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Abstract 

A study on the structure, electrical and optical properties of ZnO thin films produced by 

r.f. magnetron sputtering and implanted either with phosphorous (P) or antimony (Sb) is 

reported in this work. Raman spectroscopy, X-ray diffraction, optical transmittance and 

Hall effect measurements have been employed to characterize the samples. X-ray 

diffraction and Raman scattering patterns confirm that, after a 500ºC annealing, the 

doped films keep a polycrystalline nature with (002) preferred orientation. These films 

are very transparent and Hall effect results show that all have p-type conduction, despite 

doping ion and dose. The electric resistivity reaches values of 0.012 (cm) and 0.042 

(cm) for the P and Sb-doped samples, respectively.  
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1. Introduction 

Zinc oxide (ZnO) is a II–VI wide direct-gap semiconductor with a band gap of 3.37 eV at 

room temperature and a free exciton energy of ≈ 60 meV. Both characteristics make it an 
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interesting material for optoelectronic applications in the near ultraviolet (UV) region, 

such as UV light-emitting diodes and diode lasers [1,2]. ZnO-derived materials have 

other potential technological applications, namely as transparent conductive contact, as 

alternative to ITO [3,4].  A wider field of applications will be reached as soon as a stable 

and reproducible p-doped ZnO is processed [5].  However ZnO is an intrinsic n-type 

semiconductor due to its natural defects - oxygen vacancies or interstitial zinc. Thus, it is 

difficult to produce p-type doped-ZnO, achieving low electrical resistivity and high-hole 

concentration, because of its self-compensating effect, deep acceptor level, and low 

solubility of acceptor dopants. 

In this work, a study on the optical and electrical properties of ZnO thin films doped 

either by phosphorous (P) or antimony (Sb) is presented. Crystalline structure and optical 

and electrical properties have been analyzed as a function of the doping species and of it 

concentration.  

 
2. Experimental 

Transparent ZnO thin films have been produced by r.f. magnetron sputtering method [6], 

in an Alcatel SCM 650 sputtering system. Radio frequency (13.56 MHz) reactive sputter 

deposition has been carried out (RF power of 50W) after the camera had reached a base 

pressure of 510-5 Pa. The target consisted of a hyper-pure (99.99%) metal zinc wafer 

spaced 60 mm away from the substrates and the deposition has been performed under a 

mixture of O2 and Ar gases. The produced films have thickness of about 250 nm. After 

ZnO deposition, the samples have been separated in two series, implanted either with 

phosphorous (P) or with antimony (Sb). Doping nominal doses have been 15101  

(ZnO:P1, ZnO:Sb1), 15105  (ZnO:P2, ZnO:Sb2) and 151010  atoms cm-2 (ZnO:P3, 
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ZnO:Sb3). The implantation energy has been 50 KeV for Sb and 100 KeV for P. 

Afterwards, the films have been annealed in vacuum for one hour at 500oC, in order to 

recover from the implantation damage and to activate the implanted ions. Structural and 

electrical characterisation of the doped samples has been entirely performed after this 

thermal treatment. 

X-ray diffraction and Raman spectroscopy have been used in order to characterize the 

films microstructure. X-ray experiments have been performed at room temperature in a 

Philips PW 1710 diffractometer using Cu-K radiation, in a Bragg-Bretano geometry in 

the range 30º < 2 < 41º. Micro-Raman spectra have been measured in a frequency range 

of 200-2000 cm−1, using the 514.5 and the 488 nm excitation lines of an Ar+ laser, in the 

back scattering geometry, on a Jobin-Yvon T64000 spectrometer equipped with a liquid 

nitrogen-cooled CCD detector. The incident laser power has been kept at 9 mW and each 

scan has been acquired at room temperature for over 600s (60s/scan). Each scan has been 

repeated at least once to ensure the reproducibility of data. 

In order to check the incorporation of doping ions into the ZnO matrix, XPS 

measurements have also been carried out in a few samples, under monochromatic Al-K 

radiation (hν = 1486.92 eV) using a VG Escalab 250 iXL ESCA instrument (VG 

Scientific). 

Optical transmittance spectra of the films have been assessed by means of a Shimadzu 

UV 3101 PC spectrophotometer. Thickness and optical parameters in the visible and near 

infrared range (from 250 to 2500 nm) have been obtained from these spectra by the 

Minkov method [7]. The dispersion of the dielectric constant used in the parameterization 
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of the optical constants of the films is based on a classical Lorentz/Drude dielectric 

function, )(~ E : 
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where   is the high frequency dielectric constant, 0E , b  and f are, respectively, the 

resonance energy frequency, the line-width and the strength of the Lorentzian oscillator, 

related with the bound electrons,. C  is a constant associated to the number of free 

carriers and 
f

  is the corresponding dumping related to the inverse of the mobility.  

