
Parameter Estimation of Viscoelastic Materials: A Test Case
with Different Optimization Strategies

M. Fernanda P. Costa and C. Ribeiro

Dept. of Mathematics and Applications, University of Minho, Portugal

Abstract. In this work, and based on numerical optimization techniques, constitutive parameters for viscoelastic materials
are determined using a inverse problem formulation. The optimization methodology is based on experimental results obtained
in the frequency domain, for a CFRP-Carbon Fibre Reinforced Polymer, through DMA-Dynamic Mechanical Analysis. The
relaxation modulus of viscoelastic materials is given by a summation of decaying exponentiating functions, known as Prony
series. Prony series, in time domain, are normally used to determine constitutive parameters for viscoelastic materials. In this
paper, using the Fourier transform of the time domain Prony series, a nonlinear constrained least square problem based on
Prony series representations of storage and loss modulus, for the considered material, is analyzed. A case study considering
the estimation of 2N viscoelastic parameters, N = 1,2, · · ·11, is taken as a benchmark. The nonlinear constrained least square
problems are solved using global and local optimization solvers. The computational results as well as the main conclusion are
shown.
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INTRODUCTION

Viscoelastic materials are quite more complex to describe than purely elastic materials (see e.g. [1], [2]). In fact, and
in opposition to elastic materials, viscoelastic materials are characterized by having strain-rate dependence, loading-
history dependence and a energy dissipative behavior due to internal damping mechanisms. Some common phenomena
in viscoelastic materials are the creep (strain increases with time for a constant stress), relaxation (stress decreases
with time for a constant strain) and, for a cyclic deformation, a phase lag between the applied stress and the obtained
strain, is observed. Viscoelastic materials behave as elastic solids and viscous liquids depending on the temperature or
time/frequency scale chosen. In fact, the behavior of viscoelastic materials is a combination of the idealized behaviour
of purely elastic solids and viscose liquids. These intrinsic material characteristics increase the constitutive modelling
complexity due to the associated non-conservative effects (e.g., damping), strain-rate dependence, loading amplitude
dependence and type of loading. However, for obtaining accurate results, when viscoelastic materials are considered,
these properties must be adequately modeled, especially, when dynamic solicitations are applied to the considered
structure (see [2]). The dynamic behavior of viscoelastic materials can be characterized through resonant and non-
resonant experimental techniques. Normally, this characterization is made through DMA that characterize the intrinsic
evolution of storage (shear) modulus, G′, and loss (shear) modulus, G′′, with the frequency.

The main goal of this work is to obtain viscoelastic constitutive parameters, specifically for the considered material,
directly from frequency domain experimental data, avoiding the used of time-domain experimental data. In fact, time-
domain experimental data, is normally obtained considering a static state of deformation, which may not reproduce,
exactly, the dynamic response of viscoelastic material when subject to cyclic loadings.

The paper is organized as follows. Next section presents the derivation of the complex modulus equations for a
viscoelastic material in frequency domain. In particular, the formulas for the storage modulus and loss modulus are
deduced in this section. Then, the nonlinear least square problem to estimate a viscoelastic parameter set is analyzed.
Finally, the numerical results are presented and some conclusions are taken.

LINEAR VISCOELASTIC MATERIAL BEHAVIOR

We first briefly review the theoretical background on modeling of linear behavior of viscoelastic materials. The
mathematical formulation for this kind of phenomenon may be expressed through a Riemann convolution integral
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(see [3]). In particular, the stress in linear viscoelastic materials is given by the following constitutive equation which
is based on the Boltzman’s superposition principle

σ(t) =
∫ t

−∞
Grel(t− τ)

de
dτ

dτ , (1)

where σ is the stress tensor, e is the strain tensor and Grel(t) is the linear relaxation (shear) modulus or, also known as
the relaxation kernel. Considering that σ(t) = e(t) = 0 for t < 0, and a discontinuous loading step is applied at t = 0,
equation (1) is rewritten as

