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ABSTRACT: This paper shows the abilities of the parallel processing in the solution of linear equation systems. The solution of linear equation
systems is one of the most time consuming task in the analysis of the structural problems in civil engineering. This is more evident in finite
element analysis because the solving phase spends almost the whole time of the analysis. To solve this time consuming it is proposed the use of the

parallel processing in the solution of the equation systems.

The Gaussian elimination method, the Cholesky factorization method and the Conjugate Gradient iterative method were chosen. For these
methods it was analysed the sequential time, the parallel time, the speedup and the efficiency of the parallel algorithm relatively at the sequential
algorithm. Parallel times are gotten for 2 to 16 processors because this work was developed in a parallel computer with 16 transputers IMS T800-

20 every one with 2 MBytes of RAM.

1. INTRODUCTION

Problems of structural analysis imply, in general, the solution of linear
equation systems of large dimensions which is time consuming.

A great deal of structural studies involves systems of great dimensions
which often are not endured by the available calculation means.

The main goal of this work is to clarify the advantages that the parallel
processing might provide to structural analysis, more precisely to the
solution cof linear equation systems. Therefore this work presents some
methods of solution of equation systems to adapted to parallel processing.
The parallel processing machine used is included in the group of computers
with several processors, each of them having a local memory. These
machines processors are connected to each other by a communications net
which allows the stored data in a processor's memory to be transfered to
another.

This kind of computer known as multicomputer is made up of several
processors which are called transputers.

The transputer is considered to be a computer in a single integrated circuit
considering that the central processing unit is included in it as well as a
certain amount of memory and a connections set to communicate with the
exterior. Thus the meaning of the nomination “TRANSPUTER?”, transistor
like a computer.

This work was developed using a computer composed of 16 IMS T800-20
processors, each one containing an arithmetical processor, 2 MBytes of
—memeory-and-4-connections-to-allow communication: e ———

Speedup _and efficiency. There is a general tendency to measure not the
performance of the parallel computer but that of each parallel developed
algorithm which is done through the speedup and efficiency of each
algorithm.

The speedup, Sp, of a parallel algorithm “running through” p processors is
achieved by the quotient between time, Tseq, spent by the most rapid
sequential algorithm “running through™ a single processor, and the time,
Tp. spent by the parallel algorithm “running through” p processors
simultaneously, that is,

Sp=Tseq/ Tp @)

The speedup defined by this way, measures as many times the parallel
algorithm is more rapid than the sequential algorithm.

The optimum value for the speedup, Sp, should be equal to p, since this
means that the parallel algorithm “running algorithm™ p processor would
take p times less time than the sequential.

The speedup may thus be interpreted as the number of processors working
at 100% comparatively to the sequential algorithm.

One defines efficiency, Ep, of a parallel algorithm as the quotient between
the speedup, Sp, and the number of processors p.

Ep=8p/p (2

Efficiency shows a percentual indication of the number of processors which
were working at 100% during application comparatively to the time spent
by the sequential algorithm.

Communications. In the sequential programs all the necessary data for the
execution of the program are stored in the computer's memory, which is
unique. This does not happen exactly the same way at parallel processing.
Since these machines consist of several processors, each having a certain
amount of memory, all data necessary to the problem are stored along the
several processors' memory.

In this case to reach a specific datum of the problem it is first necessary to
know in which processor it is stored, and only after it is possible to obtain
that number through the corresponding processor.

As one can realize, the part related to data treatment in the parallel
processing, becomes considerably more complicated.

Parallel programming. The processors are linked to one another by four
available connections, this allows the definition of several configurations to
the processors net. The parallel programming language allows the
renaming of the whole set of junctions between processors in such a way as
to allow a simplified usage. This resource permits defining the type of
junction between processors more frequently used, the structure “farm”,
shown in Fig 1, which is based on bidirectional communication between

-—taster-and-slaves. This figure shows the.case-of the-master-controlling-only

two slaves.

In this configuration program A has got as subordinates programs B and C.
Program A communicates with the exterior, with B and C. The slaves only
communicate with A. Both of these neither communicate with the exterior
nor between themselves. Whenever a slave intends to communicate with
another slave, this communication must go through A.
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Fig. 1 - Structure “farm” of processors connection.



Extrapolation of values. Furthermore one observes that the parallel
algorithms will “run through” several processors each of one storing part of
the matrix of the coefficients. This means that in parallel processing one
can store more data in the computer memory, which results in the solving
of systems dimensions several times superior to what would be possible
with one processor only. To study the quality of the parallel algorithm,
comparatively to the sequential, it is necessary to extrapolate the time spent
by sequential algorithm.

