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ABSTRACT 1 

Herein we report the influence of different combinations of initial concentration of acetic acid and 2 

ethanol on the removal of acetic acid from acidic wines by two commercial Saccharomyces 3 

cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 g l
-1 

4 

acetic acid and 11% (v/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by both 5 

strains was associated with a decrease in ethanol concentration of about 0.7 – 1.2% (v/v). Strain S26 6 

revealed better removal efficiency due to its higher tolerance to stress factors imposed by acidic 7 

wines. We also demonstrate that the strong anti-oxidant and antiseptic effect of sulphur dioxide 8 

(SO2) concentrations up to 170 mg l
-1

 inhibit the ability of both strains to reduce the volatile acidity 9 

of an acidic wine under our experimental conditions. Therefore, deacidification should be carried 10 

out either in wines stabilized by filtration or in wines with SO2 concentrations below 75 mg l
-1

. 11 

Deacidification of wines with the better performing strain S26 was associated with changes in the 12 

concentration of volatile compounds. The most pronounced increase was observed for isoamyl 13 

acetate (banana) and ethyl hexanoate (apple, pineapple), with an 18- and 25-fold increment, 14 

respectively, to values above the detection threshold. The acetaldehyde concentration of the 15 

deacidified wine was 2.3 times higher, and may have a detrimental effect on the wine aroma. In 16 

addition, deacidification led to increased fatty acids concentration, but still within the range of 17 

values described for spontaneous fermentations, and with apparently no negative impact on the 18 

organoleptical properties. We propose the use of S. cerevisiae strain S26 for the efficient reduction 19 

of the volatile acidity from acidic wines with acetic acid and ethanol concentrations not higher than 20 

1.0 g l
-1

 and 11% (v/v), respectively.  21 

 22 

23 
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INTRODUCTION 1 

Acetic acid is the main component of the volatile acidity of wines and is therefore critical for wine 2 

quality. Its concentration in wines is approximately 0.5 g l
-1

 and should remain below 20 3 

milliequivalents.l
-1

, i.e. 1.2 g l
-1

 (expressed as acetic acid), according to European legislation (OIV 4 

2009). 5 

Quite a few authors have studied the production of volatile acidity by Saccharomyces cerevisiae 6 

under winemaking conditions with initial sugar concentrations around 200 g l
−1

. Volatile acidity is 7 

formed at the beginning of cell growth (Alexandre et al. 1994; Coote and Kirsop 1974) and its 8 

production is affected by the yeast strain (Radler 1993; Giudici et al. 1995; Henschke 1997; Patel 9 

and Shibamoto 2002; Erasmus et al. 2004), the medium composition, vitamins, initial sugar 10 

concentration and fermentation conditions such as temperature variations (Monk and Cowley 1984). 11 

Wine yeasts produce acetic acid as a by-product of the hyperosmotic stress response
 
caused by high 12 

sugar concentrations (>35 Brix) in grape must (Erasmus et al. 2004). In wines made from botrytized 13 

grapes, the increase of the initial sugar concentration (from 189 to 391 g l
−1

) augments the volatile 14 

acidity concentration from 0.56 to 1.46 g l
−1

 (Lafon-Lafourcade and Ribéreau-Gayon 1977). It was 15 

shown that both the high sugar content and compounds like gluconic acid and glycerol produced 16 

due to Botrytis infection can affect the biological aging of the wine.
 
In aging, if wine's gluconic acid 17 

content is more than 600 mg l
-1

,
 
heterolactic fermentations appear with certain intensity, producing

 
18 

high concentrations of lactic acid and volatile acidity (Ribéreau-Gayon et al. 1979; Perez et al. 19 

1991). Other winemaking factors that favor the production of acetic acid by S. cerevisiae are: 20 

anaerobiosis, pH values below 3.1 or above 4.0 (Ribéreau-Gayon et al. 2000; Radler 1993). In 21 

addition, high acetate content in a wine, after a strong clarification of the must, is due to a depletion 22 

of yeast intracellular metabolites such as amino acids, unsaturated fatty acids, polyphenolic 23 

compounds and metals (Moruno et al. 1993). Overexpressing the glycerol 3-phosphate 24 

dehydrogenase gene, GPD2, caused S. cerevisiae to produce more than twice as much acetic acid as 25 
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the wild-type strain (S288C background) in anaerobic cell culture. However, deletion of the 1 

aldehyde dehydrogenase gene, ALD6, in wild-type and GPD2 overexpressing strains decreased 2 

acetic acid production by three- and four-fold, respectively (Eglinton et al. 2002). 3 

Effects derived from nutrient imbalance and competition between coexisting yeasts and bacterial 4 

populations during concurrent malolactic fermentations (Boulton et al. 1998) and citric acid 5 

metabolism (Davis et al. 1986) can also increase acetic acid content in wines. Malolactic 6 

fermentation performed by Oenococcus oeni and Lactobacillus plantarum modify the amino acid 7 

and volatile composition of the wine and also increase the initial volatile acidity (Lonvaud-Funel 8 

1999). Acetic acid bacteria that can be found in fresh must (Gluconobacter oxydans) or species that 9 

predominate during fermentation (Acetobacter pasteurianus and A. liquefaciens) can also increase 10 

the acetic acid content of must or wines and might cause spoilage (Du Toit and Lambrechts 2002).  11 