σ(t) = Grel(t)e(0)+
∫ t

0
Grel(t− τ)

de
dτ

dτ , (2)

where e(0) is the limiting value of e(t) when t → 0+. Applying Laplace transforms to equation (2) and taking e(0) = 0,
we obtain the following equation in the Laplace domain σ̃(s) = sG̃rel(s)ẽ(s), where σ̃ and ẽ are Laplace transforms
stress and strain with variable s, respectively. Assuming s as a pure imaginary variable equal to jω we obtain

G∗( jω) =
σ̃( jω)

ẽ( jω)
= jωG̃rel( jω) = jω

∫ ∞

0
Grel(τ

′)exp(− jωτ ′)dτ ′, s = jω, (3)

where ω is the circular frequency and j =
√−1. The complex shear modulus G∗( jω) expressed above is the so-called

complex modulus expressed in the form

G∗( jω) = G′(ω)+ jG′′(ω), (4)

where G′(ω) and G′′(ω) are the storage (shear) modulus and loss (shear) modulus, respectively. If the relaxation
functions in (1) are expressed as a discrete set of exponential decays,

Grel(t) = G∞ +
N

∑
k=1

gk exp(−t/τk), (5)

then, from (3), equation (4) reads

G∗( jω) = G∞ +
N

∑
k=1

gkτk jω
1+ τk jω

, (6)

where N is the relaxation modes defined by their Prony coefficients gk and their relaxation times τk, k = 1,2, ...,N, and
G∞ is the long term (shear) modulus. Thus, from equation (6), we obtain the Prony series representations of storage
and loss (shear) modulus as functions of frequency

G′(ω) = ℜ{G∗}= G∞ +
N

∑
k=1

gk
(ωτk)

2

1+(ωτk)2 , (7)

G′′(ω) = ℑ{G∗}=
N

∑
k=1

gk
ωτk

1+(ωτk)2 . (8)

OPTIMIZATION PROBLEM

To estimate the parameters g≡ (g1, ...,gN) and τ ≡ (τ1, ...,τN) of the relaxation problem (5) we use a nonlinear least
squares fit based on the average square of deviation between the predicted values G′(ωi), G′′(ωi) calculated from
equations (7) and (8), and the measured G′i, G′′i data at M frequencies ωi [4]:

min
g,τ∈RN

F(g,τ)≡
M

∑
i=1

((
G′(ωi)

G′i
−1

)2

+

(
G′′(ωi)

G′′i
−1

)2
)
. (9)

In our numerical experiments, the coefficients g and relaxation times τ will be considered all positive and the
constraints based on the ascending ordering of the relaxation times is also imposed:

τi < τi+1 for i = 1,2, · · ·N−1.
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NUMERICAL EXPERIMENTS AND CONCLUSIONS

It is known that when a local optimization technique is applied to minimize the error (9) it is sensible to the
starting parameter set {g0

