
a communication network.
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The system has two user interfaces: a conventional one to be used on com-
puter terminals equipped with a screen and a pointing device (mouse, touch
screen), and one to be used on wearable computers with head mounted display
and speech driven control for action forces.

The system was tested in an outdoor and in an indoor scenario. In the first
case the position error equals to a 0.77% mean value and 0.10% standard devi-
ation. On the second case the error increases to 2.11% mean value and 0.95%
standard deviation. This is a good solution, but only for indoor use in buildings.
In a forest fire where GPS isn’t available, this system doesn’t work, since there
isn’t any CAD drawing plants, and also indoors it only works if CAD drawing
exists, which are unfeasible to deploy in all the existing buildings in the world.

Castaneda [6] proposes a shoe-mounted inertial navigation system for pedes-
trian tracking using a fuzzy logic procedure for better foot stance phase detec-
tion, that is applied to the IMU outputs (gyroscope and accelerometer), and
an indirect Kalman filter for drift correction based on the typical zero-updating
measurement. In its most basic implementation, the shoe-mounted INS estimates
and corrects drift errors via an assisted ZVU Kalman filter.

In order to test the system a real time application was developed. The hard-
ware was composed of a laptop PC wire-linked to the IMU. The software con-
sists of the fuzzy logic step detector and an assisted ZVU Indirect Kalman filter.
Three different tests were made, involving various walking scenarios composed
by forward walks, turns and stairs. The error for each scenario was 30cm, 15cm,
and 27cm respectively. Also, positioning the sensors only on the shoes can bring
more accuracy errors mainly on the gyroscope, because we move the feet a lot of
times to the left or right and not necessarily all the body moves together with
them.

The work proposed by [14] presents a system based on modular sensor units,
which can be attached to a person and contains various sensors, such as range
sensors, inertial and magnetic sensors, a GPS receiver and a barometer. The
measurements are processed using Bayesian Recursive Estimation algorithms
and combined with available a priori knowledge, such as, map information or
human motion models and constraints. Each sensor module contains, apart from
its sensors, a low power microprocessor which collects and processes the sensor
readings and sends them to the central module.

The current version of the sensor stack consists of an inertial sensor module
with a three axis accelerometer, a three axis gyroscope and a three axis magne-
tometer; and a ranging module which is also used as a wireless data transmission
unit and a GPS module. The system is attached to the person’s hip area. The
inertial and magnetic sensors are used to estimate the heading of the person
and to detect walking steps and the corresponding stride length. These steps are
detected using a step detection algorithm, which is based on a set of thresholds
applied to the vector length of the three accelerometer readings.

A Zero-Velocity-Update method isn’t used since they require the sensors to
be mounted on the person’s feet. However, although the authors state that this
method promises a better accuracy, they also claim that it is more feasible to
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wear the sensor unit at the waist, the chest or to hold it in the hand. Like
other systems, an indoor map is used as an additional input to the localization
algorithm.

While the person is moving through the tracking area, all sensor data are
locally preprocessed and then transmitted to a PC for further processing and
visualization. Like other systems, the localization is not given in real-time to the
user. This is a big limitation if we want to implement a system like the one that
we described to help tourists. Most of these systems have this limitation since
they use very heavy algorithms that need lots of computational power to process
all the retrieved information. One solution can be the inclusion of more sensors
to have more information about what is happening on the lower limbs of the
user, to reduce the computational power for those algorithms.

Because smartphone’s are largely benefiting from the ever increasing rate of
integration of mobile IT components, Lukianto et al [16] studied a pedestrian
indoor navigation system based on a custom INS and a smartphone. The system
is also designed to select the optimal set of auxiliary information from available
infrastructure such as WLAN and Bluetooth to calibrate the INS, when neces-
sary. The INS provides a continuous estimate of its current position, speed and
orientation. These data are sent to the smartphone to track the current position
and for visualization. The smartphone, in turn, collects sensory inputs available
to its various communication interfaces and to the (A)GPS receiver system. All
the additional sensor information is then processed for plausibility and quality,
and used to correct the INS. The updated position is then sent back to the INS.