Electric resistivity has been measured at room temperature in a standard d.c. system by 

using the Van der Pauw technique [8]. Hall-effect measurements have been carried out 

under the same four-point configuration in a magnetic field of 1300mT, using both 

polarities of current and magnetic field. 

 
3. Results and discussion  

Figure 1 depicts transmittance spectra of a typical ZnO film before implantation (as 

grown), immediately after implanting phosphorous (heavier dose) and after thermal 

annealing. Films remained very transparent in the visible and near IR range and with 

good optical quality, exhibiting well defined transmittance fringes. In inset, a detail of the 

fitting to data. Damage created by ion implantation into the ZnO films as well as the 

recovering from it by thermal treatment are well perceptible on these spectra. 

XPS analysis performed in one P-doped sample (ZnO:P2) reveals that it is stequiometric 

and contains both P-O and Zn-O bonds but no P-Zn, enabling to state that most of the 

dopant ions are in substitutional Zinc sites. 
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Figure 1 – Transmittance spectra of an as-grown ZnO thin film and of the same film implanted with 

phosphorous, before and after annealing. The inset shows a typical fit that allows determining 

thickness and optical parameters. 

 
All the as-grown ZnO thin films show single phase hexagonal wurtzite structure with 

highly crystalline preferential orientation along the c-axis, perpendicular to the substrate 

surface. These films present such high electrical resistivity that we have not been able to 

measure it by the traditional four-point method. The well oriented hexagonal, wurtzite 

structure is maintained in doped samples, as confirmed by X-ray diffraction spectra.  

The c-lattice parameter domain size (D), in addition to the strain along c-axis (ezz), and 

the corresponding stress () have been calculated according to common procedure 

described in the literature [9,10]. Data in Table I reveal that the annealing treatment 

releases completely the compressive stress in doped samples. However, the average 

domain size in all doped samples is smaller than in the non-doped ones submitted to the 

same annealing treatment, indicating that the crystalline damage due to implantation has 

not entirely been recovered. This effect is even clearer in P-doped samples.  
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Table I - Structural parameters obtained by XRD of undoped and doped ZnO thin films. 
D stands for the domain size and  for the stress along c-axis. 

sample 2(200) 
(degree) D nm (GPa) 

ZnO - as grown 33.76 6.2 -8.5 
ZnO - annealed 34.34 25.7 -1.0 

ZnO - P1 34.44 15.1 0.2 
ZnO - P3 34.39 13.0 -0.5 
ZnO - Sb1 34.41 20.2 -0.1 
ZnO - Sb3 34.44 16.9 0.2 

 

Results of the electrical resistivity () of doped samples obtained through a Van der 

Pauw geometry, of their carrier concentration (nHall) and Hall mobility (Hall) calculated 

from Hall effect measurements [11] are shown in Table II. Resistivity values as low as 

0.012 cm and 0.042 cm have been obtained for P and Sb-doping respectively. All 

the annealed-doped films present p-type conduction despite of doping ion and dose.  

It can also be noticed that independently of the dose, Sb-doped samples show higher 

electrical resistivity than P-doped ones, indicating that in the latter the incorporation of 

doping ions into the ZnO lattice is more effectively achieved. For both series, resistivity 

decreases with increasing doping dose, since both type of carriers (n and p) contribute 

to resistivity. 

Table II - Resistivity (), carrier concentration (nHall) and Hall mobility (Hall) of 
implanted ZnO samples 

Sample Carrier type cm) nHall (cm-3) Hall (cm2V-1s-1) 

ZnO:Sb1  0.146 5  1021 10  10-3 
ZnO:Sb2 p-type 0.132 28  1021 2  10-3 
ZnO:Sb3  0.042 7  1021 20  10-3 

     
ZnO:P1  0.025 13  1021 16  10-3 
ZnO:P2 p-type 0.015 38  1021 11  10-3 
ZnO:P3  0.012 41  1021 13  10-3 
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In P-series the increase of the electrical conductivity with increasing dose is followed 

by the raise of carrier concentration, while Hall mobility keeps practically constant. 

This implies that the phosphorous ions effectively contribute to the p-type conductivity. 

