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Abstract—Evolutionary Algorithms (EAs) have been used to
develop methods for Traffic Engineering (TE) over IP-based
networks in the last few years, being used to reach the best
set of link weights in the configuration of intra-domain routing
protocols, such as OSPF. In this work, the multiobjective nature
of a class of optimization problems provided by TE with Quality
of Service constraints is identified. Multiobjective EAs (MOEAs)
are developed to tackle these tasks and their results are compared
to previous approaches using single objective EAs. The effect
of distinct genetic representations within the MOEAs is also
explored. The results show that the MOEAs provide more flexible
solutions for network management, but are in some cases unable
to reach the level of quality obtained by single objective EAs.
Furthermore, a freely available software application is described
that allows the use of the mentioned optimization algorithms by
network administrators, in an user-friendly way by providing
adequate user interfaces for the main TE tasks.

Keywords: Multiobjective optimization, traffic engineering,
Quality of Service, intra-domain routing, OSPF

I. INTRODUCTION

Internet Service Providers (ISPs) are increasingly facing
requests from their clients to support diverse types of appli-
cations over IP based networks and to provide increasingly
demanding Quality of Service (QoS) levels. In this context,
and among numerous other mechanisms to build a QoS
capable infrastructure, a number of proposals have recently
been put forward to achieve Traffic Engineering (TE) using
intra-domain routing protocols [1] [2].

This is the case of the well known Open Shortest Path
First (OSPF) protocol [3] [4], where the administrator assigns
weights to each link in the network, which are then used to
compute the best path from each source to each destination,
being the results used to compute the routing tables for each
router. Since, in this case, the weight setting process is the
only way administrators can affect the network behaviour,
this choice is of crucial importance and may have a major
impact in the network performance. Nevertheless, in practice,
simple rules of thumb are typically used in this task, like
setting the weights inversely proportional to the link capacity.
This approach often leads to sub-optimal network resource
utilization.

The process of OSPF weight setting can be improved
assuming that the administrator has access to a matrix rep-
resenting traffic demands between each pair of nodes in the
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network. This was the approach followed by Fortz et al
[1] where this task is viewed as an optimization problem,
by defining a penalty based cost function that measures the
network congestion.

Following this trend several authors have proposed single
and multi-objective optimization approaches for this task:
Sqalli et al [S] proposed the use of the number of congested
links as a further objective and useed Simulated Annealing as
the optimization method; a similar approach is followed by
Sait el tal [6] that use a cost function based on the utilization
and the extra load caused by condested links; finally, Brostrom
et al [7] also considered a multi-objective approach, where the
second optimization objective was related to the capability of
the network to endure link failures;

The previous approaches did not, however, accommodate
delay based constraints that are crucial to implement QoS
aware networking services. Thus, in previous work, the authors
proposed an extended multiconstrained QoS aware optimiza-
tion framework, where Evolutionary Algorithms (EAs) are
used to calculate link-state routing weights that optimize traf-
fic congestion, while simultaneously complying with specific
delay requirements [2]. Within this framework, a mathematical
model of the problem, that accommodates both congestion and
delay constraints was proposed and a bi-objective cost function
is defined. Since each of the objectives within this function
is normalized in the same range, a linear weighting scheme
was used with good results. In this approach, a parameter was
selected that can be used to tune the trade-off between both
components of the cost function.

The previous approach has one important limitation, since
it assumes that there is a single trade-off that is optimum.
Also, the user needs to guess which value of the weighting
parameter better fits the needs of a particular network. An
alternative is to have algorithms that can calculate a set of
solutions with distinct trade-offs between the two objectives,
and let the network administrator decide which solution to
implement. A number of algorithms have been proposed in
the last few years to address this task, in the arena of Multi-
objective Optimization (MOO). Multiobjective EAs (MOEASs)
are among the most well succeeded ones [8].