Few processing options are available to winemakers to remove sensorially objectionable levels of 12 

volatile acidity (above 1.0 g l
-1

). Bioreduction methods using yeasts have been known for a long 13 

time.  They basically consist in a refermentation associated with acetic acid consumption by yeasts 14 

(Ribéreau–Gayon et al. 2000; Vilela-Moura et al. 2008). However, they have not been sufficiently 15 

well characterised for commercial application.  16 

Even though sugars are the preferential carbon and energy source of S. cerevisiae, non-fermentable 17 

substrates, such as acetic acid, can also be used for the generation of energy and cellular biomass 18 

(Schüller 2003). Although uptake of acetic acid may occur by passive diffusion, evidence for the 19 

existence of at least one acetate carrier in S. cerevisiae has been obtained (Casal et al. 1996; Paiva et 20 

al. 1999). The product of the gene Jen1 is required for the uptake of lactate and other 21 

monocarboxylates in the yeast S. cerevisiae (Casal et al. 1999). A molecular approach addressing 22 

acetic acid induced stress response indicates the ubiquitin-mediated internalization of the 23 

aquaglyceroporin Fps1p, downregulating the flux of undissociated acetic acid into the cell 24 

(Mollapour and Piper 2007). Metabolic conversion of acetate into glucose-6-phosphate can be 25 

http://www.springerlink.com/content/48h572287154tv81/fulltext.html#CR3
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divided into three separate pathways: production of acetyl-CoA, production of oxaloacetate by the 1 

glyoxylate cycle and gluconeogenesis (Schüller 2003; Dos Santos et al. 2003).  2 

Grape must can be considered a culture medium that is far from optimum for most microorganisms. 3 

Upon inoculation, yeast cells must adapt to a fermentative environment that gradually changes 4 

during fermentation and that imposes multiple stress conditions such as high osmolarity (sugar 5 

concentration up to 300 g l
-1

), low pH (2.9-3.8) (Pizarro et al. 2007), sulfur dioxide (SO2) presence 6 

between 40 and 100 mg l
-1 

(Viegas et al. 1989), ethanol toxicity (Viegas et al. 1989), temperature 7 

variations (Pizarro et al. 2007) and increasing nitrogen limitation (Albers et al. 1996; Blateyron and 8 

Sablayrolles 2001; Mendes-Ferreira et al. 2004). A refermentation process, that aims to reduce 9 

excessive volatile acidity, imposes additional stress through elevated acetic acid concentrations. 10 

This may lead to a reduced cellular growth (Thomas and Davenport 1985; Pampulha and Loureiro 11 

1989), induced cellular death (Pinto et al. 1989) and stuck fermentations (Rasmussen et al. 1995; 12 

Edwards et al. 1999; Eglinton and Henschke 1999).  13 

Most of the SO2 in wines is added as antioxidant at the beginning of fermentation to achieve 14 

microbiological control of must by limiting and/or preventing the propagation of undesirable yeasts 15 

and bacteria. However, a small amount of SO2 is produced as a fermentation byproduct. SO2 enters 16 

the yeast cell through diffusion and reacts, in the dissociated form, with cytoplasmatic enzymes, 17 

coenzymes and vitamins, leading ultimately to growth cessation and death (Romano and Suzzi 18 

1992). As an antioxidant, SO2 protects the fruit-like organoleptical qualities and supports wine color 19 

stability by inhibiting the activity of polyphenoloxidases (Boulton et al. 1998; Ribéreau-Gayon et 20 

al. 2000). SO2 also prevents the conversion of acetaldehyde into ethanol, through inhibition of 21 

aldehyde dehydrogenase and binding with acetaldehyde (Frivik and Ebeler 2003). The rules of the 22 

International Organisation of Vine and Wine (OIV) consider 150 mg l
-1

 and 200 mg l
-1

 as maximum 23 

limits for final SO2 concentrations of red and white wines, respectively. The maximum limit of 400 24 

mg l
-1 

SO2, applies to certain sweet white wines (OIV 2009). 25 
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In our previous studies, the S. cerevisiae autochthonous strains 43C and 45C and the commercial 1 

strains S26, S29 and S30, as well as the non-Saccharomyces strains (L. thermotolerans 44C and Z. 2 

bailii ISA 1307) have demonstrated distinctive capacity to consume acetic acid from a mixed 3 

culture medium containing two-thirds of a minimal medium and one third of an acidic white wine. 4 

When the media were supplemented with glucose (13% or 3.3 % w/v) and ethanol (4% or 10%, v/v) 5 

and strains were incubated under aerobic or limited aerobic conditions for 48 to 72 hours, the 6 

commercial strains S26 and S29 appeared to be the most promising candidates for efficient acetic 7 

acid removal. Strain S26 consumed 87% of acetic acid in a medium containing low glucose (3.3 %, 8 

w/v) and high ethanol (10%, v/v) concentration after 72 hours of incubation under aerobic 9 

conditions. Strain S29 consumed 83% of acetic acid under limited-aerobic conditions and in a 10 

medium containing high glucose (13 %, w/v) and low ethanol (4%, v/v) concentration after 48 11 

hours of incubation. We also showed that the commercial S. cerevisiae strain S26 efficiently 12 

removes 61.5 % of the acetic acid when grown in an acidic white wine under limited-aerobic 13 

conditions (Vilela-Moura et al., 2008). 14 

To further evaluate the applicability of S. cerevisiae strains in the deacidification of acidic wines, 15 

we herein assess acetic acid reduction by strains S26 and S29 under the very stressful conditions 16 

imposed by different combination of ethanol, acetic acid and SO2 concentrations. We showed that 17 

strain S26 deacidifies wines containing up to 1.0 g l
-1

 acetic acid, 11% (v/v) ethanol and less than 18 

100 mg l
-1

  SO2 more efficiently than strain S29. Removal of excessive acetic acid by strain S26 19 

exerts no major detrimental effect on wine volatile compounds. 20 

21 
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MATERIALS AND METHODS 1 

 2 

Microorganisms 3 

In this study the S. cerevisiae commercial strains S26 and S29 (our internal references) were used. 4 