This INS uses an angular rate sensor, an accelerometer, a magnetic field
sensor and a static pressure sensor to obtain the step length. The INS can be
connected to the smartphone via Bluetooth or by USB cable. In the future,
Kalman filter algorithms will be investigated firstly as a means of INS/GPS-
integration, and also the concept of particle filtering will be investigated for
viability, providing a means of 2D localization if a detailed map of the building
is available. A big benefit of this system is that it tries to re-use the equipment
that the users already have with them (a smartphone) to complement its AGPS
module and provide location where the GPS can’t. A limitation, is that it only
uses one INU, which is not sufficient to provide a good localization accuracy.

The main challenge in this area is to provide an effective position of a person
in an environment where GPS is not available and no structured environment
exists. To overcome these challenges INS are commonly used, but they have
great drift and provide sometimes inaccurate information. In that sense, the next
challenge is to reduce these errors so deviations between a virtual trajectory and
the real user path can be avoided.

3 System Overview

The project that we are entitling as ”PLASYS - All Over the Place Location
System”, aims to study and create a system that, combined with GPS, provides
location everywhere, including indoor and dense environments.
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More specifically, this project is divided into three objectives:

– Analyze how activity recognition can be improved (adding different types of
sensors) and finding an optimal sensor position on the body;

– Development of methods to process the data acquired from all the sensors,
making a sensor fusion; use of probabilistic algorithms to learn the walk-
ing/moving behaviors for real-time sensor data correction;

– Expand the existing tourism mobile application to work with the proposed
INS.

In order to solve the existing problem, we need to tackle the challenges present
in these objectives. In the next sections we will explain each objective, presenting
the main challenges and which methodology we will use to tackle them.

3.1 Sensors

First of all we will explore the type of sensors to use, since it is intended that,
in addition to providing accurate data, they must be also comfortable (and
imperceptible) enough to allow their integration into the user’s clothing. With
this approach we don’t need any external sensors, avoiding expensive costs on
structured environments.

As stated earlier, an Inertial Navigation System can bring several problems,
especially because of the drift that the sensors can have. This is the biggest
problem/challenge of the whole project. Also, because of people different sizes,
the ideal position of the sensors to one person can be different to another. This
leads to another big challenge: the discovery of an ideal spot for the sensors to
work in diverse types of persons.

Small sensors will be distributed by the lower limbs (legs and hip area) to
collect data. These data will be sent to a central module that will handle the
calculations to determine, in real time, the position of an individual. The in-
terconnection of the various modules with the core module will be run through
a wireless body network. For now, we don’t know which technology, Bluetooth
(new version, v4) or ZigBee [13], will be used. The final decision will rely in a
series of system tests designed to evaluate which is the most reliable technology.

We pretend to distribute the sensors like this: force sensors and accelerom-
eters in the feet; and a gyroscope and a pressure sensor in the abdominal area
(see figure 1).

In the abdominal area, there will be a central module that communicates
with a PDA. This PDA will show to the user his current location. The force
sensors are essential to determine when the user puts his feet on the ground,
that combined with the accelerometer (to get the step acceleration) provides
a more exact step length. The gyroscope gets the body travel direction. The
pressure sensor on the abdominal area is useful to get the user elevation inside
the building.

To have a better perception of the comfortableness of the system a survey
research will be done. This type of research method is associated with the use of
questionnaires and statistical data for analyze user answers. Using questionnaires
is useful to provide a better perception of the proposed system usage.
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Fig. 1. Disposition of the sensors on the human body

3.2 Sensor Fusion and Probabilistic Algorithms

All the sensory set (pressure sensors and accelerometers in the feet, gyroscope
and accelerometer in the abdominal area - see figure 1) requires the implemen-
tation of a sensor fusion. This sensor fusion will be implemented using models
based on Kalman filters.

In order to reduce errors provided by MEMS, heuristic and probabilistic
algorithms have to be implemented. They are necessary to make corrections
over the provided errors.

These probabilistic algorithms are used to calibrate the system based on
GPS. They will work like this, when the user is in environments where the GPS
signal is very good, the system can self-learn how the user makes the steps,
and the gaps (errors) that exist in those steps. So when the GPS signal is not
available, the collected sensor information can be self-corrected by the accuracy
algorithms.