In this work, the main aim is to evaluate the performance
of MOEAs in the above defined TE task and to compare its



results with the previously proposed single objective EAs.
Also, a complementary goal is to allow the use of these
methods by network administrators resorting to simple and
intuitive network management computational tools able to put
such knowledge in practice.

In the following sections the optimization problem and
the proposed algorithms are described. Then, the experiments
conducted in this work are described and the results are put
forward. The next section describes the application that is
made available and the paper closes with some conclusions.

II. PROBLEM DESCRIPTION

The proposed optimization framework deals with the pro-
vision of network administrators with efficient OSPF link
configurations, taking into account the users demands, the
topology and other features of a given network domain. This
work assumes that client demands are mapped into a matrix,
summarizing, for each source/destination router pair, a given
amount of bandwidth and end-to-end delay required to be
supported by the network domain.

The general routing problem [9], that underpins our work,
represents routers and transmission links by a set of nodes
(N) and a set of arcs (A) in a directed graph G = (N, A).
In this model, ¢, represents the capacity of each link a €
A. Additionally, a demand matrix D is available, where each
element dg; represents the traffic demand between each pair
of nodes s and ¢ from V. Let us assume that, for each arc a,
the variable fést) represents how much of the traffic demand
between s and t travels over arc a. The total load on each arc
a (lg) can be defined in the following way:
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It is then possible to define a congestion measure for each
link (®, = p(u,)), where p is a penalty function p that has
small penalties for values near 0. However, as the values ap-
proach the unity it becomes more expensive and exponentially
penalizes values above 1 (see [1] for details).

In OSPF, all arcs are associated with an integer weight.
Every node uses these weights in the Dijkstra algorithm [10]
to calculate the shortest paths to all other nodes in the network,
where each of these paths has a length equal to the sum of its
arcs. All the traffic from a given source to a destination travels
along the shortest path. If there are two or more paths with
the same length, between a given source and a destination,
traffic is evenly divided among the arcs in these paths (load
balancing) [11].

Let us assume a given solution, i.e. a weight assignment
(w), and the corresponding utilization rates on each arc (ug).
In this case, the total routing cost is expressed by:

B(w) =Y Po(w) 3)

a€A

for the loads and corresponding penalties (®,(w)) calculated
based on the given OSPF weights. In this way, the OSPF
weight setting problem is equivalent to finding the optimal
weight values for each link (w,), in order to minimize the
function ®(w).

The congestion measure can be normalized over distinct
topology scenarios, dividing by a scaling factor defined as:
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where hg; is the minimum hop count between nodes s and t.
Finally, the scaled congestion measure cost is defined as:
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and the following relationships hold [1]:
1< @’{wopt) < 5000 (6)

It is important to note that when ®* equals 1, all loads are
below 1/3 of the link capacity; in the case when all arcs are
exactly full the value of ®* is 10 2/3. This value will be
considered as a threshold that bounds the acceptable working
region of the network.

To enable an enlarged set of QoS constraints, an extension
to this model is proposed in this work. This enrichment allows
the inclusion of delay requirements for each pair of routers in
the network. These are modelled as a matrix DR, that for each
pair of nodes (s,t) € N x N (where dg; > 0) gives the delay
target for traffic between origin s and destination ¢ (denoted
by DRs:). A cost function was developed to evaluate the
delay compliance for each scenario (a set of OSPF weights).
This function takes into account the average delay of the
traffic between the two nodes (Dely;), a value calculated by
considering all paths between s and ¢ with minimum cost and
averaging the delays in each.

It was considered that, in the scenarios where this work
would be applicable, the delay in each path is dominated by
the component given by propagation delays in its arcs and
that queuing delays can be neglected. However, if required,
queuing delays can be introduced in the model by approxi-
mating its values resorting to queuing theory [12], taking into
account the following parameters at each node: the capacity
of the corresponding output links, their utilization rates and
more specific technical parameters such as the mean packet
size and the overall queue size associated with each link.

