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Abstract: This study focused on the degradation proper-
ties of gelatin microparticles incorporated in calcium phos-
phate (CaP) cement and the subsequent effect of these
composites on bone formation. Positively charged alkaline
gelatin (type A) microparticles or negatively charged acidic
gelatin (type B) microparticles were incorporated in CaP
cement, which was implanted in critical-sized cranial
defect in rats and left in place for 2, 4, and 8 weeks. The
degradation of the gelatin was monitored using radioio-
dinated microparticles. After 4 and 8 weeks of implanta-
tion, a significantly faster degradation of type A gelatin
over type B gelatin was found. Light microscopic analysis
of the specimens showed similar bone response concerning
implants containing either type A or B gelatin micropar-
ticles. At 2 weeks of implantation, a minimal amount of
bone formation was observed from the cranial bone to-
ward the implant, while after 8 weeks of implantation an

entire layer of newly formed bone was present from the
cranial bone toward the implant periphery. Bone ingrowth
into the implant was observed at sites of gelatin micropar-
ticle degradation, predominantly at the implant periphery.
Histomorphometrical evaluation did not reveal significant
differences in bone formation between CaP cement incor-
porated with either type A or B gelatin microparticles dur-
ing implantation periods up to 8 weeks. In conclusion, this
study demonstrates that gelatin type influences the degra-
dation of gelatin microparticles incorporated in CaP
cements. However, this difference in degradation and the
concomitant subsequent macroporosity did not induce dif-
ferences in the biological response. � 2008 Wiley Periodi-
cals, Inc. J Biomed Mater Res 90A: 372–379, 2009
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INTRODUCTION

Porous calcium phosphate (CaP) cements are
promising scaffold materials in bone tissue-engineer-
ing approaches. These CaP cements consist of a mix-
ture of powder and liquid, which hardens in situ as
a result of the entanglement of newly formed crys-
tals at body temperature. Although injectable CaP
cement shows excellent biocompatibility and osteo-
conductivity, resorption in vivo is slow.1 The intrinsic
nanoporosity of the CaP cement only allows trans-
port of nutrients and waste and does not allow tis-
sue ingrowth.2–4 Therefore, methods have been

developed to accelerate resorption and tissue
ingrowth by creating microporosity in the CaP
cement. One method involves the incorporation of
polymeric microparticles, such as poly(D,L-lactic-co-
glycolic acid) (PLGA) microparticles inside the CaP
cement.3,5–8 Previous studies showed that the degra-
dation of PLGA microparticles takes 6–12 weeks.5

This slow degradation is likely to prevent rapid cell
penetration into the implant, which would delay
intraimplant bone formation. Even more ideally, a
scaffold that contains microparticles with variation
in degradation rates is preferred, hence allowing the
creation of bone substitute materials, which combine
rapid cell penetration (after rapid microparticle deg-
radation) with a sustained release of appropriate
growth factors (from slow degrading microparticles).

For microparticle preparation, the use of a poly-
mer from natural sources, such as gelatin, is appeal-
ing as a biodegradable, biocompatible, and nontoxic
substitute for synthetic degradable polymers.9,10
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During the fabrication process of commercially avail-
able gelatin either a positively charged alkaline gela-
tin (type A) or a negatively charged acidic gelatin
(type B) at physiological pH can be obtained.11 The
application of these types of gelatine for micropar-
ticle preparation further allows a certain degree of
control over thermal and mechanical stability of the
microparticles under physiological conditions and
the related degradation rate by crosslinking with
glutaraldehyde.12,13 After degradation of the gelatin
microparticles by members of the matrix metallopro-
tease (MMP) family (including gelatinases and colla-
genases),14 microporosity is created in the CaP
cement.