Both strains were kindly provided by Lalvin and Enoferm, respectively. The strains were kept at -80 5 

ºC in micro tubes containing YPD broth (glucose 2%, w/v; peptone 1%, w/v; yeast extract 0.5%, 6 

w/v) supplemented with glycerol (30%, v/v). 7 

 8 

Culture media and growth conditions 9 

Frozen aliquots of yeast strains were streaked onto YPD plates (glucose 2%, w/v; peptone 1%, w/v; 10 

yeast extract 0.5%, w/v and agar 2%, w/v) and incubated during 48 hours at 25ºC prior to each 11 

experiment. Pre-cultures were grown overnight (25 ºC, 120 rpm) in 10 ml of a commercial acidic 12 

white wine to be tested and the cells were transferred to 250 ml Erlenmeyer flasks containing 230 13 

ml of acidic wine, prepared as described in the following section. The initial cellular density was 14 

adjusted to 10
6
 cells ml

-1 
(OD640 nm 0.2), and incubation was carried out at 25ºC, 100 rpm. 15 

Throughout experiments, yeast cell concentration (OD640 nm) and viability (CFU/ml) was 16 

determined. All experiments were performed in triplicate. 17 

 18 

 19 

Removal of acetic acid from acidic wines  20 

Strains S26 and S29 were used to assess the influence of different ethanol and acetic acid 21 

concentrations on the removal of acetic acid from a commercial white wine (filter-sterilized, 22 

Millipore, 0.22 m pore size) with the composition described in Table 1. Volatile acidity was 23 

adjusted to 1.0 g l
-1

, 1.5 g l
-1

 and 1.75 g l
-1

 using glacial acetic acid (Merck, Darmstadt, Germany); 24 

ethanol was adjusted to 11% or 12% (v/v) using absolute ethanol (Merck, Darmstadt, Germany); the 25 
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pH was set to 3.5, using NaOH (0.1 M). The same wine was used to assess the influence of SO2 1 

addition (25, 50 and 100 mg l
-1

), adding potassium metabisulphite (6%, w/v) after acetic acid, 2 

ethanol and pH adjustment to 1.0 g l
-1

, 11% (v/v) and 3.5, respectively. 3 

 4 

Analytical determinations  5 

Acetic acid and ethanol concentrations were determined at the time points indicated using 6 

enzymatic kits (Enzytec, Scil Diagnostics, Viernheim, Germany). Analysis of the density, pH, 7 

alcohol concentration, volatile acidity, SO2 and titratable acidity were performed as outlined in 8 

Table 1. 9 

Solid-phase micro-extraction (SPME) extraction and GC-MS determination of aromatic compounds 10 

were carried out as previously described (Mendes-Ferreira et al. 2009). Briefly, SPME was 11 

achieved through adsorption of volatiles onto a fiber (100 µm polydimethylsiloxane –PDMS-, 85 12 

μm Carboxen–polydimethylsiloxane -CAR/PDMS- and 50/30 µm 13 

Divinylbenzene/Carboxen/PDMS -DVB/CAR/PDMS). Extractions in headspace mode were carried 14 

out at 20 ± 1°C with magnetic stirring (1300 rpm). 2-octanol was used as an internal standard 15 

solution. Chromatographic analysis was performed, in the splitless mode, using an Agilent 6890 N 16 

gas chromatograph equipped with a 5973N mass spectrometer. The column employed was an 17 

Innovax capillary column, 30 m X 0.25 mm, with 0.5 μm film thickness (Agilent, Santa Clara, CA, 18 

USA) and helium (helium N60, Air Liquid, Portugal) was used as the carrier gas at 34 cm.s
-1

 19 

average linear velocity. The desorption temperature was 270 °C during 10 min. The column was 20 

maintained at 40°C for 5 minutes after desorption, ramped at 4 °C per minute up to 200 °C, and 21 

then ramped at 10 ºC per minute up to 240 ºC, where it was held for 15 minutes. All mass spectra 22 

were acquired in electron impact (EI) mode at 70 eV, using full scan with a scan range of 26–250 23 

atomic mass units, at a rate of 6.12 scans.s
-1

. Spectra identification of sample compounds was 24 

supported by the Wiley database (Wiley/NBS Registry of Mass Spectral Data, 1989). Whenever 25 
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possible, identification was confirmed by comparing mass spectra and retention indices with those 1 

of authentic standards. 2 

 3 

Statistical analysis 4 

Acetic acid consumption and all the analytical parameters determined in the different assays were 5 

submitted to variance analysis (ANOVA) using the STATISTICA 7.0 software (StatSoft Inc., 6 

2004). Tukey honestly significant difference (HSD) test was applied to the chemical data to 7 

determine the presence of significant differences between the analyzed samples; the model was 8 

statistically significant with a P value less than 0.05. 9 

 10 

RESULTS 11 

 12 

Combined effect of acetic acid and ethanol on the reduction of volatile acidity 13 

