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The cork industry produces high amounts of cork powders resulting from the final stages of cork process-
ing or resulting from existing cork products. Usually these powders are burned and served to boilers in
industrial processes. The main goal of this work is to transform this cork sub-product into a highly value
composite product. The real value is dependent on the mechanical performance of this product. Thus the
mixture between cork and thermoplastics, particularly the improvement of interfacial bonding, is an
important topic, which needs to be developed. The interfacial affinity can be greatly increased, applying
superficial modification of one of the components, or by the use of coupling agents. In this work, a high
amount of cork powder (50 wt.%) from different origins combined with different thermoplastic materials
using melt based processes has been examined. Pultrusion was used to produce pellets and compression
moulding to obtain boards to determine its properties. Coupling agents based on maleic anhydride
(2 wt.%) improved the tensile strength successfully, while the cork powder has an a important role in
the stiffness. The morphology of the surface fractures indicated a good dispersion of the cork and a good
adhesion between both phases. Thermal properties of the composites disclosed a nucleating effect pro-

moted by cork.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Cork is the outer bark of an oak tree known botanically as Quer-
cus suber L. which is periodically extracted from the tree, usually
every 9-12 years, depending on the culture region [1-3]. Cork pre-
sents a homogeneous tissue of thin-walled cells, regularly arranged
without intercellular space [3,4]. The cells are rectangular prisms,
mostly pentagonal and hexagonal like a honeycomb structure
(see Fig. 1), with their axes along the tree’s radial direction, stacked
in columns [4,5]. Like wood, cork is a lignocellulosic material were
suberin an aliphatic polyester is the main chemical component of
cork cell walls 30-50% [2,6,7] that is not present in wood cell walls.
This anisotropic material has a unique combination of properties,
such as a high coefficient of friction [8], resilience, imperviousness
to liquids (excellent sealing ability), low thermal conductivity, low
density [1], high energy absorption, excellent insulation properties,
near-zero Poisson coefficient [9], fire resistant, among others, that

* Corresponding authors. Address: 3B’s Research Group - Biomaterials, Biode-
gradables and Biomimetics, University of Minho, AvePark, Zona Industrial da
Gandra, 4806-909 Caldas das Taipas, Portugal. Tel.: +351 253 510900; fax: +351 253
510909.

E-mail addresses: efernandes@dep.uminho.pt (E.M. Fernandes), rgreis@dep.
uminho.pt (R.L. Reis).

0266-3538/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compscitech.2010.09.010

makes it a adequate material for a variety of applications [3,5,10].
Every second, an area of rain forest corresponding to 19 tennis
courts is lost [11], where the cork-tree offers the advantage of re-
main the only tree whose bark can regenerate itself after harvest,
it is truly a renewable, environmentally friendly resource [2,12].

The most important sub-product provided from the different
processes of cork industry is the cork powder, which possesses a
high heating value, serving as raw material to feed the boilers in
industrial processes [3,13] but its commercial value is insignificant.
There exist diverse types of cork powders that present different
features. The most important are: the grinding powder, from gran-
ulation or pre-grinding; the cleaning powder, without impurities;
the finishing powder from cut and sanding operations or from cork
disks and natural stoppers and finally the “burning powder” that
comes from the mixture of these powders [13]. The degradation
of cork is strongly dependent on temperature and mass losses be-
come significant at 200 °C [14] and the colour start to change to
dark brown and at 300 °C to black [15]. At lower temperatures
75-85 °C, only a phase transition was assigned to the melting of
waxes present in cork obtained by DSC that was corroborated by
dielectric spectroscopy [16,17].

The aesthetical nature, the touch and the feeling of comfort pro-
moted by the cork is also valued in several applications [18,19]
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Fig. 1. Cork morphology according: (a) radial direction and (b) non-radial
directions.

were its combination with other materials can improve their
performance.

Cork combined with polymers leads to composites with novel
properties and presents a new field of applications that contributes
for the sustainability of the forestry sector. Cork-polymer compos-
ite (CPC) materials intend to combine the engineering properties of
the thermoplastics with the unique described advantages of this
natural origin material trough appropriated melt based technolo-
gies in order to develop products with new shapes from theses that
cork can provide for acoustic, thermal insulation, energy absorbing
or aesthetic applications. Earlier the industry saw in this natural
material potential to be used in melt based technologies like extru-
sion [20-22] or to create a wood substitute material [22]. In a
study performed by Barlow and Ashby [23], cork powders were
mixed with different binding agents with a thermoplastic, a ther-
moset and a silicone rubber matrixes to create CPC. The mechani-
cal performance of the composites decreases with the increase of
cork content.