In view of the above mentioned, this study focused
on the degradation properties and the subsequent
effect on bone formation of gelatin microparticles
incorporated in CaP cement in a critical-sized cranial
defect in rats. CaP/gelatin composites were prepared
using either alkaline or acidic gelatin microparticles.
Degradation properties were obtained by measuring
g-emission of remaining radioiodinated gelatin micro-
particles in the CaP cement implants after implanta-
tion periods of 2, 4, and 8 weeks. Additionally, histo-
logical and histomorphometrical analyses were per-
formed to evaluate general tissue responses and the
amount of new bone formation.

MATERIALS AND METHODS

Gelatin microparticles

The preparation of gelatin microparticles was based on
procedures described previously by Holland et al.15

Briefly, a gelatin solution was prepared by dissolving 2.5 g
type A (pI 5 7.0–9.0) or type B (pI 5 4.7–5.2) gelatin
(Sigma, St. Louis, MO) in 22.5 mL MilliQ at 378C for 1 h.
Then, this solution was added drop by drop to 125 mL
chilled (48C) olive oil (Acros Organics, Geel, Belgium)
under continuous stirring at 500 rpm. After 30 min, 50 mL
chilled acetone (48C; HPLC grade, Labscan, Dublin, Ire-
land) together with 1 mL 25 w/v % glutaraldehyde
(Merck, Darmstadt, Germany) was added to the emulsion.
After stirring for an additional 30 min, the microparticles
were collected by filtration and washed with chilled ace-
tone (48C). Finally, the microparticles were frozen and ly-
ophilized. Microparticle size distribution was assessed by
morphometrical analysis using a light microscope (Leica
Microsystems AG, Wetzlar, Germany) and computer-based
image analysis techniques (Leica1 Qwin Pro-Image Analy-
sis System, Wetzlar, Germany).

Radioiodization of gelatin microparticles

Type A and B gelatin microparticles were labeled with
Iodine125 (Amersham Biosciences, Buckinghamshire, UK)

using iodogen, a solid-phase oxidizing agent that catalyzes
the reaction to achieve a chemical link between radiolabel
and a protein.16 Briefly, 100 lL of gelatin microparticles
suspension in PBS (100 mg/mL) was reacted with 100 lCi
Iodine125 in a reaction vial coated with 50 lg iodogen dur-
ing 10 min at room temperature in 50 mM phosphate
buffer (pH 7.4). The suspension was then centrifuged in an
Eppendorf microcentrifuge (5000 rpm, 5 min), and the pel-
let was washed four times with 1 mL PBS. The specific ac-
tivity of the acidic and alkaline gelatin microparticles was
2 lCi/lg. Hot/cold suspensions of gelatin microparticles
were prepared in ratio of 1:4 for the in vivo study.

CaP/gelatin composites

The CaP cement Calcibon1 (Merck Biomaterial GmbH,
Darmstadt, Germany) was used for the preparation of the
CaP/gelatin composites. The chemical composition of this
cement is 61% a-TCP, 26% CaHPO4, 10% CaCO3, and 3%
PHA (a-TCP is alpha tri-calcium phosphate, PHA is pre-
cipitated hydroxyapatite). Type A or B gelatin micropar-
ticles (50 mg) were preswollen in 300 lL water (complete
absorption) and mixed for 15 s in a 2 mL syringe (Sher-
wood medical monoject) with closed tip using a mixing
apparatus (Silamat, Vivadent, Schaan, Liechtenstein). CaP
cement powder (950 mg) was added afterward in the
2 mL syringe. The final injectable composite was obtained
by adding 350 lL of Na2HPO4 (1 wt %) to 1000 mg of this
CaP/gelatin mixture and mixing it for 15 s with the mix-
ing apparatus. Subsequently, the CaP/gelatin composite
was immediately injected into teflon molds (8.0 mm in di-
ameter and 2.4 mm in height) to ensure a standardized
shape of the composite discs. The composite discs were
removed from these molds after cement setting at room
temperature for 1 day. The total porosity of the different
CaP/gelatin composites was determined by correlating the
weight of CaP discs with the weight of CaP/gelatin discs
after placement of the samples in a furnace at 6508C for
2 h to remove the gelatin microparticles.5