Herein, we further assess the capacity of the commercial S. cerevisiae strains S26 and S29 to 14 

consume acetic acid under the very stressful growth conditions imposed by the combination of high 15 

ethanol (11 and 12%, v/v) and acetic acid (1.0 g l
-1

, 1.5 g l
-1

 and 1.75 g l
-1

) concentrations under 16 

limited aerobic conditions. As shown in Table 2, strains S26 and S29 reduced 78 % and 48%, 17 

respectively, of the acetic acid during 168 hours of incubation in an acidic wine with 11% (v/v) 18 

ethanol and 1.0 g l
-1

 acetic acid. Under these conditions, acetic acid reduction by strain S26 was 19 

significantly higher than strain S29. As expected, the titrable acidity decreased from 8.90 g l
-1  

to 20 

3.77 g l
-1

 (S26) and 4.60 g l
-1

 (S29). With increasing initial acetic acid concentrations, the 21 

percentage of consumed acetic acid decreased by (i) 24.9% and 8.9% for S26 and S29 strains 22 

respectively, (wine with initial concentration of 1.5 g l
-1

 of acetic acid) and (ii) 21.7% and 14.7% 23 

for strains S26 and S29, respectively (wine with initial concentration of 1.75 g l
-1

 acetic acid). Some 24 

(not significant) ethanol consumption (0.7 to 1.3 %) was observed in all experiments. No significant 25 
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changes were observed for both strains regarding pH, total and free SO2 concentration at the end of 1 

the incubation period of 168 hours.   2 

For an initial ethanol concentration of 11% (v/v) only the acidic wine with an initial volatile acidity 3 

of 1.0 g l
-1

 was permissive for growth of strain S26 that concluded 3 cell divisions during 168 hours 4 

of incubation (Fig. 1). The most pronounced removal of acetic acid by both strains was not 5 

associated with cell growth.  Strain S26 passed through a 24 h lag phase associated with the most 6 

evident acetic acid consumption (about 55%). In a second stage, cell density increased from 0.2 to 7 

1.4 OD640nm, but acetic acid removal was less efficient (about 23%). In parallel, the ethanol 8 

concentration decreased by 0.6 % (v/v). Contrarily, strain S29 showed no growth in wines with 9 

11% (v/v) of ethanol at the acetic acid concentrations tested. This strain was however capable to 10 

consume about 40% of the acid during the first 48 hours of incubation, when the initial acetic acid 11 

concentration was 1.0 g l
-1

, as previously described for strain S26. This happened probably because 12 

of the high inoculum’s concentration (OD640nm of 0.2, corresponding to10
6
 CFU ml

-1
). The lack of 13 

acetic acid consumption at later stages by both strains and higher initial acetic acid concentrations 14 

was most probably caused by metabolism inhibition, which is reflected by the loss of cellular 15 

viability after 96 hours. Both strains were not able to deacidify acidic wines with 12% (v/v) of 16 

ethanol and any of the three acetic acid concentrations tested (not shown).   17 

 18 

Effect of sulphur dioxide on the removal of acetic acid from an acidic wine by strains S26 and 19 

S29 20 

Considering that the SO2 concentration of white wines should not exceed 200 mg l
-1

 (according the 21 

recommendations of the OIV), the effect of different SO2 concentrations on acetic acid removal 22 

from an acidic white wine by strains S26 and S29 was also assessed. The volatile acidity and 23 

ethanol concentration of the commercial wine used (Table 1) was adjusted to 1.0 g l
-1

 and 11% 24 
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(v/v), respectively and the pH was set to 3.5. The wine was supplemented with SO2 (25, 50 and 100 1 

mg l
-1

). 2 

Table 3 shows that the total SO2 concentration in the deacidified wine after 72 h was proportional to 3 

the three different amounts of SO2 added to the wine. The initial concentration of acetic acid was 4 

not significantly reduced (P0.05) after deacidification with strains S26 and S29 indicating the 5 

strains´ inability to remove acetic acid from acidic wines that were supplemented with 25 mg l
-1 

of 6 

SO2. For both strains and the wine with 1.0 g l
-1 

of acetic acid and 11% (v/v) of ethanol, the addition 7 

of 25 and 50 mg l
-1

of SO2 completely inhibited cell growth and induced loss of cell viability after 8 

24 hours of inoculation. For higher SO2 concentrations (100 mg l
-1

) both strains started to die since 9 

the beginning of incubation (data not shown). The complete growth inhibition and cell death can be 10 

attributed to the strong anti-oxidant and antiseptic properties combined with the high ethanol and 11 

acetic acid concentrations. 12 

 13 

Changes in wine aromatic compounds during deacidification with strain S26 14 

As shown in the first section, strain S26 showed a higher resistance to the combined effects of 15 

ethanol and acetic acid and was also superior to strain S29 regarding acetic acid removal efficiency 16 

(Table 2). We therefore evaluated the impact of strain S26 on the aromatic profile after 17 

deacidification of an acidic wine with initial concentrations of 11 % (v/v) ethanol and 1.0 g l
-1

 of 18 

acetic acid. Strain S26 increased significantly the concentration of the following compounds of the 19 

ester fraction (Table 4): ethyl acetate (solvent like), isoamyl acetate (banana), ethyl propionate 20 