The delay compliance ratio for a given pair (s,t) € N x N
is, therefore, defined as:

Delst
DRst
A penalty for delay compliance can be calculated using

function p. So, the v, function is defined according to the
following equation:
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This, in turn, allows the definition of a delay minimization
cost function, given a set of OSPF weights (w):
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where the v (w) values represent the delay penalties for each
end-to-end path, given the routes determined by the OSPF
weight set w.

This function can be normalized dividing the values by the
sum of all minimum end-to-end delays (for each pair of nodes
the minimum end-to-end delay minDel; is calculated as the
delay of the path with minimum possible overall delay):

N v(w)
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It is now possible to define the optimization problem
addressed in this work that is clearly multi-objective. Indeed,
given a network represented by a graph G = (N, A), a
demand matrix D and a delay requirements matrix DR, the
aim is to find the set of OSPF weights (w) that simultaneously
minimizes the functions ®*(w) and v*(w). When a single
objective is considered the cost of a solution w is calculated
using functions ®*(w) for congestion and v*(w) for delays.

For single objective optimization, the algorithms use a linear
weighting scheme where the cost of the solution is given by:

Fw) = a®*(w) + (1 — a)y*(w),a € [0,1]  (11)

III. ALGORITHMS FOR OSPF WEIGHT SETTING

(10)

A. Single objective Evolutionary Algorithms

In the proposed single objective EA [2], each individual
encodes a solution as a vector of integer values, where each
value (gene) corresponds to the weight of a link (arc) in
the network (the values range from 1 to w,q;). Therefore,
the size of the individual equals the number of links in
the network. The individuals in the initial population are
randomly generated, with the arc weights taken from a uniform
distribution.

In order to create new solutions, several reproduction oper-
ators were used, more specifically two mutation operators and
one Crossover operator:

e Random Mutation, replaces a given gene by a random

value, within the allowed range;

e Incremental/decremental Mutation, replaces a given gene
by the next or by the previous value (with equal proba-
bilities) within the allowed range;

o Uniform crossover, a standard crossover operator [13],
suitable when the order of the variables in the individual
(solution) is not important.

In each generation, every operator is used to create new
solutions with equal probabilities. The selection procedure is
done by converting the fitness value into a linear ranking in
the population, and then applying a roulette wheel scheme.
In each generation, 50% of the individuals are kept from the
previous generation, and 50% are bred by the application of
the genetic operators. In the experiments a population size of

100 individuals was considered. This EA is implemented using
JECoLi, a general-purpose Evolutionary Computation library
recently developed by the authors [14].

B. Multiobjective algorithms

One alternative to the use of EAs are Multi-objective EAs
(MOEA?) that are able to give as output not only one optimal
solution, but rather a set of solutions that are non-dominated.
A solution is dominated by another solution, if the first is
worse than the second in at least one of the objectives and it
is not better in none. More precisely, the aim of these methods
is to return a Pareto front (PF), i.e. a set of non-dominated
solutions, for a given problem. This PF should be as near as
possible to the optimal set of non-dominated solutions and
also as distributed as possible, i.e. it should cover the whole
set of possible trade-offs between the optimization aims.

In order to evaluate the performance of MOEAs, in the
OSPF weight setting task previously defined, two different im-
plementations were addressed. As a first attempt, a number of
state-of-the-art alternatives was implemented based on the use
of the jMetal software [15], that served as a basis to implement
the following algorithms: SPEA2, NSGA-II, PESA-II, PEAS,
PSO, AbYSS and MOCell. These encompass several types of
MOEAs based on distinct optimization approaches: Particle
Swarm Optimization, Evolution Strategies and Scatter Search,
thus covering the most popular multiobjective optimization
algorithms available today. In this case, the solutions were
represented using real-valued representations and the default
configurations.

To test if the representation used could have in important
influence over the results, it was decided to implement the two
MOEAs with the best results (NSGA-II and SPEA2) using
JECoLi, which allowed the use of the same integer based
representation and reproduction operators that were used by
the EAs described above.