In the last years there was an increasing interest on the CPC
materials [24-27] for different uses. Another study combines poly-
propylene with cork that was previously submitted to a surface
modification to improve cork-matrix adhesion, based on a water
treatment at room temperature during 1-3 h [28] and more re-
cently some applications are looking to the valorisation of the cork
powders [29-31]. The improvement of interfacial bonding, be-
tween the cork and the matrix is a field that needs to be further
developed, for example by using superficial modification of one
of the components or by the use of coupling agents. In other poly-
meric composites based on wood several studies propose different
strategies to increase the interfacial adhesion between the differ-
ent composite phases [32,33]. The use of these kinds of methodol-
ogies has been scarce in materials containing cork.

In this study, cork powder with different qualities were mixed
in high amounts (50 wt.%), and were compounded with thermo-
plastic materials in a pultrusion system to create CPC pellets. These
pellets were compressed moulded to obtain boards with a high
dimensional stability. The effect of two coupling agents based on
a low percentage (2 wt.%) of maleic anhydride was analysed. The
coupling agents were applied to promote adhesion between the
cork-polyolefin phases, to improve tensile strength and the cork
dispersion.

2. Materials and methods
2.1. Cork materials

Several cork powders, from cork processing stages were col-
lected at the Amorim Revestimentos S.A. (Portugal) industrial facil-
ities. All of them are cork based powders coming from the
processing industries namely, grinding powder, or sanding pow-
der, external powder, cork style powder and floating powder, with
density raging from 157 to 400 kg m—.

Grinding powder is mainly composed by the outer bark. This
sub-product is characterized by having high density and dark
brown colour (Fig. 2), resembling the wood bark in its visual as-
pect. Moreover, this powder presents contaminations with silica
from the sandpaper, resins, varnish and paint pigments due to
the incorporation of materials for recycling. Sanding/external pow-
der is mainly composed of cork particles of good quality and low
density. It may also present some contaminations with resins from
the agglomeration glues and glue from the decorative process and
some silica from the sandpaper but in very low amounts. Cork-
style® powder is composed of high density fibreboard (HDF)
formed during the machining process of the dock and cork, with
a greater amount of HDF powder. The density is very similar com-
pared with the floating powder. Floating powder consists of cork
and HDF particles. Polyvinyl chloride (PVC) particles are also pre-
sents in small amounts. Some varnish, paint pigments, resin and
sinter bonding motifs may be present.

2.2. Polymer materials and coupling agents

A commercially available polyethylene (HMA - 025), PE, with a
MFI of 8.2 g 10 min~! (190 °C, 2.16 kg). A polypropylene homopol-
ymer (1374 E2), PP, with a MFI of 20.8 ¢ 10 min~' (200 °C, 2.16 kg).
Both polymers were supplied by Exxon Mobil (Germany). A mix-
ture of recycled polyolefins in the grinding form with a MFI of
2.4g10min~' (190 °C, 2.16 kg), provided by Pallmann Maschinen-
fabrik GmbH and Co., Germany was also used for the preparation of
composites. All tests of melt flow index were carried out according
to ISO 1133. Two different coupling agents based on maleic anhy-
dride were used: 102-1 K1 MDEX for polyethylene and Po 1020 K1
for polypropylene respectively, supplied by A. Schulman GmbH,
Germany.

2.3. Composites processing

The different cork powders were mixed with the thermoplastics
(in 50-50 wt.% ratio) in the dry form and further compounded in
an industrial pultrusion system (Palltruder PFV 250, Germany) to
obtain cork-polymer composite pellets (Pallmann Maschinenfab-
rik GmbH and Co., Germany). Before compounding all raw materi-
als were pre-dried at 70 °C over night to stabilise the cork powders
in terms of moisture content.

The prepared compositions and processing conditions are sum-
marized in Table 1. In a further step, compression moulding of the
obtained pellets using a hydraulic press from (Moore, UK) was
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Fig. 2. Ambiental scanning electron micrographs of each cork powder quality provide from the different steps of cork industrial process used to produce the CPC.

applied to produce boards with 3 mm of thickness from the different
compositions. The mould temperature was around 150-170 °C
depending on the thermoplastic matrix and the pressure was
1.42 MPa. Tensile bars were obtained from these boards using a
CNC machine (Roland 3D Plotter MDX-20, UK). The specimens had
a neck cross-section area of 3 mm x 4 mm and a gage length of
20 mm. The specimens were produced according ISO 527-2. Never-
theless, its thickness is slightly higher (3 mm) than the standard.