1, ...,g
0
N ,τ

0
1 , ...,τ

0
N}, since the problem may have many local minima. In [5], to overcome

this drawback and to force the convergence to the global optimal set, it is suggested that the starting parameter
set should be close to the global optimal set. However, this strategy is only possible if the range of the admissible
parameters is known and has a small size. However, in our case we have not any information about the starting
parameter set and their ranges. Two nonlinear solvers, that are available online on the NEOS servers for optimization
at http://neos.mcs.anl.gov/neos/solvers, were selected to solve the optimization problem (9): the
Ipopt and the Couenne. Ipopt is a local optimizer solver to solve large scale nonlinear optimization problems which
implements an interior point barrier method based on a filter line search strategy [6]. On the other hand, Couenne is a
global optimization solver that solves nonconvex mixed integer nonlinear optimization problems using a reformulation
based on a branch-and-bound algorithm. The choice of N is an important issue for the success of the nonlinear
optimization techniques. In the experiment, we test the effect of different numbers of relaxation modes N on the
F residual value. In Table 1, we report the the residual value F and the CPU time (in sec.) for estimation of 2 until 22
viscoelastic parameters, which imply to solve eleven nonlinear constrained least squares problems for N = 1,2, ...,11.
First, we conduct the numerical experiments with the two solvers for which the starting parameter set is not provided.
By default the solvers use the null vector for starting parameter set. In this case, only the Ipopt was able to obtain an
optimal solution for each nonlinear least square problem (N = 1,2, · · ·,11). These results are reported in Table 1 in
colunms 1-2. Couenne was always unable to run, aborting due to error. In order to find the best parameter set, additional
experiments were carried out to show the effect of starting parameter set on the performance of the optimization
solvers. We run the Ipopt and the Couenne solvers using for the starting parameter set (for N = 1,2, · · ·,11) the optimal
set obtained by Ipopt in the previous experiments. These results are reported in Table 1 in columns 3-6.

TABLE 1. Results obtained by Ipopt and Couenne.

IPOPT IPOPT Couenne
N-Terms Prony fval CPU time [s] fval CPU time [s] fval CPU time [s]

1 159.856 0.525919 159.944 0.014997 92.1993 384.29
2 160.682 1.54576‡ 160.635 1.38279‡ 71.1104 1368.75
3 52.9325 0.896862 71.1106 0.088985 52.9325 4263.29
4 105.521 0.738887 33.0931 1.08483 71.1104 11003.29
5 39.1189 1.2898 83.1709 0.335948 20.7001 14730.76
6 43.1837 1.50977 51.3734 0.730888 11.2055 19701.70
7 33.7657 1.43578 32.3742 0.924858 6.12476 26637.09
8 29.4201 1.24381 36.407 0.883864 † †
9 40.7317 1.91671 37.8198 0.85087 † †
10 72.8779 2.67359 38.2514 1.19082 1.13206 301.85
11 71.3711 2.09068 74.163 0.230964 † †

run terminates due to: ‘†’ reach the limit time; ‘‡’maximum number of iterations

As it was expected, given an initial point close to the local minimum, the results obtained by Ipopt are quite similar
to the previous ones since it is a local solver. However, the global Couenne solver was now able to reach the global
optimal solution for eight least squares problems (N = 1,2,3,4,5,6,7,10). As we can see from Table 1, with too few
relaxation modes, the residual value of the objective function is large. In the case of the Couenne solver, the residual
value decays rapidly with the number of relaxation modes. The best optimal parameter set was found by Couenne
when 20 relaxation modes are used.

TABLE 2. Optimal parameter set.

k gk [MPa] τk [s] k gk [MPa] τk [s]

1 565.347 1.96801 6 175.683 17451.3
2 477.644 26.1378 7 368.208 57409.8
3 120.139 312.502 8 0.0047848 1693730
4 360.665 313.019 9 0.00669185 3170850
5 431.935 3488.9 10 8625.22 7115360
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In Figure 1(a) and 1(b) are plotted the experimentally measured values of storage and loss moduli vs curve-fit
equations of storage modulus (7) and loss modulus (8) using best optimal parameter set estimate (tabulated in Table
2). It is also shown in Figure 1(c) the corresponding relaxation function in the time domain.
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FIGURE 1. The best fit obtained for the storage and loss modulus.

As conclusions, we could determine viscoelastic parameters capable to reproduce efficiently the Storage and Loss
modulus data and, consequently, infer the decay of relaxation modulus in the time domain. Using as strategy the
local Ipopt solver to obtain an estimate for the initial parameter set from the null vector was important. From the
local optimal set as starting parameter set, global optimizer Couenne was able to get the global optimal parameter
set. For future work, the anisotropic behavior of the material will be considered, in order to study the dependence
of viscoelastic response on the material orientation and loading direction. Also, other non-conventional relaxation
models, in the time or frequency domain, will be deduced and tested to improve the fitting accuracy to experimental
data.
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