IV. EXPERIMENTS AND RESULTS
A. Experimental setup

To evaluate the proposed algorithms, a number of exper-
iments were conducted. All the algorithms and the OSPF
routing simulator were implemented using the Java language.
A set of 3 networks was created using the Brite topology
generator [16], varying the number of nodes (N = 30, 50, 80),
while the average degree of each node is 4. This resulted
in networks ranging up to 390 links. The link bandwidth
was generated by a uniform distribution between 1 and 10
Gbits/s. The network was generated using the Barabasi-Albert
model, using a heavy-tail distribution and an incremental grow
type (parameters H.S and LS were set to 1000 and 100,
respectively).

Next, the demand and delay constraints matrices (D and
DR) were generated. For each network, a set of three distinct
D and DR matrices were created. A parameter (D)) was
considered, representing the expected mean of congestion in
each link (values for D, in the experiments were 0.1, 0.2
and 0.3). For DR matrices, the strategy was to calculate the



average of the minimum possible delays, over all pairs of
nodes. A parameter (DR,) was considered, representing a
multiplier applied to the previous value (values for DR,, were
3, 4 and 5). Overall, a set of 27 instances of the optimization
problem were considered.

The termination criteria for all algorithms consisted in the
maximum number of solutions evaluated. This value ranged
from 50000 to 300000, increasing linearly with the number of
links in the instance. In all cases, w,,q,; Was set to 20. For all
the stochastic algorithms, 10 runs were executed in each case.
For the single objective EA, three distinct values of o were
tested: 0.25, 0.5 and 0.75.

B. Metrics

Evaluating the performance of MOO algorithms is a com-
plex task and to compare the results of MOO approaches
with traditional single objective methods is still trickier. This
study does not intend to be exhaustive in this comparison and
two simple performance metrics were used to evaluate the
approaches:

o C-measure [17]: It is based on the concept of solution
dominance. Given two PFs (PF'1,PF?2), the measure
C(PF1, PF2) returns the fraction of solutions in PF2
that are dominated by at least one solution in PF1. A
value of 1 indicates that all points in PF'2 are dominated
by points in PF'1, so values near 1 clearly favour the
method that generated PF'1; values near 0 show that
few solutions in PF'2 are dominated by solutions in
PF1. This concept can be extended to traditional single-
solution methods by calculating C'(S1, PF'2) where S1
is a single solution. Therefore, it simply indicates the
proportion of solutions in PF'2 that are dominated by
S1.

o Trade-off analysis (TOA): For a pareto front PF'1, and
given a value of (3, the solution that maximizes SP* +
(1 — B)y* is selected. Parameter ( can take distinct
values in the range [0,1], thus defining different trade-
offs between the objectives (working in a way similar to
the parameter « in previous sections, but applied only
after the optimization process). The values with the same
B can be compared among the several MOO algorithms
and also with those from traditional algorithms. In this
last case, only one solution is available, so the process is
simplified.

C. Results

In Table I, the results for the C-measure are shown. The
overall mean value for all the distinct instances and runs was
computed. For each instance, C'(M1, M2) is computed for
all pairs of distinct runs of M1 and M?2. The first set of
algorithms (rows a to g) provides results for the MOEAs
implemented using jMetal, while rows h and i refer to JECoLi
based MOEAs. In the final 3 rows are listed the single
objective EAs, being given the value of « for each case.

TABLE I
RESULTS FOR THE C-MEASURE IN MOO (MEAN OF C' (M1, M2) IN
PERCENTAGE COMPUTED OVER ALL INSTANCES AND RUNS).

a b [ d e f g h i
a) AbYSS 0 35 3 11 16 10 2 0 0
b) MOCell | 49 0 3 12 21 12 1 1 0
c¢) NSGAII | 92 91 0 46 71 65 35 15 8
d) PAES 65 63 22 0 45 33 17 8 3
e) PESAII | 68 60 17 23 0 34 12 4 2
f) PSO 77 73 12 26 42 0 7 4 1
g) SPEA2 890 87 42 42 74 63 0 15 8
h) NSGAj 9 97 70 77 90 80 57 0 25
i) SPEAj 99 95 81 78 93 79 78 52 0
EA(0.25) 82 80 51 39 61 56 44 30 18
EA(0.5) 78 79 46 36 56 57 42 26 15
EA(0.75) 67 69 37 30 46 55 33 21 12

In Table II, the TOA results are displayed for the same
set of algorithms. As before, means were calculated over all
instances and runs, for each value of f.