Surgery

Forty-eight Wistar male rats (weight 6 250 g) were
used, which individually received one CaP/gelatin com-
posite disc implanted into a circular critical-sized cranial
defect of 8 mm.17 Half of the rats received discs with type
A gelatin microparticles (18 without, 6 with radiolabel),
and the other half received discs incorporated with type B
gelatin microparticles (18 without, 6 with radiolabel),
which were implanted for 2, 4, and 8 weeks. The animal
experiment was approved by the Animal Ethical Commit-
tee of the Radboud University Nijmegen Medical Center
and national guidelines for the care and use of laboratory
animals were observed.

Surgery was performed under general inhalation anes-
thesia, induced by 4% isoflurane and maintained with
2.5% isoflurane by a nonrebreather mask. The rats were
monitored with an oxy-pulse meter during surgery. To
minimize postoperative pain, Fentanyl1 (3 mL/kg i.p.)
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was administered preoperatively and buprenorfine (Tem-
gesic1 (0.05 mg/kg s.c.) postoperatively.

After anesthesia, the rats were immobilized on their ab-
domen, and the skull was washed and disinfected with io-
dine. A longitudinal incision was made down to the peri-
osteum from the nasal bone to the occipital protuberance,
and soft tissues were sharp dissected to visualize the cra-
nial periosteum. Subsequently, a midline incision was
made in the periosteum, and the periosteum was under-
mined and lifted off the parietal skull. To minimize pain,
lidocaine was administered onto the periosteum before
incision. To create a central full thickness bone defect in
the parietal cranium, a hollow trephine drill (ACE dental
implant systems, Portugal) with an outer diameter of
8.0 mm in a dental handpiece was used. The bone defect
was carefully drilled under continuous cooling with physi-
ologic saline, without damaging of the underlying dura.
Then, the created bone segment was carefully removed,
without damaging the underlying sagittal sinus. Following
insertion of a CaP/gelatin composite disc, the periosteum
was closed using resorbable Vicryl1 5–0 suture material.
Subsequently, the skin was closed using resorbable Vicryl
4–0 sutures. To minimize postoperative discomfort, treat-
ment with Temgesic1 was continued for 2 days postopera-
tively. Two animals were housed in each cage. The proper
intake of fluids and food was monitored in the first 5 days
postoperatively. Also, the animals were observed for signs
of pain, infection, and proper activity. The rats were eutha-
nized 2, 4, or 8 weeks after surgery by an overdose of
CO2/O2 suffocation.

Degradation assay

Before surgery, CaP discs incorporated with either type
A or B radioiodinated gelatin microparticles (both n 5 6)
were measured in a gamma well-type counter (Wizard,
Pharmacia, Uppsala, Sweden). These samples were des-
tined for implantation in a critical-sized cranial defect as
mentioned earlier. After both 4 and 8 weeks of implanta-
tion, six rats (three with gelatin A and three with gelatin
B) with the radioiodinated implants were euthanized by
CO2 suffocation. The implants with their surrounding tis-
sue were retrieved and measured in a gamma counter
ex vivo. Standards were counted simultaneously to correct
for radioactive decay. The remaining activity in the discs
was expressed as percentage of the initial activity and is a
criterion for the remaining amount of gelatin left in the
composites.

Scanning electron microscopy

To obtain information about the morphological appear-
ance of the composites, the 12 implants of the degradation
assay were fixated in 10% formalin solution and dehy-
drated in a graded series of ethanol. After longitudinal
breakage of the implants, samples were sputter-coated
with gold and examined with SEM (Jeol 6310 scanning
electron microscope, Boston, MA). SEM was performed at
the Microscopic Imaging Center (MIC) of the Nijmegen

Center for Molecular Life Sciences (NCMLS), the Nether-
lands.