For all sequential algorithms the extrapolation was calculated based on the
number of operations made by this algorithm.

2. THE GAUSS METHOD IN SEQUENTIAL PROCESSING

The Gauss method is, perhaps, the most used method in the solution of

linear equation systems. This method permits to obtain the solution to any

equation system, in an exact way.

The solving of a system of linear equations by the Gauss method involves

two steps, elimination and back substitution.

During elimination, all the values of the matrix of the system below the

main diagonal are linearly transformed in such a way that they are zero.

With the knowledge of the coeflicients in a determinated line, the

elimination of the column is made. This process begins in the first line of
" the system with the elimination of all elemierits in the first column, this

process being repeated until no non-zero elements below the main system

diagonal exist.

After this step, back substitution starts by the last line of the matrix and the

solution of the system corresponding to that line being obtained.

Implementation of the sequential algorithm. To implement the Gauss
method it was considered a symmetrical matrix of coefficients and its
semiband is stored under the form of a rectangular matrix.

Results. The times of elimination and of back substitution related to the
number of equations of the system are depicted in Fig 2 and 3 respectively.
These tim>s were obtained by extrapolation of the times of systems up to
1500 equations, the maximum capacity of one processor.
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Fig. 2 - Gaussian sequential elimination time related to the number of
equations.
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Fig. 3 - Gaussian sequential back substitution time related to the number of
equations.

The time spent by the solution of the sequential algorithm which are
presented in the Fig 2, 3 will be used to calculate the efficiency of the
parallel algorithm proposed for the Gauss method.

The extrapolation of times for the elimination was done using Eqn 3 in
which the elimination time is proportionate to the number of additions, S,
and to the number of products, P.
t=ys*S+y,*P 3)
being:
1 2 1 I,,5.1
S==N.sb*+~N.sb~~Isb" +=Isb-N 4)
2 2 3 3

1 3 1 1 5
==N.Isb®+ = N.Isb ——lIsb’ ——1sb* + Zlsb -2
3 3 s 3 s 3 s g S N (%)

N, the number of equations in the system
Isb, the width of the semiband

Equation 6 was used in the extrapolation of times for back substitution.

t=y*(S+P) ©

being:
S=N.Isb~ ~sb? - N—L1sb 7
. 5 5 )
P=leb—llsbl+llsb 8
. 5 3 (®)

3. THE GAUSS METHOD IN PARALLEL PROCESSING

To define correctly the form of the parallel algorithm a detailed knowledge
of the corresponding sequential algorithm is necessary. In order to solve a
determined system each line of the coefficients is used as the basis to
change the subsequent lines of the matrix. Each line is used to operate the
lines below, those operations being necessary to the elimination of the
elements below the main diagonal matrix.

Distribution of the matrix throughout the processors. The systems to be
solved and which justify the usage of parallel processing are systems of
high dimension which exceed the storage capacity of a sole processor. Thus
it is essential that the systems coefficients are stored in more than one
processor, the best method for this storage being the distribution of the
systems coefficients by all the processors implied in the systems solution.
The cyclical distribution of the lines of the system by the several processors
permits that all the processors work from the beginning of the solution till
its end.

~Parallel-elimination-—As—was-mentioned-above-the-system—coefticients—

matrix will be stored in several slaves, which with the use of structure
“farm”, can only communicate with master. Thus, all information
exchange between the several slaves must be done through master. Figure 4
illustrates the algorithm proposed to the parallel elimination of Gauss
method.
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Fig. 4 - Algorithm for the parallel elimination of Gauss method.



Parallel back substitution. Figure 5 illustrates the algorithm proposed for
parallel back substitution of Gauss method. In this algorithm the amount of
calculations that each slave has to do is very small. This way the
communication time spent in the distribution of numbers between master
and slaves is higher comparatively to the calculation time.
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Fig. 5 - Algorithm for parallel back substitution of Gauss method

The Gauss elimination parallel time with several processors are shown in
Fig 6. The speedup numbers are depicted in Fig 7. On can observe that the
speedup for few processors, during simultaneous processing, come close to
the optimum number. The speedup for many processors does not reach the
optimum number since the amount of communications between master and
the slaves is very big. In spite of this, one may conclude that the numbers
are really high.

In Fig 8 the algorithm efficiency, which is very high for systems of great
dimension, is represented. In fact speedups superior to 90% of efficiency
can be reached.
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Fig. 8 - Efficiency of parallel Gaussian elimination to several processors.