TABLE 11
RESULTS FOR THE TOA IN MOO (MEAN OVER ALL INSTANCES AND RUNS
GIVEN THE VALUE OF ().

Algorithm | =0 B =025 B=05 B=075 B=1
AbYSS 89 311 533 754 976
MOCell 8.1 339 59.7 85.5 111
NSGAII 4.2 12.8 213 299 384
PAES 5.8 96.2 187 277 367
PESAII 5.5 303 55.1 80.0 105
PSO 6.1 26.4 46.7 670 873
SPEA2 34 11.8 203 287 371
NSGAj 24 70 70 39 34
SPEAj 2.6 4.1 5.0 59 6.5
EA(0.25) 32 29 26 23 2.0
EA(0.5) 38 33 27 22 1.6
EA(0.75) 42 35 2.8 22 1.5

An analysis of the results of both tables shows that, when
comparing the MOO approaches, the NSGA-II and SPEA2
outperform all other alternatives. In fact, in Table I they show
the highest values in the rows and the lowest in the columns,
thus having PFs with few dominated and many dominating
solutions. In Table II, they also present the lowest results for
the distinct values of f.

When the jMetal and the JECoLi versions of those two
algorithms are compared, the advantage of the latter is quite
noticeable. Therefore, it seems that the use of an integer
representation closer to the problem domain brings significant
advantages in the final results.

When comparing the MOO performance with the one
obtained by the single objective EA, it is also clear that the
solutions obtained by the jMetal based MOEAs are, in general,
not good alternatives for network management (from Table II).
In fact, they are quite far from the results obtained by the EA
that, regardless of the values of « (used in the optimization)
and (3, always show quite low values. Therefore, the proposed
EA with linear weighting shows a better trade-off between
both objectives, while MOEAs show a bias, behaving better
in delay optimization and failing in congestion. From Table I



it is also possible to conclude that a large number of MOO
solutions are dominated by the single objective EA’s solutions,
while the reverse is not true. In fact, the columns for the EAs
are not shown in the table because its values were always
zero. This means that the final solution for the EA is never
dominated by any solution obtained by a MOO algorithm.

The previous trends are partially also true, when JECoLi
based MOEAs are considered, but the differences are substan-
tially attenuated. In fact, these MOEAs have a much smaller
number of solutions dominated by the EAs, which means that
they are able to better explore the universe of possible trade-
offs between both objectives. Also, from TOA analysis it can
be concluded that all results from these MOEAs are within the
working region of the network and, therefore, in every case
are reasonable solutions. Still, it must also be noted that these
MOEAs do behave better in delay optimization where they
obtain even better solutions than EAs but do not reach the
same level of quality in the congestion component. Overall,
the NSGAII from JECoLi seems to provide the best MOEA
for the job.

V. A USER-FRIENDLY TRAFFIC ENGINEERING
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Fig. 1. High level components of the developed application.

This section reports on the development of an application
that aims to simplify the use of the existing framework,
hiding the complexity of the optimization tasks and making

the administration job easier and more efficient. It allows
the application of the developed optimization methods in real
environments, like ISPs or large-scale networking domains. In
this context, and as emphasized in Figure 1, it will act as a
bridge between the TE platform and the user, hiding all the
complexity associated with the platform and the corresponding
optimization mechanisms devised in this work.

This section overviews some of its features: it allows the
definition of the network topology and the definition of traffic
and delay demand matrices that should be considered; based
on such inputs, the administrator is able to simulate specific
configuration scenarios and perform the optimization of the
weights to be used to configure the OSPF routing protocol.