Histological and histomorphometrical evaluation

After euthanizing the rats, the implants with their sur-
rounding tissue were retrieved and prepared for histologi-
cal evaluation. The samples were fixated in 10% formalin
solution (pH 5 7.4), dehydrated in a graded series of etha-
nol, and embedded in methylmethacrylate. Following
polymerization, three 10-lm thick sections were prepared
per implant using a sawing microtome technique.8 The
sections were stained with methylene blue and basic fuch-
sin and investigated with a light microscope. For the histo-
morphometrical analysis, all sections per implant were
evaluated using a computer-based image analysis tech-
nique (Leica Qwin Pro-image analysis system, Wetzlar,
Germany). The quantitative evaluation of newly formed
bone was calculated by determining a region of interest
(ROI), which was set between the surface area of both
ends of the originally created critical-sized defect. Within
this ROI, new bone formation was distinguished from pre-
existing bone and composite through structure and color
differences. New bone formation was expressed in milli-
meter square, using standardization of the two-dimen-
sional ROI.

Statistical analysis

Statistical analysis was performed with GraphPad1

Instat 3.05 software (GraphPad Software, San Diego, CA)
using analyses of variance (ANOVA) combined with a
Tukey’s test to correct for multiple comparison. Signifi-
cance was set at p < 0.05.

RESULTS

Implant characterization

The generation of type A gelatin microparticles
resulted in a diameter distribution of 1–161 lm with
an average size of 37.4 6 31.1 lm. The diameter dis-
tribution of the type B gelatin microparticles varied
between 1 and 66 lm with an average size of 20.7 6
14.6 lm. The porosity of the implants was 48.7% 6
0.1% for the implants containing type A gelatin
microparticles and 45.0% 6 1.3% for the implants
containing type B gelatin microparticles (Table I).

In vivo experiment

General observations

All 48 Wistar male rats remained in good health
and did not show any wound complications. At re-
trieval, the cranial implants were all covered by peri-
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osteum and implants remained intact. No inflamma-
tory signs or adverse tissue reactions were observed.

SEM examination

SEM examination of CaP/gelatin composites after
implantation (Fig. 1) showed a homogeneous distri-
bution of type A and B gelatin microparticles

throughout the implants. The gelatin type A compo-
sites contained larger microparticles compared to
gelatin type B composites. The 4- and 8-week im-
plantation period showed a similar composite mor-
phology. Generally, gelatin microparticle degrada-
tion appeared to start at the implant periphery, as
microparticles in the core of the implant appeared to
be intact. However, surface erosion of microparticles
was observed within all samples, indicated by the
deformation of microparticle structure [Fig. 1(E)]. No
apparent differences were observed between
implants containing either type A or B gelatin.

Degradation study

The implants with their surrounding tissue were
retrieved, and the retained activity was determined

TABLE I
Implant Macroporosity and Gelatin Microparticle Sizes

Cap/Gelatin A Cap/Gelatin B

Macroporosity 48.7% 45.0%
Microparticles size
(before swelling)

15.6 6 13.8 lm
(1 to 63 lm)

8.4 6 7.6 lm
(1 to 49 lm)

Microparticle size
(after swelling)

37.4 6 31.1 lm
(1 to 161 lm)

20.7 6 14.6 lm
(1 to 66 lm)

Figure 1. SEM examination of type A (A,B) and B (C–E) gelatin microparticles incorporated in CaP cement implants after
eight weeks of implantation. Surface erosion of microparticles is observed, indicated by the deformation of the micropar-
ticle structure (arrowheads). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.
com.]
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using a gamma counter ex vivo. The remaining activity
of the radioiodinated type A gelatin microparticles
was 14.3% 6 0.5% and 11.3% 6 0.9% after 4 and 8
weeks of implantation, respectively. Radioiodinated
type B gelatin microparticles showed a remaining ac-
tivity of 18.1% 6 1.4% and 19.6% 6 4.4% after 4 and
8 weeks of implantation, respectively. Statistical analy-
sis showed significantly lower remaining activity for
type A compared to type B gelatin microparticles after
both 4 and 8 weeks of implantation (Fig. 2).

