ASSOCIATE SUBGROUPS OF ORTHODOX SEMIGROUPS
by T. S. BLYTH, EMILIA GIRALDES and M. PAULA O. MARQUES-SMITH

A unit regular semigroup [1,4] is a regular monoid S such that H NA(x)# @ for
every x € §, where H, is the group of units and A(x)={yeS;xyx =x} is the set of
associates (or pre-inverses) of x. A uniquely unit regular semigroup is a regular monoid §
such that [H; N A(x)| = 1. Here we shall consider a more general situation. Specifically,
we consider a regular semigroup S and a subsemigroup T with the property that
T N A(x)| =1 for every x € S. We show that T is necessarily a maximal subgroup H, for
some idempotent . When § is orthodox, « is necessarily medial (in the sense that
x =xax for every x € (E)) and aSa is uniquely unit orthodox. When S is orthodox and ®
is a middle unit (in the sense that xay =xy forall x, y € §), we obtain a structure theorem
which generalises the description given in [2] for uniquely unit orthodox semigroups in
terms of a semi-direct product of a band with an identity and a group.

Let § be a regular semigroup. Consider a subsemigroup T of S with the property that
TN A(x)| =1 for every x € S. In this case we define x* by TNA(x)={x*}. We also
define x** = (x*)* for every x € §. Then (x*)** = [(x*)*]* = (x**)* which we can write as
X***.

Observe that since x* € A(x) we have x*xx* e V(x) 2 A(x). Therefore, if x € T then
x*xx*e TNA(x)={x*} whence x*xx* = x* and consequently x e T NA(x*) = {x**}, so
that x =x**. Writing S* = {x*;x €8} we therefore have T =S*. Since the reverse
inclusion follows from the definition of x*, we thus have T = S§*. Observe also that
X Fx* e V(x*) gives x*rxtx** ¢ TNA(x*)={x**}. Hence x**x*x**=x** and so
x* e TNA(**)={x***}. Thus x*** = x*, from which it follows that x e T =§" if and
only if x = x**,

Since x**e V(x*) we have that S* is regular; and since y € §* N V(x*) gives
YyeS*NA@*)={x**} we see that S* is inverse with (") '=x**. If now e, f e E(S%)
then since e and f commute we have ef . e. ef =ef =ef . f. ef whence e,f e S* N A(ef)
and therefore e = (ef)* =f. Thus E(5*) is a singleton and so S* is in fact a group.
Denoting by e the identity element of $* we then have the properties

(VxeS) x*a=x*=ax* x*x**=a=x*"x*

In what follows we shall call such a subgroup S* an associate subgroup of S,
We begin by listing some basic properties arising from the existence of an associate
subgroup. For every x € § we define

X°=x*xx*.

It is clear that x°e V(x) and xx°=xx*, x°x = x*x. We first investigate the relationship
betweem x° and x*,

THEOREM 1. (Vx € §) x*° = x** = x°%,
Proof. The first equality results from the observation that

X=Xt e ST OV = SFNA(x*) = {x**).
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As for the second equality, we have x°=x°x"*x° and so
¥
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whence x*x®*x* € $* N A(x) and therefore x*x®*x* = x*. It now follows that x** € 5™ N
Ax®)={x**}. 0O

CoroLiLary 1. (Vx € §) x™ = axa.

Proof. By the above, we have x*° = x*x°x°* = x**x*xx"x"" = axa. [

o

CoroOLLARY 2. (Vx e 8) x*°=x".

Proof. We have

00 o0, ¥

x 0=x00*x00x00*=x***x00x***=x*x 'x
=x*xx* by Corollary 1
=x°. 0O
Defining §° = {x°; x € §} we see from the above results that
xeS°Sx=axw
so that §° = wSa. The subsemigroup S° is regular; for we have
exe = oxxtxo = axaxtaxe = axe . axto. axae.

This also gives x* = ax*a = (axa)*. Moreover, since « is the identity element of §* we
have that §* = S°.

We now show that every associate subgroup of § is in fact a maximal subgroup, the
uniquely unit regular situation therefore being a special case.

THEOREM 2. §*=H, .

Proof. Since the maximal subgroups of S are precisely the -classes containing
idempotents we have S* < H,. To obtain the reverse inclusion, let x € H,. Then xx* e H,
and x*x e H, give xx*=a=x"x whence x°=x*xx*=x*a=x" and x=axa=x".
Consequently, x =x*° =x*=x**eS8* 0

COROLLARY. S§° is uniquely unit regular with group of units H,.