A. Requirements and Functionalities

The aim of developing a user-friendly TE based application
imposed a set of requirements which were taken into con-
sideration as guidelines for the implementation task. One of
the main goals of the application was to provide an easy way
to use the available optimization framework. This structured
application hides the complexity of the problem from the user,
possibly a network administrator without major programming
skills, by creating an abstraction layer between the user and the
system. Another major requirement is modularity, since there
are different methods which can be applied on the optimization
tasks. Some of those have already been implemented, but many
others can still be developed and need to be plugged into
the application, provided that those new functions meet the
specified APL

To provide a solution for these issues, in the proposed
application the user can handle different types of data, rep-
resenting elements such as network topology, demands and
delay requests, among others. Software functionalities or avail-
able actions are represented as operations. When calling an
operation, the corresponding interface is launched and the
input data objects are selected. After being triggered, an
operation typically creates an instance of an output datatype.
The required application features were mapped in operations,
divided in distinct groups, easily accessible form a graphical
interface. Those operations are listed below:

« File

— New project from files - Allows to create a project
from text files specifying the details of routers
(nodes) and links.

— Random Demands/Delay Requests - Enables the
generation of random Demands/DelayRequests in-
stances, based on a scale parameter (useful for
benchmarking).

— Load/Save - Load or Save data files (Demands,
DelayRequests, OSPFWeights).

o Simulation

— Weight Generation - This creates OSPFWeights
based on the network topology using different heuris-
tics (InvCap, Unit, L2, Random).



— Simulate Scenario - Computes resulting Loads and
Delays, based on the topology and selected De-
mands, DelayRequests and OSPFWeights.

o Optimization - Under this operation the differ-
ent optimization algorithms (EAs, MOEAs) compute
OSPFWeights, based on the selected parameters.

« Serialization - Load or Save objects using Serialization.

B. Implementation & Interfaces

The optimization framework and the developed application
are fully implemented in the Java language, which has the
advantage of being platform independent. The application
is built on top of AIBench [18], a development framework
resulting form a collaborative project between researchers
from the University of Vigo and the University of Minho.
AlBench is a lightweight and non-intrusive Java application
framework that eases the connection, execution and integration
of operations with well defined input/output. The platform was
particularly conceived to facilitate the development of research
applications based on general input—processing—output cycles,
where the framework acts as the glue between each executed
task.

Building applications over AlBench brings important ad-
vantages to both developers and users, given its design prin-
ciples and architecture. AlBench based applications follow
the Model-View-Control (MVC) design pattern, leading to
units of work of high coherence that can be combined and
reused easily. Furthermore, it is plug-in based; i.e. applications
are developed adding components each containing a set of
AlBench objects, allowing the reuse and the integration of
functionalities of past and future developments based on
AlBench.

The software development has been oriented to build a
tool aimed at network administrators. The main goal in the
development process was to provide good usability for the end
user. Every AlBench application is divided into three kinds
of components: operations, implementing the algorithms and
data processing routines; data-types, storing relevant problem-
related information; views, rendering data-types obtained from
executed operations. Based on these concepts, a user-friendly
GUI was developed.

Figure 2 briefly overviews some interfaces of the proposed
application. The layout of the components can be observed
in Figure 2 a). The clipboard (see Figure 2 f)) keeps all
data objects created within the application in a logical hi-
erarchy, being grouped by their datatypes. The root of this
tree is the ProjectBox container, that keeps a list of instances,
representing different problems. The components of a project
are graphically shown in the form of explicit hierarchical
containers, namely:

o The Network Topology, which includes information
about nodes, edges, capacities, and all the network details;

o The Demands Box and Delay Requests Box, holding
one or more instances of Demands or DelayRequests,
respectively.

o OSPFWeights, hold sets of OSPF weights, one per each
link of the network. These can be loaded from files or
generated by the implemented operations and are grouped
in the OSPFWeights box.

o Both the ResultSimul and ResultOptim aggregate the
resulting information of the operations.