Histological and histomorphometrical evaluation

Light microscopic analysis of the histological sec-
tions of the implants showed similar results for
implants containing either type A or B gelatin micro-
particles. The 2-week implantation period [Fig. 3
(A,D)] resulted in minimal bone formation from the
cranial bone toward the implant. After 4 weeks of
implantation [Fig. 3(B,E)], a thin layer of newly
formed bone was present from the cranial bone

Figure 2. Remaining iodine125 activity (in %) of the types A and B gelatin microparticles incorporated in CaP cement
implants. Significant differences (p < 0.05) are indicated with an asterisk (*).

Figure 3. Histological sections of CaP cement implants containing type A gelatin microparticles after 2 (A), 4 (B), and 8
(C) weeks of implantation as well as implants containing type B gelatin microparticles after 2 (D), 4 (E), and 8 (F) weeks
of implantation. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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toward the implant periphery. Occasionally, limited
bone formation at the cerebral side of the implant
was observed. After 8 weeks of implantation [Fig.
3(C,F)], a layer of newly formed bone was present
from the cranial bone toward the implant periphery.
Bone ingrowth into the implant was predominantly
observed at sites of gelatin microparticles degrada-
tion at the implant periphery [Fig. 4(C)]. Also, bone
formation at the cerebral side of the implants was
observed, although no bridging of the entire defect
was observed [Fig. 4(B)]. At all implantation periods,
fibrous tissue between implants and cranial bone
was observed, especially in case there was no close
contact between implant and bone [Fig. 4(A)]. No

bone or fibrous tissue was observed in the center of

the implants after any of the implantation periods.
Histomorphometrical evaluation showed no signif-

icant differences between composites with either
type A or B gelatin microparticles regarding bone
formation after any of the implantation periods (Fig.
5). Generally, only limited amounts of newly formed
bone were found in both type A and B gelatin
microparticle composites. Implants containing type
A microparticles showed 0.03 6 0.04 mm2 new bone
after 2 weeks, 0.37 6 0.23 mm2 after four weeks, and
finally 0.60 6 0.50 mm2 after 8 weeks of implanta-
tion. The samples containing type B gelatin micro-
particles showed 0.07 6 0.07 mm2 new bone after

Figure 4. Magnification of histological sections of CaP cement implants containing type A gelatin microparticles after 2
(A) and 8 (B,C) weeks of implantation. (B, cranial bone; F, fibrous tissue; and N, newly formed bone). [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 5. New bone formation (in mm2) in CaP implants containing either type A or B gelatin microparticles after 2, 4,
and 8 weeks of implantation.
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2 weeks, 0.23 6 0.37 mm2 after 4 weeks, and finally
0.58 6 0.14 mm2 after 8 weeks of implantation.

DISCUSSION

In this study, the degradation properties and the
subsequent effect on bone formation of gelatin
microparticles incorporated in CaP cement in a criti-
cal-sized cranial defect in rats were examined. More
specifically, the use of a natural polymeric material
for the generation of microparticles was evaluated,
because such a material is hypothesized to degrade
more rapidly when compared with synthetic poly-
meric materials. The natural polymer gelatin was
used in either an alkaline or an acidic form to reveal
potential differences in degradation of resulting
microparticles.