Proof. Since S is regular and H, =8*cS° we have that H, is an d-class of S°.
Moreover,

H, N A(axa) =5* N A(axa) = {(axa)*} h

and (axa)* =x* = ax*a e S°. Since ax’=x"=x"« it follows that $° is uniquely unit
regular with group of units H,. O

THEOREM 3. (Vx,y € S) (xy)* = (x*xy)*x* = y*(xyy*)*.
Proof. We have
xy. (x*xy)*x* . xy =x.x*xy(x"xy)*x*xy = xx*xy = xy

and so (x*xy)*x* € S* N A(xy) whence (x*xy)*x* = (xy)*. The other identity is estab-
lished similarly. O
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Observe now that axa € £(S°) if and only if axaxe = axa. Pre-multiplying by xx*
and post-multiplying by x*x, we see that this is equivalent to xax =x. i.e. to x* = . Thus
axao € E(S°) implies x =xx*x =xx* . x*x e (£). It follows from these observations that
we have E(§°)c a(F)a.

Tueorem 4. The following statements are equivalent:
(1) @ is medial,

(2) (Vx.y €8) (xp)* = y*x*,

(3) E(SO) = CV(E)az_

Proof. (1)=(2): If a is medial then a=x* for every xe(E). It follows by
Theorem 3 that

(2)=(1): If (2) holds then we have e* ¢ E for every e € F. Since S* is a group it
follows that e*=a for every e e E. Consequently, if ¢,,e.e £ then by (2) we have
(e1e:)" = efei = wa = @, whence by induction we have x* = o for all x € (E). It follows
that x = xax for every x € { £) whence « is medial.

(1)=(3): Suppose that « is medial and that x € (E). Then x*@ and so axa E(5%)
whence a{E)w < E(S°).

(3)=>(1): If (3) holds and xe(E) then axa is idempotent so x*=gqa and
X =xx"x =xax,i.e. ais medial. O

CorovLLarY. If « is medial then S° is uniquely unit orthodox. [

THEOREM 5. If § is orthodox then « is medial and E(S°) = aEc.

Proof. 1f § is orthodox then we have y°x°e V(xy) = A(xy). Then
Xy = xyy°x°xy = xyy*x*xy

whence y*x* e S* M A(xy) and therefore y*x* = (xy)*. The result therefore follows by
Theorem 4. O

CoroLLary 1. If § is orthodox then ¢* = « for every ec E. [
COROLLARY 2. If S is orthodox then any two associate subgroups of S are isomorphic.

Proof. Let A, B be associate subgroups of S with respective identity elements «, B.
Since § is orthodox, & and f§ are medial so 8 = faf and & = afa. Thus V(«) and so
B belongs to the %-class of &. Consequently we have that B = Hy=H,=A. 0O

Observe that if we define E°={e°;e € £(S)} then, when S is orthodox, we have
E°= E(8°). This follows immediately from Theorem 5.

THEOREM 6. The following statements are equivalent:
(1) o is a middle unit;
(2) (Vx,y €8) (xy)™ =x"y

Proof. (1)=(2): If « is a middle unit then

<0, 00

(xy)” = axya = axw . aya =xy°,
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(2)=(1): If (2) holds then for all x,y € S we have

x°xyy°® = x°axyay® = x°(xy)™y°
s
=x°. axo. aya . y°
=x°xayy®
whence xy = xay and so « is a middle unit. O

We recall now the following definitions. A medial idempotent @ of a regular
semigroup is said to be normal [3] if the band a( E) a is commutative. A regular semigroup
S is said to be locally inverse if for every idempotent e the subsemigroup eSe is inverse. An
inverse transversal of a regular semigroup S is an inverse subsemigroup T with the
property that |[TNV(x)|=1 for every xeS§. If we let TNV (x)={x"} then we have
T=5={x*xeS} and the inverse transversal S° is said to be multiplicative if
x°xyy®e E(S°) for all x,y e S.

TheoREM 7. If S is orthodox then the following statements are equivalent:

(1) « is a normal medial idempotent,

(2) §°= aSw is inverse;

(3) (Vx,yeS) (xy)° =y

(4) S is locally inverse,

(5) S°is a multiplicative inverse transversal of S.

Proof. (1)=(2): By Theorem 4, E(S°) = @Ea which by (1) is a semilattice.