When the user double-clicks an object in the clipboard, the
views of its datatype will be launched on the right side of the
working area. Examples of two views of the network topology
are shown in Figures 2 d) and 2 e). All available operations
are easily accessible, through the menu in the top or by right
clicking the item in the clipboard. Snapshots of simulation and
optimization operation input dialogs are shown in Figures 2 b)
and 2 c), respectively. In the first case, the administrator resorts
to the platform to generate OSPF weights based on the InvCap
heuristic (it generates weights that are inversely proportional
to the link capacity) and to analyze the network performance
resulting form such configuration strategy. In the second case,
the administrator instructs the application to apply a multi-
objective optimization algorithm to assist the OSPF weight
setting task. As previously mentioned, operation outputs are
grouped together in the respective ResultBox.

Figure 2 g) shows an example of a visualization window
containing a set of non-dominated solutions obtained by the
SPEA2 MOEA algorithm, for a particular network scenario.
Based on such visualization the administrator is able to
perceive, for each specific solution, the resulting network
performance (in this particular case measured in terms of con-
gestion and delays). Figure 2 h) shows the OSPF weights table
associated with a particular MOEAs solution, thus allowing the
administrator to use a near-optimal routing configuration in the
network domain. All operations are, as far as possible, default-
oriented, hiding behind scenes their complexity (e.g. avoiding
the definition of non-obvious parameters). Nevertheless, they
allow more advanced users to fine-tune the parameters avail-
able to the operation.

The optimization part of the application makes use of
JECoLi, an open-source Java-based library that was devel-
oped to implement the meta-heuristic optimization algorithms
with a focus on EA based methods [14], both single and
multi-objective. The graphical presentation of the network
topology (e.g. see Figure 2 e)) was produced using Jung
(http://jung.sourceforge.net/), a software library that provides
a common and extendible language for the modeling, analysis,
and visualization of data that can be represented as a graph
or network, being adequate to be used by the proposed TE
optimization application.

C. Availability

A preliminary version of the software is made available,
together with other resources, in the home page accessible
at http://darwin.di.uminho.pt/netopt, including the source code
and different releases of the application, which is still under
development. A full case study is detailed in the software
documentation given in the project web site. The site includes



a set of How To’s that detail how the major operations can be
achieved with the application.

VI. CONCLUSION

The development of adequate traffic engineering methods is
essential in modern network management, given the diversity
of applications deployed over IP-based networks and the
increasingly demanding QoS restrictions. In this work, we
provide a study of the application of multiobjective EAs in the
task of reaching the best link weights to configure the well
known OSPF routing protocol. Several MOEAs were tested
and compared to their single objective counterparts.

The results show that MOEAs can achieve good results
in this task, when an integer representation, closer to the
problem domain, and well designed reproduction operators are
used. Still, in some cases, the overall performance of single
objective EAs with a linear weighting scheme enables a better
equilibrium between both objectives, This is probably due
to the nature of both objective functions that are normalized
within the same range. It is important to mention that MOEAs
provide a less expensive alternative, in terms of computational
effort, since they are able to obtain multiple solutions with
distinct trade-offs between both objectives in a single run.

When faced with a selection between single and multiob-
jective EAs, the authors would recommend: (i) firstly, conduct
a quick exploration of the space of possible solutions without
having to specify any extra parameter, using a MOEA; it
will provide multiple solutions with distinct trade-offs, from
where the network administrator can select; (ii) if enough
computational resources are available, further explore the most
promising areas of the fitness space by using single objective
EAs, tuning the weighting parameter accordingly.

Finally, this work reports on the development of a free
software tool for the use of network administrators that enables
users to take advantage of these optimization methods in real
world scenarios. This application provides an user-friendly
GUI that makes available a number of TE tasks.

As further work, it would be interesting to explore the
integration of distinct classes of QoS demands in the proposed
optimization model and to implement the support to those
methods in the software tool.
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specific solution of the ones obtained by MOEAS).
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