As an applicability example for this system, we have a tourist who is on
vacation in a city (without the need to have in every building a structured
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location system) and will visit a museum. With this system, he can navigate
inside the museum and get information about what he is seeing at the moment
(e.g., paintings, sculptures) without other tools besides his PDA. The system,
in an outdoor environment learns the pattern of user’s stride, and the deviation
in sensor readings for future accurate indoor positioning calculation. This is
called the training phase, the system first requires a set of data to determine the
parameters to detect the walking behaviors. From the training data, the unit
motion recognizer automatically extracts parameters such as threshold values
and the mean and standard deviations of the sensor signals. The system takes
as its starting point the last obtained coordinate from the GPS.

In the future, extensive user experiments will be necessary in order to improve
the validity and reliability of the research. These experiments will, not only, allow
us to precisely assess how accurate the obtained position of the user is, but
also, most importantly, to obtain valuable data about the differences in the step
patterns originated from a diverse set of users. This knowledge can give more
insight on what the best practices to predict the step length and direction are,
and also help the implementation of the automatic calibration of these values.

Another problem that can be originated from all the complexity of the project
is the delay between the real location and the processed one (that appears to the
user on the mobile device). The process is complex: it starts on the sensors that
gather the values, which are afterwards sent to the central module. This process
has already communication delays. When the central module has the sensors
values, it must combine them according to the data timestamps to process the
sensor fusion and estimate the walking path, which takes some processing time.
Afterwards, it the probabilistic algorithms are executed to correct the estimated
walking path. This algorithm can run for a large amount of time. The algorithms
should be efficient to process the data in a short period of time, in order for the
delay to be minimized. The last step of the process is the presentation the user’s
current location on his mobile device. Concluding, as can be imagined, this
process with so many steps can bring a big delay on estimating the real location
of the user.

After the algorithm implementation, an experiment will be performed. The
experiment will focus on investigating the variables and the way in which these
can affect the experimental work. It will be used to verify the previously formu-
lated hypothesis. Some experimental walking paths will be created to test the
variables of the algorithms and the position of the sensors to see if minor changes
can affect the system positively or not.

At least three scenarios, represented on figure 2, will be created. The first
one will be as simply as possible, only a straight line with 10 meters, to see if the
system can correctly measure the distance (Heavy Dash line on figure 2); The
second case will involve straight lines combined with changes of direction (for
example, in a building a person must travel through two or more offices) Dash
Double line on figure 2; The third one (Dotted line on figure 2) will combine
the use of outdoor location with the proposed system: the person is outside of a
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Fig. 2. Experience scenarios - Heavy Dash line (1) represents the first scenario; Dash
Double line (2) represents the second scenario; Dotted line (3) represents the third
scenario.

building guided by GPS and when he enters the building, the INS must provide
the exact location inside the building.

4 Conclusions

Retrieving location using an inertial navigation system still remains an open
research problem, since there isn’t still an approach with a good reliability to
use in conjunction with GPS, to retrieve location when GPS is not available.
This is a complex problem because of the sensors drift and people’s different
sizes. This is also a problem when selecting the most appropriate spot to put
the sensors.

To tackle these challenges, we propose a system based on probabilistic learn-
ing algorithms. The person’s walking behavior to predict more effectively the
walking path. The project objectives were specified along with the research meth-
ods that will be used.

Three quantifiable success criteria were identified to give to the project a
success degree. The first one is the accuracy of the estimated location that must
be between 90% and 95% or, in other words, for each 100 meters traveled the
system must have an error of only 5 (to 10) meters. Also, the accumulated error
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must be kept to the minimum possible. The second criterion, is the delay between
the readings and presentation to the user of his current location, that must be less
than 2 seconds. For higher delay values, positioning will not be considered real-
time. The third criterion focuses in the intrusion that the system may have to the
people’s day-to-day life. This is difficult to measure and not totally quantifiable.
However, it is intended for the sensors to be totally wearable and imperceptible
to the user. The system should be as easy to use in a point that the user forgets
that he’s wearing the sensors.

In order to test this system in a real environment with real people, integration
with the PSiS system is envisaged, to support tourists on their visits.
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