(2)=(1): By Theorem 5, « is medial; and by (2) it is normal.

(1)=>(3): If (1) holds then a is a middle unit by [3, Theorem 2.2]. It follows that for
all x,y e S we have

(xy)° = (xy)*"xy(xy)*
=y*x*xyy*x* by Theorem 4
=y*, ax*xe. ayyta. x*
=y*. ayy*a. ax¥xa.x* by (1)
—_ yOxQ’
(3)=>(2): By Corollary 1 of Theorem 5 we have e*=a and hence e’ =e*ee” =
aea = e. Suppose then that (3) holds. Then for e, f € E(S°) we have
(ef)°=f°e"=fe.
It follows that ef =ef . fe . ef = efef and so §° is orthodox. Moreover, we have ef € E(S°)
and so (ef)° = ef. Hence ef = fe for all e, f € E(S°) and so §° is inverse.
(1)=>(4): For e € E and x € § we have, by Theorem 5 and its Corollary 1,
(exe)* =e*x*e* = ax*a =x*.

Hence exe = exe(exe)*exe = exe . ex*e . exe and so eSe is regular. That the idempotents in
eSe commute is shown precisely as in [3, Theorem 4.3].

(4)=>(2): This is clear.

(2)= (5): If (2) holds then by the above so does (1) whence « is middle unit; and so
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does (3). Suppose then that x € $° and that y e SN V(x). We have y =y and yxy =y,
xyx =x. By (2) and (3) it follows that
y=y"=aya = (axa) ' = (axe)® = ax’q = x°.
Hence §° is an inverse transversal of S. Since, for all x,y e S,
(x%xyy©)” = (x°xyy®)"x xyy (x xyy°)*
= ax°xyy°a by Corollary 1 of Theorem 5
=x"xyy°,

we have that x°xyy° e E(5°) and so §° is multiplicative.

(5)=(2): This is clear. O

ExampLE. Let B be a rectangular band and let B' be obtained from B by adjoining
an identity element 1. Let S = Z X B' x Z and define on S the multiplication

(m.x.p)n.y.q)=(m,+n,xy,p+qy)
where, for a fixed integer k > 1, m, is the greatest multiple of k that is less than or equal
to m. It is readily seen that S is a semigroup. Simple calculations reveal that the set of
associates of (m,x,p)e S is
A(fnjx‘p)z{{(”‘y‘q);nk=_mk’Qk=ﬁpﬁ'} ]fx#;]‘;
{(n.1.g) i =—mp.q=—pi} ifx=1,

and that the set of inverses of (m,x,p)e S is
{(n.y.q)sne=—m,y#1,q,=—p,} ifx+1I,
{(n,1.q)sn, = —my, g = —py) ifx=1
The set of idempotents of S is

V(m,x,p)={

E={(m,x,p);m;=0=p;}
and so S is orthodox. For every (m, x, p) e S define
(m.x,p)*=(=me. 1, —pu).
Then §* is an associate subgroup of S. The identity element of §* is a = (0, 1, 0).
It is readily seen that « is a middle unit. Now
(m,x,p)°=(m.x.p)"(m,x,p)(m,x,p)*=(—my.x,—p),

whence simple calculations give

[(m.x. p)n, . @)]° = (—myu — m xy, —pp — qu).
(. y.q)(m,x,p)° = (—my — n,, yx, —pp — qi).

Now xy # yx for distinct x, y € B so, by Theorem 7, « is not medial normal.

We now proceed to describe the structure of orthodox semigroups with an associate
subgroup of which the identity element is a middle unit. For this purpose, let B be a band
with a middle unit & and let End B be the monoid of endomorphisms on B. Define

End, B={f e End B; f preserves o and Im f = aBa}.
Then End, B is a subsemigroup of End B.
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Consider the mapping ¢:B— B given by @(x)= axa for every x € B. Since a is a
middle unit, we have @ € End B. Moreover, ¢ clearly preserves « and Im ¢ = aBa.
Hence ¢ € End, B. In fact, ¢ is the identity element of End, B; for if f € End, B then

(VxeB) fox)=flaxe)=af(x)a=@f(x)=f(x),

the last equality following from the fact that @|.pe =idas. Hence fp =qf =f and so
End, B is a monoid.