2.4. Cork and pellets density and humidity

2.4.1. Cork density
The bulk density of the different cork powders was determined
using a volumetric flask of 500 ml were it was placed and com-

pacted the material to minimise the possible empty spaces be-
tween the particles.
m

d=— (1)
The Eq. (1) was applied for density calculations were, d is the spe-
cific weight (kg/m?) of the cork raw material, m is the weight of
the compact cork powder and v is the volume occupied by the cork
powder into the volumetric flask. Three measurements were per-
formed for each cork powder. The specific weight results and
respective standard deviation are presented in Table 2.

2.4.2. Pellets apparent density
The apparent density of the different composite pellets,
obtained after pultusion, was determined using the liquid
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Table 1
Processing conditions used for various blend and composite compositions studied.

2313

Code Cork powder Polymer Coupling agent (wt.%) Composite (wt.%) Pultrusion conditions
Temperature (°C) Motor current (A) Pellets humidity (%)
PP-GP4 Grinding PP - 50-50 160 150 0.90
PP-GP, Grinding 2 49-49 160 150 1.00
PP-SP; Sanding - 50-50 170 120 0.20
PP-SP, Sanding 2 49-49 170 120 0.50
PP-EP, External - 50-50 150 120 0.20
PP-EP, External 2 49-49 150 120 0.20
PP-CSPy Cork style - 50-50 160 130 0.50
PP-CSP, Cork style 2 49-49 165 130 0.30
PP-FP, Floating - 50-50 150 120 0.20
PP-FP, Floating 49-49 160 120 0.20
RP-SP, Sanding Recycled - 50-50 150 130 0.35
PE-SP; Sanding HDPE - 50-50 150 135 0.20
PE-SP, Sanding 2 49-49 140 120 0.20
PE-EP, External - 50-50 135 130 1.01
PE-EP, External 2 49-49 135 130 0.35
PE-CSP Cork style - 50-50 140 130 0.30
PE-CSP, Cork style 2 49-49 130 125 0.30
PE-FP, Floating - 50-50 130 130 0.35
PE-FP, Floating 2 49-49 130 125 0.40
Table 2 samples were sputter-coated with gold before being analysed.

Type of cork powders and their characteristics in terms of distribution size, specific
weight and the percentage of moisture, used for preparing cork based composites.

Granulometry mesh  Quality of cork residue

(mm) Floating  Corkstyle  Grinding  Sanding/
(%) (%) (%) external (%)

>4 1 0.4 0 0

2.8-4 1.9 2.6 0 0

2-2.8 4 8.1 0.2 0

1-2 10.2 2.2 0.3 0.7

0.5-1 10.3 22.1 429 7.6

0.25-0.5 14.2 13.1 34.2 3.5

<0.25 58.4 26.5 224 61.2

Sum 100 100 100 100

Specific weight 256 +7 273+6 409+6 1572
(kg/m?)

Initial humidity (%) 5.8+04 6.4+0.1 18.0£03 54+0.1

After drying 27+03 35102 42+0.2 3.2+0.1

humidity? (%)

¢ Humidity% present after dry in a vacuum oven during overnight at 70 °C.

displacement method based on the Archimedes principle. By this
method, the volume of the sample is estimated by the mass of
the volume that is displaced when the sample is submerged in a
liquid. Thus, cork-polymer pellet samples weighting between 7
and 11 g (the weight was determined with a precision nearest to
0.0001 g) were it was added distillate water to fulfil the empty
spaces between the pellets. Special care was taken to avoid the
presence of air bubbles. This procedure was performed three times
for each condition.

2.4.3. Humidity

The percentage of humidity of the different cork powders was
determined using a balance Sartorius (Sartorius AG, Germany)
were the cork powder was submitted to 105 °C during a period
of 10 min. This procedure was performed three times for each cork
powder sample and the results are presented in Table 2.

2.5. Scanning electron microscopy

The morphological characterization of the developed cork-
polymer composites fracture surface was performed using a Lei-
ca-Cambridge S-360 (UK) scanning electron microscope. All the

The cork powders were analysed using a Quanta 400 FEG model
(FEI, USA) ambiental scanning electron microscope with low vac-
uum to avoid any possible desire effect in the natural raw material
structure.