(ethereal, fruity, rum-like), ethyl isobutyrate (strawberry, ethereal, buttery notes), ethyl butyrate 21 

(pineaple notes), ethyl hexanoate (apple, pineapple, anise seed notes) that contribute to the wine`s 22 

bouquet in a positive way (excepting ethyl acetate). Isoamyl acetate and ethyl hexanoate were the 23 

only esters that increased above the detection thresholds of 30 µg l
-1 

and 5-14
 
µg l

-1
, respectively. 24 
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Ethyl acetate and diethyl succinate were the esters present in highest concentrations in the 1 

deacidified wine. Ethyl acetate has a solvent like odor, considered to be a defect, but was found in 2 

concentrations lower than the detection threshold. The concentration of diethyl succinate (fruity - 3 

melon aroma) occurred in concentrations higher than the detection threshold in the uninoculated 4 

wine and did not change during deacidification. 5 

Among the aldehydes and fusel alcohols, acetaldehyde concentration increased 2.3 fold to 225 mg l
-

6 

1
 after deacidification with strain S26. The agitation of the culture duplicated the initial dissolved O2 7 

from 4 mg l
-1

 to 8 mg l
-1

, which explains the increased acetaldehyde concentration. This aldehyde 8 

has a grass or green-apple like aroma when above 100 mg l
-1 

(Carlton et al. 2007). Fusel alcohols 9 

(2-phenylethanol and isoamyl alcohol) cause off-flavors at high concentrations, whereas low 10 

concentrations of these compounds and their esters make an essential contribution to the 11 

aroma/flavor of wine. Isoamyl alcohol has a bitter, marzipan, burnt, whisky-like and harsh aroma 12 

and 2-phenylethanol, a compound with floral, rose-like notes. These two compounds were present 13 

in concentrations higher than their detection threshold, but there were no significant concentration 14 

differences between the acidic and the deacidified wines. The concentrations of the terpene alcohols 15 

linalool, -terpineol (floral like odors) did not change significantly through deacidification. 16 

Citronellol concentration increased significantly, but remained below the detection limit. 17 

The composition of the fatty acid fraction was also evaluated. Small amounts of these volatile 18 

compounds contribute positively to the wine quality, while excessive concentrations exert 19 

detrimental effects. Significant differences in their concentration resulted from the deacidification 20 

process. Butyric and isovaleric acids, not detectable in the acidic wine, increased to 0.6 and 0.3 mg 21 

l
-1

, respectively after deacidification by strain S26; these concentrations were 3.7 and 10-fold higher 22 

than their detection threshold in wine, respectively. Hexanoic acid increased slightly but remained 23 

below the detection threshold. Octanoic acid has a grass acid like odor and occurred in lower 24 
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concentrations after deacidification, probably due to the conversion to the corresponding ester ethyl 1 

octanoate. 2 

 3 

DISCUSSION 4 

This publication adds new information on the effect of several wine parameters on removal of 5 

acetic acid from a white wine by two previously characterised commercial S. cerevisiae strains. We 6 

evaluated the combined effects of ethanol, acetic acid and SO2 on the acetic acid removal efficiency 7 

of strains S26 and S29, using an acidic white wine. We found that strain S26 was able to grow in an 8 

acidic wine with 11% (v/v) of ethanol and 1.0 g l
-1

 of acetic acid after 24 hours of inoculation, and 9 

to consume 78% of the total amount of acetic acid after 168 hours. Under these conditions, strain 10 

S29 consumed just 48.3 % of the acetic acid, was unable to grow and lost viability after 96 hours. 11 

This indicates a lower tolerance of strain S29 to the combined effects of high concentration of acetic 12 

acid and ethanol. Both strains were unable to grow when ethanol concentration was adjusted to 12 13 

% (v/v) and acetic acid concentrations were maintained (1.0 g l
-1

,
 
1.5 g l

-1
,
 
1.75 g l

-1
). This shows 14 

that refermentation imposes very severe stress conditions and only few strains might be capable to 15 

cope with. Additional inhibitory effects can be exerted by sulphur dioxide (SO2). 16 

Sulphur dioxide has become practically obligatory in winemaking. This substance combines three 17 

important beneficial properties: antimicrobial and antioxidant activity, as well as the ability to 18 

synthetize non-volatile bisulfite adducts, which prevents their undesirable sensory properties. SO2 19 

combines also with oxygen and binds to sugars, aldehydes such as acetaldehyde and ketones, 20 

decreasing its properties as a wine stabilizing agent (Frivik and Ebeler 2003). Recently, it has 21 

become apparent that SO2 can induce allergic reactions in humans (Ribéreau-Gayon et al. 2000) 22 

which led to the establishment of legal limits for its concentration in wine. When the concentration 23 

of total SO2 was 95 mg l
-1

 (70 mg l
-1

 of the initial acidic wine + 25 mg l
-1

 of added SO2), and still 24 

considerably below the SO2 limit recommended by the OIV for white wines (200 mg l
-1

) acetic acid 25 
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removal by both strains was completely inhibited. In fact, there was no significant reduction of 1 

volatile acidity and ethanol. Almost all the added SO2 was combined. Therefore, the SO2 levels of 2 

the acidic wines to be treated by the yeast should not exceed 75 mg l
-1

. Deacidification should be 3 

preferentially carried out in wines stabilized with lower SO2 concentrations or by filtration. 4 