Concerning back substitution results are not as brilliant as those of
elimination. In relation to back substitution the amount of calculation is
very small comparatively to the amount of information transferred between
master and the slaves. Due to this, back substitution time increase with the
number of processors working simultaneously as can be confirmed in Fig
9.

—&—2pro
—B—4po
—k—6 pro
-8 pro
~3¥——10 pro
12 pro
e 14 prO|

y + + + t + J

500 1000 1500 2000 2500 3000 3500 4000 4500 $000 5500 6000

nurnber of equations

:Zi R Fig. 9 - Gaussian back substitution parallel times with several processors.

1600 / ez 4. THE CHOLESKI METHOD

1400 B—4pro The ‘great advantage .of this method comparatively to the studied above, is
o 1200 8pro obtained where one intends to solve several equations systems with the
% 1000 S—8pro same matrix of coefficients and only the vectors containing independent
& 400 10 pro terms are different. In this situation the decomposition methods are more

o0 & 47pro emciept than'the elimitiation misthods.

—+—14pro| In engineering these systems happen frequently, showing up in all problems
400 which present several loading cases for the same structure.
200 Consider an equations system written in the matricial form by:

0 B + + t + + + + + i
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

mumber of equations

Fig. 6 - Parallel Gaussian elimination times to several processors.
10
9 ] T
8
7 —&—2pro
—&—4pro
¢ —A—6pro
g 51 ~—¥—8pro
a4 —¥—10pro
3 —&—12pro
2 14 pro
18
0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
rumba of equations

Fig. 7 - Speedup of parallel Gaussian elimination to several processors.

[AH{X} = {B} ®

In this method the matrix [A] is decomposed in two matrixes [L] and [U]
one being an inferior triangle and the other being a superior triangle, one
transposed of the other.
[A]=[LLLLT (10)
The solution of a system of equations through this method involves, besides
the former decomposition, a substitution and a back substitution. The

decomposition of matrix [A] in [L][L]t by the Choleski method can be
implemented by the Eqn 11,12.

lii (¢33
j-1
a -5, 1)
L =_i_§_”i_k_ (12)
ij 1.
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The application of this method is done by calculating the main diagonal
element of the current column and, with the help of this number, calculate
the remaining elements of the respective column. To calculate these, there
is also a need for the current line elements and the line corresponding to the
main diagonal.

It is worthy of notice that all the already calculated elements belonging to
the matrix L are stored in the position where the matrix coefficients
elements can be found, in view of the fact that these are used only once
during the whole calculation process.

The capacity of a processor made the solution of systems up to 800
equations possible. With the obtained solution the time spent was
extrapolated up to 3200 equations applying the Egn 13. The obtained
values are represented in Fig 10.

t=ys*S+yp,*P 13)
being:
S=N3+§N1+3N
2 (14)
N* N* N
P —+—
6 2 3 (15)
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Fig. 10 - Times to the Choleski method for symmetrical matrixes.

The substitution and back substitution in the Choleski method is absolutely
identical to the one used in the Gauss method, one should point out that this
process spent twice the time of the back substitution of the method Gauss.

5. THE CHOLESKI METHOD IN PARALLEL PROCESSING

It is important to keep in mind that the Choleski method in sequential
processing was based on a column to column calculation, and for each
column the knowledge of the calculated elements of the line being studied
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Fig.11 - Algorithm for parallel factorization of the Choleski method.
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Fig. 12 - Choleski factorization time in relation to the number of processors
for the case of symmetrical matrixes.
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The distribution of the coefficients matrix through the several processors is
done taking into consideration the way the method of calculation chosen is
processed. Factorization is developed column by column, this implies that,
as the calculation develops, there are lines in the system which do not come
forth in the calculation. Thus one needs to resort to cyclical distribution,
otherwise, as the calculation would develop, there are processors without
coincident use and an assynchronism of the whole system would appear.

lumn-is-definitely relevant.

Parallel algorithm. The master program and the slave program is similar to
the one already used by the Gauss method. The master is in charge of the
information management and the slaves are responsible for the execution of
calculations which lead to the solution of the system. To implement
parallel factorization, where the coefficient matrix is divided through the
several processors, each line of the current matrix has to be sent to all
processors in such a way that these may proceed to the calculations of the
column which is being studied.

In Fig 11 the enchainment of master with slaves is reproduced.

In Fig 12 the Choleski factorization in relation to the number of processors
for symummetrical matrixes are shown and in Fig 13 the corresponding
efficiencies.

Comparing this method to the Gauss it presents considerably superior
efficiencies, and it is worth noticing that for the majority of the systems
solved the efficiency is superior to 90%. One also needs to point out that,
for a certain number of equations, the efficiency is less dependent on the
number of processors than in the Gauss method.
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Fig. 13 - Parallel algorithm efficiency for the Choleski method in relation
to the number of processors.