2.6. Thermal properties

The differential scanning calorimetric experiments were per-
formed in a TA instrument DSC Q100 model (USA), using a refrig-
erated cooling system and nitrogen as a purge gas (flux gas of ca.
50 ml min~!). Both temperature and heat flux were calibrated with
Indium at a scanning rate of 10 °C min~'. The samples were ob-
tained by cutting a small piece of material (with 5-5.5 mg wt.) in
the central region of the composite pellets parts. An effort was
made to maintain the geometry of the different samples, in order
to keep the same thermal resistance. All the experiments were per-
formed at 10 °C min~', starting from room temperature. Only the
second run was analysed for melting temperature (T,,) and melting
enthalpy (AH,,), which reflects the effect of the cork material con-
tained in the composite avoiding the morphology effect developed
during the processing. The crystallinity values of the polymeric
phase were determined from the cooling cycle using the following
equation:

Degree of Crystallinity (%) = (AH;/AHy-) x 100 (2)

where, AH,, is the melting enthalpy of the polymer and AH,. is the
enthalpy of 100% crystalline PP (AH,- = 209 ]/g) [34].

2.7. Optical microscopy

To understand the nucleating ability of cork on the matrix, a
single cork powder was sandwiched between two thin PP films
and heated at 200 °C during 10 min to erase the previous thermal
history of the sample. Then, the sample was quickly shifted to a
well-controlled temperature stage (Linkam, THMS-600) where
the pre-determined crystallization temperature was maintained
at 140 °C for 1 h, to access to the crystallization process. A fast
cooling was estimated to be 80 °C min~! was used to reach the iso-
thermal crystallization temperature. Dry nitrogen was introduced
to eliminate any possible degradation in all cases. The crystalliza-
tion of PP on the cork powder was observed on an optical micro-
scope (Olympus B) connected to a Leica digital camera.
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Fig. 3. Morphology of the tensile-fracture surface of cork-polymer composites. (a and b) PP-SP2; (¢ and d) RP-SP1; (e and f) PE-SP2.

2.8. Mechanical properties and statistical analysis

The tensile properties were determined using a Universal ten-
sile testing machine (Instron 4505 Universal Machine, USA) using
a load cell of 1 kN. The tensile force was taken as the maximum
force in the force deformation curve. Tensile modulus was esti-
mated from the initial slope of the stress-strain curve (between
0.05% and 1% strain) using the linear regression method. Samples

were conditioned at room temperature for at least 48 h before
testing. A crosshead speed of 5mmmin~' was used up to a
deformation at break. The average and standard deviations were
determined using seven specimens. The normality of the distribu-
tion of the mechanical results was evaluated using Shapiro-Wilk
test confirming their normal distribution at p < 0.05. The results
were compared using a two-sample t-test and differences were
considered significantly different at p < 0.05 ().
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Fig. 4. Density of the CPC pellets after the pultrusion process.
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Fig. 5. Representative DSC thermograms, obtained at 10°Cmin~' of the CPC

materials using PP as matrix of the composite: (a) second heating step and (b) first
cooling step.

3. Results and discussion
3.1. Characterization of the cork powders
The different cork powders used on this study were physically

and morphologically characterized before compounding. The used
powders and some of their characteristics are presented in Table 2

and Fig. 2. Since the sanding powder and the external powder are
very similar, a mixture of the referred powders was used in the work.

Of the analysed cork powders, the grinding powder was the one
with higher specific weight (409 + 6 kg m~3). This residual powder
was also the one with the highest moisture content (18%) probably
due to the presence of the wood present from the outer bark that is
more hydrophilic than cork.

The sanding/external powder is the powder with lowest specific
weight (157 = 2 kg m—3) and lower range of particle size distribu-
tion (60% of particle size less than 0.25 mm). This material was also
the one presenting the lowest humidity (around 5.4%).

The Corkstyle® powder and the floating powder presents a spe-
cific weight of 273 +6 kg m~> and 256 + 7 kg m~> respectively. In
terms of humidity the values are very similar and regarding the
particle size distribution, the floating powder has a higher content
of small particles (around 58%) less than 0.25 mm.

Table 2 also reports the humidity present in the different pow-
ders before the preparation of the composite materials. Since the
cork sub-products tend to absorb moisture, all the natural raw
materials were pre-dried overnight in a vacuum oven to stabilize.
The percentage of humidity present was around 2.65-4.18%.