THEOREM 8. Let B be a band with a middle unit o and let G be a group. Let
t:G— End, B, described by g — §,, be a 1-preserving morphism. On the set

[B; G). ={(x.g8,a) e Be X G x aB; {;(a) = {i(x)}
define the multiplication

(x.8,a)(y, h,b)=(xE,(y),gh, E1(a)b).
Then [B; G; is an orthodox semigroup with an associate subgroup of which the identity
element (a, 1, a) is a middle unit. Moreover, we have E([B; Gl)=Band Hyy1.0y=G.
Furthermore, every such semigroup is obtained in this way. More precisely, let S be an
orthodox semigroup with an associate subgroup of which the identity element « is a middle
unit. For every yeS§ let y* be given by H,NA(y)={y*}, and for every x € H, let
&, : E(S)— E(S) be given by 0,(e) =xex*. Then ¥, € End, E(S), the mapping ¥:H,—
End, E(S) described by x — 1, is a 1-preserving morphism and
S =[E(S); H.]s-
Proof. Observe first that the multiplication on [B; G]; is well defined, for we have
xC.(y)e B, aBa < B and {,-1(a)b € eBa. aB c B, with
EenlEn-1(a)b] = Ee(@) L[5 ()] = E1(x)E[E1(¥)] = EalxEe(¥)]-
A purely routine calculation shows that it is also associative. That the semigroup [B; G],
is regular follows from the fact that
(x, g a)(a,g " a)x, g, a) = (xe(a). 887", Eu(a)a)(x, g. a)
= (xa, 1, Ly(a)a)(x, 8. a)
= (xai(x), g, Eg1[E(a)a)a)
= (xaxa" g! Cl(a)a/a)
=(x, g, aana)
=(x,g,a).
It is readily seen that the set of idempotents of [B; G]; is
E([B; Gl:)={(x,1,a); ax = aa},
and that the idempotent (&, 1, @) is a middle unit of [B; G].. If now (x,1,a) and
(v, 1, b) are idempotents then
(x, 1a)(y,1,b) = (xLi(y), 1, Ci(a)b)
= (xaya, 1, aaab)
= (xy, 1, ab),
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with axy =aay =aba. Hence we see that [B; G]. is orthodox. Moreover, we have
E([B; G];) = B. To see this, consider the mapping f: E([B; G];)— B given by

f(x,1,a)=xa.

Now f is surjective since for every eeB we have (ea,l,ae)e E([B;G].) with
flea,1, we) =ea. ae =e. To see that f is also injective, suppose that (x,1,a) and
(y,1,b) are idempotents with f(x,1,a)=f(y,1,b). Then xa=yb with ax =aw and
@y = ba. It follows that x = xax = xaw = yba = yay = y and similarly a = b, Finally, fis a
morphism; for

fl(x. Loa)(y, 1, b)] =f(xy,1,ab) =xyab
and
xyab = xayaab = xbaxb
=xb =xaxbab = xaayb
=xayb=f(x,1,a)f(y,1,b).
It is also readily seen that

(y.h,b)eA(x.g.a) S L (y) e Alx), h=g"", {,(b) € A(a).

1

Since @ is a middle unit of B, it follows that (e, g ', @) € A(x, g, a). Defining

1

(x,g,a)*=(a, g™, a),

we see that [B; G|; is an associate subgroup, with identity element (a, 1, @), that is
isomorphic to G. It follows from Theorem 2 that G = H 1.0y

Conversely, suppose that § is an orthodox semigroup with an associate subgroup G
the identity element & of which is a middle unit of S. Then by Theorem 2 we have
G =H,. Let x* be given by H, N A(x) = {x*} for every x € §. Observe first that for every
x € H, we have xex™ € E(S) for every e € E(S). In fact, xex™ . xex™ = xeaex® = xex*. For
x € H, the mapping #,: E(S)— £(S) given by #,(e) = xex* is then a morphism; for

¥.(ef ) = xefx ™ = xeafx™* = xex* . xfx* = ¥, (e) . (f).

Moreover, ¥, preserves a. Since « is the identity of H, it is clear that Im &, < aE(S)a.
Since for every e € «E(S)a it is clear that &, (x*ex) =e, it follows that Im &, = «E(S)a
for every x € H,, and therefore ¥, € End, E(S). The mapping #: H,— End, E(S) given
by x — 9, is then a morphism; for

9,18, (e)] = xyey "x* =xye(xy)* = 9, (e).