However, it should be considered that these results were obtained in a micro-scale setting and still 5 

need to be evaluated in a winery large-scale approach. 6 

Strain S26 was most efficient for biological deacidification of acidic wines and also showed a 7 

higher resistance to the combined effects of acetic acid and ethanol. Changes in volatile compounds 8 

associated with deacidification were therefore evaluated only for this strain. Both acetate and ethyl 9 

esters were present in significantly higher concentrations in the deacidified wine excepting ethyl-2 10 

methylbutyrate, ethyl isovalerate and ethyl decanoate. The aromatic potential of these ester 11 

compounds, associated with fruity and floral notes, positively enhances the wine`s bouquet. The 12 

most pronounced increase was observed for isoamyl acetate (banana) and ethyl hexanoate (apple, 13 

pineapple), with an 18- and 25-fold increment, respectively, to values above the detection threshold. 14 

Acetate and ethyl esters are synthesized by carboxylesterases or transferases acting on acyl-CoA 15 

(Mckay 1993) by condensation of an alcohol and a coenzyme-A-activated acid (acyl-CoA). In S. 16 

cerevisiae, acetate esters result from the combination of acetyl-CoA with an alcohol, by the action 17 

of the alcohol acetyl transferases Atf1p and Atf2p (Lambrechts and Pretorius 2000). Ethyl esters are 18 

generated from acyl-CoA and ethanol by the action of Eht1p and Eeb1p (Mason and Dufour 2000; 19 

Saerens et al. 2006). The capacity of yeast to synthesise these compounds varies between strains 20 

(Lambrechts and Pretorius 2000; Wondra and Boveric 2001). The incubation temperature during 21 

the deacidification assay (25ºC) might have contributed to the formation of acetate and ethyl esters. 22 

Molina and collaborators (2007) showed that lower temperatures (15ºC) increased the concentration 23 

of ester compounds associated to fresh and fruity aromas. Higher temperatures (28ºC) increased the 24 
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concentration of compounds associated to flowery, banana and pineapple attributes, the 1 

predominant aromas in the S26-deacidified wine.  2 

Acetaldehyde concentration increased to 225 mg l
-1 

after deacidification with strain S26.  However, 3 

its initial concentration (94.8 mg l
-1

) was already close to the upper limit of the concentration range 4 

found in white wines (Liu and Pilone 2000). This compound causes more concern for its aroma 5 

(grass, apple or sherry-like character when occurring in concentrations higher than 100
 
mg l

-1
). This 6 

does not apply to all wine styles because high levels of acetaldehyde (up to 500 mg l
-1

) are 7 

considered a unique feature of sherry wines (Liu and Pilone 2000). Besides, acetaldehyde binds 8 

sulphur dioxide and has therefore a negative impact on wine stability. Contrarily, lower 9 

acetaldehyde concentrations increase flavor complexity, due to the fruity and pleasant aroma, in 10 

particular in red wines (Frivik and Ebeler 2003). Aldehyde synthesis is affected by several factors 11 

such as the yeast strain, temperature, pH, nutrient availability, O2 and SO2 concentration. SO2 is 12 

particularly important since it affects aldehyde dehydrogenase and thus the conversion of 13 

acetaldehyde into ethanol (Fivrik and Ebeler 2003). Besides, acetaldehyde is an intermediate 14 

product of yeast metabolism and a precursor of acetate, acetoin and ethanol (Romano et al. 1997). 15 

Its production through ethanol oxidation is strain dependent (Romano et al. 1994) and is favoured 16 

by O2. In our previous work (Vilela-Moura et al. 2008) we showed that efficient acetic acid 17 

reduction requires some oxygen as provided by the limited-aerobic experimental setup used. 18 

Therefore, the expectation that this oxygen requirement had an impact on the acetaldehyde level, 19 

was confirmed. Nevertheless, we consider that the significance of increased acetaldehyde 20 

concentrations after deacidification still needs to be evaluated for different types of wines.  21 

Fatty acids contribute positively to the wine quality when present in small concentrations, while 22 

excessive concentrations have detrimental effects. Their detection thresholds in water are 23 

respectively, 173 µg l
-1

 for butyric acid, 33.4 µg l
-1

 for isovaleric acid, 420-3000 µg l
-1

 for hexanoic 24 

acid, 500 – 8800 µg l
-1

 for octanoic acid and 1000 – 15000 µg l
-1

 for decanoic acid (Ferreira et al. 25 
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2000; Guth 1997). However, in spontaneously fermented wine these compounds may occur in 1 

concentrations higher than their detection threshold, namely, 650 µg l
-1

 for butyric acid; 51 µg l
-1

 2 

for isovaleric acid; 2807 µg l
-1

 for hexanoic acid; 5711 µg l
-1

 for octanoic acid and 2033 µg l
-1

 for 3 

decanoic acid (Nurgel et al. 2002). Since the fatty acid concentrations we found in the acidic wine 4 

deacidified with strain S26 were close to those found in spontaneously fermented wine and had no 5 

detrimental effect on wine aroma (Nurgel et al. 2002), we infer that the observed increase in their 6 

concentrations had also no detrimental effect in deacidified wine aroma. 7 

In general terms, the formation of new volatile compounds during the deacidification process 8 

altered the aromatic profile, increasing mainly the fraction of volatile ester compounds up to 25-9 

fold. In contrast, the formation of ethyl acetate and acetaldehyde may cause some apprehension. 10 