3.2. Composite morphology

Fracture surfaces after mechanical tests of the cork-polymer
composites, obtained by scanning electron microscopy, are shown
in Fig. 3. In the micrographs is possible to observe the good
dispersion of cork sanding powder in the different thermoplastic
matrixes. At high magnifications the fracture surface of cork sand-
ing powder with PP and 2 wt.% of coupling agent (Fig. 3b) indicates
good adhesion between both phases of the composite. The same
behaviour was observe for the PE matrix (Fig. 3e and f); while
the cork sanding powder mixture with the recycled polymers at
a high magnifications (Fig. 3d) demonstrate some pull out of the
polymeric phase and some regions with gap between both phases.
This may be due to the lower mechanical properties of this matrix
since is a mixture of different grade of recycled plastics that could
contain some impurities and due to the absence of coupling agent
to improve the interface bonding.

3.3. Pellets density

Fig. 4 indicates the apparent density of the cork-polymer com-
posite pellets after the pultrusion process for all tested composi-
tions presented in Table 1. The results indicates an important
decrease in the density compared with the density of the matrix
PE (964kgm3) and PP (900 kg m 3).The pellets density are
around 580-630 kg m~> except for grinding cork powder with

Table 3

Melting temperatures and enthalpies, crystallization temperatures and crystallinity degrees of CPC composites with PP as matrix.
Sample T2 (°C) AHZ (J[g) A" (%) Tmb (°C) AHmb (lg) A" (%)
PP 119.7 99.1 70.8 153.5 91.5 65.3
PP-GP; 1243 57.2 (114.4) 40.9 (81.8) 155.0 55.3 (110.6) 39.5 (79.0)
PP-GP, 124.2 61.8 (126.1) 44.2 (86.6) 155.2 60.5 (123.5) 43.2 (84.7)
PP-SP; 126.9 51.3 (102.6) 36.7 (73.4) 155.8 50.9 (101.8) 36.4 (72.8)
PP-SP, 128.0 40.7 (83.1) 29.1 (57.0) 154.7 39.4 (80.4) 28.1 (55.1)
PP-EP; 1244 49.6 (99.2) 35.4(70.8) 156.8 48.7 (97.4) 34.8 (69.6)
PP-EP, 124.2 54.9 (112.0) 39.2 (76.8) 155.0 52.9 (108.0) 37.8 (74.1)
PP-CSP; 124.0 55.7 (111.4) 39.8 (79.6) 155.3 53.7 (107.4) 38.4 (76.8)
PP-CSP, 1249 43.2 (88.2) 30.8 (60.4) 156.2 42.4 (86.5) 30.3 (59.4)
PP-FP, 125.6 50.7 (101.4) 36.2 (72.4) 154.2 49.4 (98.8) 35.3(70.6)
PP-FP, 126.0 48.5 (99.0) 34.7 (68.0) 155.2 47.3 (96.5) 33.8 (66.3)

(-) Values divided by the weight proportion of polymer.

2 Crystallization temperature and enthalpy at second cooling from the melt at 10 °C mm
> Melting temperature and enthalpy determined by DSC on the second heating at 10 °C mm

-1
-1

¢ Crystallinity degree calculated on the basis of a AH,, value of 209 J/g for 100% crystalline PP [35].



2316 E.M. Fernandes et al./ Composites Science and Technology 70 (2010) 2310-2318

higher specific weight (see Table 2). The higher the density of the
cork powder the superior is the density of the pellet composite.
The production of composites by pultrusion process using high
amounts of cork powder allows obtaining light weight composite
materials. After compression moulding process of the pellets the fi-
nal density of the composites is higher and very similar (1000~
1060 kg m~3) independently of the cork sub-product used.

3.4. Crystallization and melting properties

Thermal properties of all materials prepared were investigated
by DSC. Representative DSC curves for the composites and pure

Fig. 6. Optical micrographs showing the crystallization of PP in the presence of
cork: (a) 5 min; (b) 45 min and (c) 45 min (T, = 140 °C, polarized light).

PP are shown in Fig. 5. The results are summarized in Table 3. Pure
PP presents a crystallization temperature (T;) of 119.7 °C. Compar-
ing the pure PP with the cork-polymer composites, the T, shifted to
higher temperatures in the case of the composites. The increase of
T, could be considered to be due to the nucleation effect of cork
present in the composites.

Melting temperatures (T,,) of pure PP was 153.5 °C. The T,;s of
the PP was not significantly affected by the addition of cork during
the pultrusion process. Therefore, the addition of cork powders in
PP does not have a significant influence on the thickness of the
crystalline lamellar of the matrix. Values of AH,,, provide important
information about the crystallinity and shows significant varia-
tions in the composites. These results lead us to conclude that
the addition of cork powder increases the crystallinity of the poly-
mer in the most part of the compositions.