Furthermore, ¢ is 1-preserving since #,(e) = aea = @(e) where @ is the identity of
End, E(S). We can therefore construct the semigroup [E(S); H,]s.
Since for every x € § we have xx* =xx*a € E(S)a and x*x = ax*x € «E(S) with

Geer(x¥x) =x**x%xx* = axx*a = 9, (xx*),
we can define a mapping y :5— [E(S); H,]s by
Wlx) = (xx®, x**, x*x).

We show as follows that v is an isomorphism.
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That v is injective follows from the fact that if (x)=1(y) then xx*=yy*,
x:k:k =y1‘~* and x*x — y*y give

x =xxtx e = yy*y*ryty =y,

To see that 1 is surjective, let (e, x,f) € [E(S); H,]s. Then xfx* =83,(f) = ,(e) = aea.
Consider the element s = exf. Using Theorem 4 and Corollary 1 of Theorem 5, we have
s = ety = g =

It follows that s* = x™ and so
ss* =exfx* = exear = ex =e.
Since a is a middle unit, we also have
5*s = x*exf = x*aeaxf = x*xfx"xf = afaf = af =f.

Consequently, y(s) = (ss*,s**, s%s) = (e, x, f) and so 1y is surjective.
Finally, ¢ is a morphism since

PO)P(y) = (™ x™ x ) (yy*, y**, y*y)
= (ex " e (yy ™), X7y By (X 7X)y "y )
= (xx®x*ryy*xt, (xy)**, yixtxyFy*y)
= (xyy™x™. (xy)*", y*x*xy)
= (ey(xey)*. (ey)™™. (xy)*xy)
=1 (xy).
Hence we have that § =[E(S); H,]s. O

That the structure theorem in [2] for uniquely unit orthodox semigroups is a
particular case of Theorem 8 can be seen as follows. Suppose that § is uniquely unit
orthodox. Then, taking & = 1 in Theorem 8, the mappings ¢, become automorphisms on
E(S). For, xex™ = xfx* gives e = lel =x*xex*x = x*xfx*x = 1f1 = f so that i, is injective;
and ¢ (x*ex) =xx*exx* = lel = e so that ¥, is surjective. Therefore, in the construction
of the first part of Theorem 8 we can take £ to be a group morphism from G to Aut B. In
this case the elements of [B; G]; are the triples (x, g, a) with a = £,-(x). Since the third
component of the triple is therefore completely determined by the first two components
we can effectively ignore third components. Then it is clear that [B; G]. reduces to the
semi-direct product described in [2].

Theorem 8 can of course be illustrated using the example that precedes it. Here we
have a =(0,1,0) and the “building bricks” in the construction are the bands E(S)a
consisting of the elements of the form (0, x, p), ®E(S) consisting of the elements of the
form (m, x,0). and the subgroup H, consisting of the elements of the form (m. 1. py)-
Simple calculations give (m,x,p)m,x,p)*=0,x,p—pe), (m,x,p)(m,x,p)=
(m —my.x,0), and (m,x,p)** = (m, 1, p;). The isomorphism §=[£(S); H,], is then
given via the coordinatisation

(m.,x,p)~ (0, x.p = pe), (Mg, 1. pi), (m = my, x, 0)).

Dernimion. If S is an orthodox semigroup with an associate subgroup of which the
identity element is a middle unit then we shall say that S is compact if x°=x" for every
xed.
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THEOREM 9. Let § be an orthodox semigroup with an associate subgroup of which the
identity element is a middle unit. Then the following statements are equivalent:

(1) S is compact,

(2) E(S) is a rectangular band.

Proof. (1)=(2): If (1) holds then aSea =S5°=S* and is a subgroup of 5§ whence
aE(S)a = {a}. Thus afa = « for every f € E(S). If now e, f, g € E(S) then, since a is a
middle unit,

efg = eafag = eag = eg.

Thus every f € E(S) is a middle unit of £(S), so E(S) is a rectangular band.
(2)=>(1): If E(S) is a rectangular band then aE(S)a = {a)}. It follows that, for
every x € 5,

x%x°=axax®=axx* = axx* = axx*o = o,

Hence, by Theorem 1,

X = ax® =4 x" % = x*x"x°

=x*x00x0 mx*a :x:k1
whence § is compact. [

In the compact situation, Theorem 8 simplifies considerably. To see this, observe that
for every x € H, we have ¥ (e) = xex™ = xaeax™ = xax* = xx* = a. The structure maps ¥,
therefore “evaporate’ and § is isomorphic to the cartesian product semigroup E(S)a X
H, x «E(S).
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