6. METHOD OF CONJUGATED GRADIENTS IN SEQUENTIAL
PROCESSING

The iteractive methods have always played an important role in the
solution of many engineering problems given the speed and simplicity
needed. Both direct methods and factorization in the solution of large linear
equations systems require a long time only to obtain the solution of a
system. The results obtained by these methods may present, in certain
situations, considerable mistakes, essentially due to the accumulation of
round-off errors resulting from the amount of calculations performed.

Using iteractive methods it is possible to obtain solutions for the same
problems with far less calculation that would prove necessary using a direct



method. From the above it is easy to realise that for systems of large
dimensions, associated to iteractive methods, there are always reduced
periods of time in the solution of linear equation systems.

The implementation of the conjugated gradients methods involves, for each
interaction, a matrix by a vector product which is brought up to date in
each interaction. This result is responsible for about 95% of the total period
of each interaction. So, only the product of one matrix by a single vector
will be analysed. Due to its easy understanding a large reference will not be
made.

Results. To this method, the case in which the system coefficients matrix is
symmetrical and in band was studied. Figure 14 shows the time spent for
the product of the system coefficients matrix by the vector already
mentioned for each interaction. The time spent for the solution of systems
superior to 1500 equations was extrapolated using Eqn 16.

t=q*P (16)
being:

P=(3lsb=2)*(Isb=1)+(2sb=D)*(n-2Isb+2) (17
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Fig. 14 - Time spent for the product matrix by vector, for the method of
conjugated gradients.
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slaves.
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parallel processing for symmetrical banded matrixes.
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Distribution_of the matrix through processors. The distribution of the
coeflicients matrix is done taking into account the way the chosen
calculation method is processed. The product of a matrix by a vector in
parallel processing, in case a cyclical distribution or one by sub-matrixes is
done in a very similar way. For symmetrical and banded matrixes each
processor only needs part of the vector to perform the operations with its
stored lines.

In Fig 15 is presented an example in which one multiplies the matrix by a
vector being the matrix stored in the slaves by blocks and the vector is sent
from the master to the slaves in each interaction. This figure allows to
conclude that each slave needs only part of the vector. As such, master does
not need to send all the elements of the vector to all the slaves.

In Fig 16 one can find the time spent by each interaction of the conjugated
gradients method and in Fig 17 for several systems of different dimensions
their respective etliciencies. The presented results refer to symmetrical and
banded matrixes with a band about 10% of the dimension of the system.

Comparatively to the other methods, the conjugated gradients methods is
the one which presents the most stable efficiencies both for a fixed number
of processors and for a certain number of equations.

number of equations

Fig. 17 - Efficiency of the method of conjugated gradients in parallel
processing for symmetrical and banded matrixes taking into account the
number of processors.

8. CONCLUSIONS

The main goal was to obtain parallel algorithms which would lead to high
levels of efficiencies for the most part of possible dimensions to be resolved
in the machine available for parallel processing.

In spite of the great difficulty underlying parallel algorithms, the developed
algorithms present a quite simple structure.

The algorithms obtained displayed high levels of efficiencies even taking
into account the lack of efficiency regarding back substitution.

Accounting for the range of systems tested and for the several methods
studied it was concluded that the efficiency to parallel algorithms is
considerably high, achieving numbers such as 90 to 95% in the case of
processors working with the all of the available memory.

As expected, efficiency decreases with the increase of the number of
processors since it implies an increase of communications between
processors, because these operations are very time consuming in this type
of machine. It was equally observed that for a determined number of
processors the efficiency increases with the increase in the number of



equations. This happens due to the fact that the increase of equations
enlarges the amount of calculation to be performed by slaves, the only
processors truely working in parallel, seeing that master only coordinates
and distributes tasks throughout the slaves.

The methods applied to symmetrical matrixes present better efficiencies
than those applied to symmetrical and banded matrixes seeing that the
latter involved more operations to be executed. The conjugated gradients
method was the one that led to smaller solution times in the analysed
systems. It is worthy of notice that this being an iteractive method, the final
time is very dependent on the type and size of the system, this is why a
direct comparison, regarding the time spent by this method with the
previous ones, should be made.

In what concerns efficiency the conjugated gradients method is the one that,
in spite of not showing, very high efliciencies presents them as very stable
both in relation to the number of processors and in relation to the number
of equations. In what concerns the other two methods, the Choleski
presents solution times inferior to the Gauss and superior efficiencies,
consequently its use in parallel processing should not be disregarded.
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