3.5. Optical microscopy

Fig. 6 presents the initial crystallization process of PP in the
presence of the cork powder particle. The results suggest that this
process takes place preferably at the surface sites of cork.
Nevertheless once can observe simultaneously with this process
the growth of individual of spherulites in the matrix. When cork
is embedded into a thermoplastic melt it may act as a nucleating
agent during the crystallization process. The result is more evident
in Fig. 6¢ in polarized light where it confirms the high number of
spherulites around the cork. This nucleation effect is different from
other fibres used in composites. In this case no transcrystalline
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layer on the cork usually found in semicrystalline thermoplastic
composites with different synthetic or natural fibres [35-37] was
observed. The present effect it is in accordance with the previous
DSC results indicating the nucleation ability of cork.

3.6. Mechanical properties of composites

In order to characterize the mechanical performance of the
developed cork based composites, tensile tests were performed.
Figs. 7 and 8 summarize the obtained results, in terms of tensile
modulus and maximum tensile stress, for composites prepared
with PP and PE matrices, respectively. One formulation consisting
of recycled polyolefin’s and cork sanding powder was also com-
pounded and characterized (Fig. 8). All results are expressed as
means * standard deviation.

Considering the data from both Figs. 7 and 8, it is clear that
composites prepared using PP as matrix are the ones with better
mechanical performance, being the condition PP-GP1 the one with
the highest stiffness and strength absolute values. Two reasons can
be used to explain the better performance of this composition: (i)
pure PP has better mechanical properties than PE; (ii) the grinding
powder (Fig. 2) is mainly composed of the outer bark that is denser
and very similar to wood and could work as a more effective rein-
forcement. In general, composites from PP exhibited mean tensile
modulus and maximum stress values respectively in the intervals
[523.6-650.5] MPa and [13.0-18.7] MPa, depending on the type
of cork powder used. Composites prepared using PE as matrix
and the different cork based powders displayed mean compressive
modulus and maximum stress values respectively in the intervals
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Fig. 8. Tensile properties of various CPC materials using PE and recycled polymer as
matrix. () Significant at 0.05; ns: non-significant at 0.05.

[365.3-545.8] MPa and [12.4-16.0] MPa. Almost no correlation be-
tween the type of cork powders used and the final mechanical per-
formance of the composites was observed.

Considering the formulation with best performance for each
type of matrix used, the addition of 50 wt.% of cork powder in
the most part of the compositions did not affect significantly
(p < 0.05) the modulus of the final product, especially for the com-
posites prepared with PP. Nevertheless, a decrease higher than
~50% on the strength was noticed.

As expected, the addition of a small amount (only 2 wt.%) of
coupling agents (102-1 K1 MDEX for PE and Po 1020 K1 for PP) re-
sulted in a significantly improvement (p < 0.05) of the mechanical
performance in all the formulations studied. This effect is more
pronounced on the strength of composites prepared using PP as
matrix and increases up to 40.9% (condition PP-FP,) were achieved
with the addition of Po 1020 K1 coupling agent. This is a clear indi-
cation that the use of a coupling agent improved the interfacial
adhesion between the matrix (PP or PE) and the cork based powder
used. Several studies on the literature report the positive effect of
using coupling agents on the mechanical properties of composites
[31,33].

4. Conclusions

The following conclusions can be made base on the results pre-
sented in this work. SEM observation revealed well dispersed cork
powders in the compression moulded samples after the pultrusion
(pellets) and compression moulding processes. As expected, the
tensile modulus and tensile strengths were significantly increased
in the composites with the introduction low amounts (2 wt.%) of
coupling agents to promote the adhesion between the cork-poly-
mer phases. No significantly correlation between the type of cork
powders used and the mechanical performance of the composites
was observed. Cork powders that presents some wood particles in-
duces similar stiffness only in the PP matrix, probably because the
powder composition is based on outer bark and has higher density.
The recycled polymer based on polyolefin’'s combined with the
cork sanding powder reveal the lowest mechanical performance.
The increase of the crystallinity on the composites occurred due
to the addition of the cork powder, where cork presents a nucle-
ation effect. By polarized optical microscopy it was confirmed that
cork accelerates the crystallization process. The results of the pres-
ent work clearly show that cork powders and polyolefin’s can be
successfully used to produce CPC with high cork content. In order
to obtain cork based composite materials with enhanced mechan-
ical properties, reinforcement strategies must be taken in
consideration.
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