However, only the human perception can reveal the true nature of the consequences of the 11 

deacidification process in terms of wine volatile complexity, and if pleasant aromatic compounds 12 

were formed, we may assume that acetaldehyde is not a major problem. 13 

In summary, we propose the use of S. cerevisiae commercial strain S26 for the efficient reduction of 14 

the volatile acidity from acidic wines with acetic acid and ethanol concentrations not higher than 1.0 15 

g l
-1

 and 11% (v/v), respectively.  16 
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Fig. 1 1 

Growth, O.D. 640 nm (A), log CFU.ml-1 3 (B), acetic acid (C) and ethanol (D) consumption by S. 2 

cerevisiae strains S26 (dark symbols) and S29 (open symbols) in acidic wines with 11% (v/v) 3 

ethanol and 1.0 g l-1 (    ,   ), 1.5 g l-1 (    ,    ), or 1.75 g l-1 5 (    ,   ) of acetic acid 4 

5 
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Table 1 1 

Physical and chemical characteristics of the wine used for deacidification assays 2 

Chemical characteristics 

 

White Wine 

 

Analytical Methods (CEE N.º 2676/90)* 

Density at 20ºC 0.9907 Densitometry  

Free SO2 (mg l
-1

) 3.2 Ripper Method 

Total SO2 (mg l
-1

) 70.3 Ripper Method 

Volatile acidity (g l
-1

 acetic acid) 0.40 Destillation using a Cazenave-Ferré followed by titration 

with phenolphthalein 

Residual sugar g l
-1

 1.15 Lane-Eynon Method 

Titratable acidity (g l
-1

 tartaric acid) 8.90 Titration with bromothymol blue  

pH 3.10 Potentiometer  

Alcoholic degree %, ethanol (v/v) 10.7 Distillation  

* CEE N.º 2676/90 – Official Journal of the European Communities, 33, 3.10.1990. (ISSN 0257 – 7771) 3 



Table 2 1 

Effect of acetic acid on cell viability and oenological parameters of an acidic wine with an initial ethanol concentration of 11% (v/v) after 168 h 2 

deacidification by S. cerevisiae strains S26 and S29 3 

 

Strains 

 

[Acetic acid]i 

(g l
-1

) 

[Ethanol] 

% (v/v) 

pH 

 

Acetic acid 

(% consumption) 

Titratable acidity 

(g l
-1

) 

[Total SO2] 

(mg l
-1

) 

[Free SO2] 

(mg l
-1

) 

CFU.ml
-1

 

 

S26  1.0 10.3±0.1 
b
 3.68±0.03 

b
 78.0±2.65 

e
 3.77±0.15 

b
 74.77±1.43

 b
 0.0±0.0 

a
 10

7 b
 

S26  1.5 9.7±0.4 
a
 3.58±0.01 

a
 24.9±4.29

 c
 5.37±0.06 

a
 59.90±1.43

 a 
0.0±0.0 

a
 0 

a
 

S26  1.75 9.8±0.2 
a,b

 3.57±0.01 
a
 21.7±0.99 

b, c
 5.87±0.38 

a
 66.86±0.41 

a,b
 0.0±0.0 

a
 0 

a
 

         

S29  1.0 9.8±0.2 
a,b

 3.61±0.02 
a
 48.3±4.73 

d
 4.60±0.10 

c
 64.75±0.98 

a,b
 0.0±0.0 

a
 0 

a
 

S29  1.5 9.7±0.2 
a
 3.60±0.01 

a
 8.9± 3.08

a
 5.50±0.40 

a
 66.93±9.40 

a,b
 0.0±0.0 

a
 0 

a
 

S29  1.75 10.0±0.1 
a,b

 3.58±0.01 
a
 14.7±0.87 

a, b
 5.80±0.20 

a
 65.18±3.82 

a,b
 0.0±0.0 

a
 0 

a
 

i – Initial acetic acid concentration. The initial values of pH, titratable acidity, total and free SO2 concentrations are referred in Table 1.The data are mean 4 

values of triplicate experiments with indication of standard deviation. Results obtained for strains and culture conditions with the same superscript letter are 5 

not significantly different (P0.05) 6 

7 
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Table 3 1 

Effect of SO2 addition on the oenological parameters of an acidic wine after 72 h deacidification with S. cerevisiae strains S26 and S29 2 

 

Strains 

 

[SO2]i 

(mg l
-1

) 

[Ethanol] 

% (v/v) 

pH 

 

[Acetic acid] 

(g l
-1

) 

Titratable acidity 

(g l
-1

) 

[Total SO2] 

(mg l
-1

) 

[Free SO2] 

(mg l
-1

) 

CFU.ml
-1

 

 

S26 25 10.6±0.2 
a
 3.49±0.01 

a
 0.99±0.03 

a
 5.21±0.04 

a
 93.68±8.71 

a
 2.17±0.65 

a
 0 

a
 

S26 50 10.6±0.1 
a
 3.49±0.00 

a
 0.95±0.04 

a
 5.25±0.05 

a
 122.26±2.75 

b
 1.32±0.89 

a
 0 

a
 

S26 100 10.6±0.1 
a
 3.47±0.01 

b
 0.99±0.03 

a
 5.14±0.04 

a,b
 173.01±2.18 

c
 0.96±0.32 

a
 0 

a
 

         