The small difference between the results from films ZnO:P2 and ZnO:P3 suggest that 

the latter must be near doping saturation. 

In Sb-series, samples ZnO:Sb1 and ZnO:Sb2 have an electric behaviour very similar to 

the P-doped ones. However, ZnO:Sb3 film has a quite different one: though its 

conductivity is higher than that of ZnO:Sb2, the Hall-effect-derived carrier 

concentration is lower, which suggests that the increase of the conductivity follows out 

an increase of n-type carriers, possibly resulting from a higher concentration of O-

vacancies in this sample or from a poor incorporation of doping ions into it. 

It should be noticed that the high value calculated for the Hall mobility in the ZnO:Sb3 

film should not be directly associated to a high value of its mean free path, since it is 

consequence of the balance between the number of p-type and of n-type carriers.  

Aiming to better understand the source of the difference between ZnO:Sb and ZnO:P 

resistivity values, as well as the peculiar number of carrier concentration obtained for 

ZnO:Sb3, Raman analysis have been performed.  

Vibrational properties of the doped ZnO thin films have been studied by microRaman 

spectroscopy. Figure 2 and 3 show the Raman spectra of all samples. The characteristic 

437 cm−1 peak of ZnO wurtzite structure, assigned to the non-polar optical phonons (E2-

high) mode is present in all spectra in a similar shape. Likewise, a broad band between 

500 and 650 cm-1 is well defined in all of them, though its profile changes from P-doped 

films to Sb-doped ones. It is particularly intense in the latter and considerably differs for 
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different Sb-doping doses. The relation between this band and the E2 peak increases from 

spectrum to spectrum as the Sb content rises, mainly from ZnO:Sb2 to ZnO:Sb3. 
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Figure 2 – Raman spectra of ZnO:P thin films excited with 488 nm laser line. The spectra intensity is 

vertically shifted for clarity. 
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Figure 3 – Raman spectra of ZnO:Sb thin films excited with 488 nm laser line. The spectra intensity is 

vertically shifted for clarity. 

According to literature, in this spectral range there are two phonon longitudinal (LO) 

modes of ZnO: at 574 cm-1 and at 583 cm-1 [12]. These modes are ascribed to defects of 

oxygen vacancies, interstitial Zn and free carriers [13 , 14 ] . In our results another 
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Lonretzian contribution to the profile of this large band at around 555cm-1 must be 

considered. This peak has already been referenced in literature though its origin is not 

clear [15, 16]. 

A close look at the low frequency range denounces an extra asymmetric peak in the 

ZnO:Sb3 spectrum, not connectable to zinc oxide (Figure 4). Since the frequency of this 

peak (151 cm-1) coincides with a bulk-Sb mode [17, 18] and its lineshape is strongly 

asymmetric, it can be associated to confined optical modes, to conclude the presence of 

an antimony nano-phase in this sample [19, 20]. Assuming the study of A. Roy et al, the 

presumed size of such nanoparticles is around 3 nm. 

100 200 300 400 500

E2Sb

ZnO:Sb3

ZnO:Sb2

ZnO:Sb1

R
am

an
 in

te
ns

ity
 (a

rb
. u

ni
ts

)

Wavenumber (cm-1)

~150 cm-1

 

Figure 4 – Low frequency Raman spectra of ZnO:Sb thin films excited with 488 nm laser line. The spectra 

intensity is vertically shifted for clarity. 

 

Thus, in ZnO:Sb3 a significant part of the doping ions have not effectively been 

incorporated in ZnO lattice, not contributing to the number of p-carriers. On the other 

hand, the number of n-carriers has considerably raise as it is evinced by the important 

increase of its related Raman phonon band (500 - 650 cm-1 band in figure 3). So, the net 

number of carriers, that contribute to the Hall charge concentration, is lower in ZnO:Sb3 
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than in ZnO:Sb2 film. Furthermore, the carrier addiction, that dictates conductivity, is 

more favorable in the former than in the latter and the resistivity of ZnO:Sb3 raises.  

 

5. Conclusions 

For all doping ions and doses we have obtained highly transparent films in the visible and 

IR regions having p conduction (p-ZnO). This means that for the doses and annealing 

temperature employed both Sb- and P-related acceptors are enough to prevail over the 

background electrons from natural ZnO. Furthermore, we are able to conclude that the P-

doping is more efficient, since its incorporation into the lattice is less destructive and it is 

better disseminated within it, thus favouring larger carrier concentration and lower 

electric resistivity.  
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