S29 25 10.7±0.1 
a
 3.49±0.01 

a
 1.00±0.02 

a
 5.06±0.10 

b
 103.28±2.83 

a
 1.86±0.51 

a
 0 

a
 

S29 50 10.5±0.1 
a
 3.49±0.01 

a
 0.94±0.03 

a
 5.13±0.03 

a,b
 123.14±2.62 

b
 2.84±0.59 

a
 0 

a
 

S29 100 10.6±0.1 
a
 3.47±0.01 

b
 1.00±0.02 

a
 5.23±0.02 

a
 171.45±1.03 

c
 2.34±1.82 

a
 0 

a
 

i – Initial SO2 concentration. The initial values of pH, titratable acidity, total and free SO2 concentrations are referred in Table 1. Results are mean values of 3 

triplicate experiments with their standard deviation. The initial concentrations of ethanol and acetic acid were 11% (v/v) and 1.0
 
g l

-1
, respectively. Results 4 

obtained for strains and culture conditions with the same superscript letter are not significantly different (P0.05) 5 

 6 

7 
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Table 4 1 

Concentration of wine aromatic compounds determined by GC-MS. Results refer to acidic white wine prior and after deacidification with S. 2 

cerevisiae S26 strain after 168 hours of deacidification. The odor description and detection threshold in wine refer to the references in the last 3 

column 4 

 

Concentration of wine aromatic compounds 

determined by GC-MS (present study) 
Literature data 

Compounds 
Acidic wine 

(g l-1) 

Deacidified wine 

(g l-1) 
Odor description 

Detection threshold in wine 

(g l-1) 
References 

Ethyl acetate 

E
sters 

407.5  130.8 
a
 677.3  126.2 

b
 Solvent like 7500 - 180000 

Escudero et al. (2004); Guth (1997); 

Rizzon and Miele (2004) 

Isoamyl acetate 1.9  0.7 
a
 33.6  9.4 

b
 Banana 30 Guth (1997) 

2-Phenylethyl acetate 11.2  1.7 
a
 16.1  0.4 

a
 Roses, honey 250 Guth (1997) 

Ethyl propionate 0.0  0.0 
a
 13.4  2.4 

b
 Ethereal, fruity, rum-like 1800 Étievant (1991) 

Ethyl isobutyrate 0.0  0.0 
a
 4.0  1.2 

b
 

Strawberry, ethereal, 

buttery, ripe 

15 Ong and Acree (1999); Ferreira et al. (2000) 

Ethyl butyrate 0.0  0.0 
a
 15.2  2.6 

b
 Pineapple 20 Escudero et al. (2004); Guth (1997) 

Ethyl 2-methylbutyrate 0.0  0.0 
a
 0.4  0.6 

a
 Sweet, floral, fruity, apple 1-18 Guth (1997); Ferreira et al. (2000) 

Ethyl isovalerate 0.0  0.0 
a
 0.3  0.5 

a
 Fruity 3 Ferreira et al. (2000) 
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Ethyl hexanoate 2.7  0.4 
a
 68.6  20.6 

b
 

Anise seed, apple, 

pineapple 

5-14 Guth (1997); Ferreira et al. (2000) 

Ethyl octanoate 28.3  1.8 
a
 52.0  24.0 

a
 Sweet, cognac-apricot 2-5 Guth (1997); Ferreira et al. (2000) 

Ethyl decanoate 5.0  1.4 
a
 0.9  0.2 

a
 Floral 200 Ferreira et al. (2000) 

Diethyl succinate 7233.3  10.7 
a
 7117.9  26.0 

a
 Fruity, melon 1200 Peinado et al. (2004) 

Acetaldehyde 

O
th

ers 

94815 261.6 
a
 22566764088.6 

a
 Grass, green apple, sherry 100000 Carlton et al. (2007) 

Benzaldehyde 61.2  1.6 
b
 11.3  0.1 

a
 Almond 3500 Delfini et al (1999) 

Linalool 11.8  0.3 
a
 12.2  0.1 

a
 Rose 25 Ferreira et al. (2000) 

-Terpineol 30.7  1.9 
a
 28.0  1.3 

a
 Lily of the valley 300 Mateo and Jimenez (2000) 

Citronellol 2.9  0.1 
a
 4.6  0.0 

b
 Citronella 100 Guth (1997) 

2-phenylethanol 28642.5  505.6 
a
 30472.5  922.8 a Roses 10000 Guth (1997) 

Isoamyl alcohol 143970  38183.8 
a
 140660  1322.3 

a
 

Marzipan, burnt, whisky-

like 

30000 Guth (1997) 

Butyric acid 

F
a

tty
 a

cid
s 

0.0  0.0 
a
 642.8  17.3 

b
 Rancid, cheese 173 Ferreira et al. (2000) 

Isovaleric acid 0.0  0.0 
a
 315.4  58.0 

b
 Rancid, sweaty 33.4 Ferreira et al. (2000) 

Hexanoic acid 1638.0  70.7 
a
 1967.5  80.5 

b
 Sweaty, cheese notes 420 - 3000 Ferreira et al. (2000); Guth (1997) 

Octanoic acid 2175.7  14.1 
b
 1259.8  109.7 

a
 Grass acid like 500-8800 Ferreira et al. (2000); Étievant (1991) 
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Decanoic acid 118.3  2.4 
b
 67.5  11.5 

a
 Soapy 1000-15000 Ferreira et al. (2000); Guth (1997) 

Mean values of triplicate experiments are shown, with indication of standard deviation. Values for the same compound with the same superscript letter are not 1 
significantly different (P<0.05) 2 

 3 

 4 