Implant characterization demonstrated that the
macroporosity of the composites was 48.7% 6 0.1%
for composites containing type A gelatin micropar-
ticles and 45.0% 6 1.3% for the composites contain-
ing type B microparticles. In view of previous stud-
ies with PLGA microparticles,8 this porosity should
be high enough to obtain an interconnective network
after degradation. However, porosity is not the only
important factor in interconnectivity. Previous
research showed that the interconnection was not
solely relying on high porosity, but merely on micro-
particle size.8 Nonetheless, no fibrous tissue or bone
formation was observed in this study throughout the
implants, which is the parameter to indicate in vivo
interconnectivity. Although no CaP precipitates were
observed in this study, Habraken et al.5 showed that
CaP can precipitate inside and onto the gelatin
microparticles. Consequently, after degradation of
two adjacent microparticles, a shell of hydroxyapa-
tite was created, instead of an interconnection. This
could explain insufficiency of the used 5 wt % gela-
tin microparticles in this study to obtain intercon-
nected pores. Therefore, increasing the microparticle
weight percentage is likely to solve this problem at
least partially, although precipitation of CaP still can
occur and problems with setting time of the compo-
sites could emerge if the weight percentage is above
a certain threshold.17

SEM examination showed that gelatin micropar-
ticles were degraded at the implant periphery,
whereas in the core of the implant, microparticles
appeared to be intact. Before microparticle degrada-
tion, our implants only possessed an intrinsic nano-
porosity without an interconnected microporous net-
work. Therefore, fluid flow in the center of the
implants was likely limited compared to that at the
implant periphery. As a result, binding and/or acti-
vation of proteolytic enzymes can be different at

these sites, thus limiting gelatin degradation in the
center of the implants.5

The degradation study showed that the remaining
radioactivity of the composites containing type A gel-
atin microparticles was lower than the composites
containing type B gelatin microparticles. The differ-
ence between type A and B gelatin microparticles
degradation was significant. This could be explained
by a higher porosity and larger microparticle size of
the type A gelatin, which results in faster degradation
of the microparticles.17 Furthermore, the difference in
charge and acidity could also account for the differen-
ces in degradation. Remarkably, the difference
between the remaining radioactivity after 4 and 8
weeks implantation was minimal. Apparently, radio-
iodinated gelatin was still present in the core of the
composites. This could be explained by the binding
properties of gelatin to CaP18 and the high binding af-
finity of CaP cement for proteins,19,20 resulting in a
strong bond between the CaP cement and the gelatin.

Unfortunately, long-term measurements with the
same composites in vivo could not be performed,
due to the low energetic emission of the Iodine125

label. Other radioactive isotopes (Iodine131 and In-
dium111) were considered for gelatin microparticle
labeling, but were unsuitable to use for gamma cam-
era measurements due to their short half-lives of 8
and 3 days, respectively. Therefore, samples could
only be measured in a gamma counter ex vivo before
implantation and after sacrificing the animals. Fur-
thermore, for the chosen method to study gelatin
microparticle degradation, the assumption was made
that the chemical linkage of the radiolabel resulted
in homogeneously radiolabeled microparticles rather
than radiolabeling according to a gradient. This
assumption is plausible because the microparticles
are hollow and consist of a thin shell of gelatin.5

However, the authors recognize the limitations of
this method. Therefore, it is likely that the radioac-
tivity measurements represent an indirect method to
determine gelatin microparticle degradation. It needs
to be emphasized, however, that the measured
radioactivity includes not only the remaining intact
radioiodinated gelatin microparticles, but also
remaining partially degraded gelatin microparticles.
Therefore, the measured radioactivity does not auto-
matically indicate that the microparticles are com-
pletely degraded.

Histological evaluation showed that fibrous tissue
was observed between composite and cranial bone,
especially in case there was no close contact between
implant and bone. No bone or fibrous tissue was
observed in the center of the composites after any of
the implantation periods, probably due to the lack of
interconnectivity. Therefore, bone ingrowth was only
observed at the periphery of the composites after
degradation of gelatin microparticles.
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Histomorphometrical evaluation showed that
between implants containing type A and B gelatin
microparticles, no significant differences in bone for-
mation occurred during all implantation periods.
This could be explained by the excellent osteocon-
ductivity of the CaP cement.1,21,22 However, the
amount of newly formed bone in this study was lim-
ited when compared with previous research with
CaP cement implants.4,7,22 Factors including surgical
technique, differences between animals or implant
locations are known to effect bone formation.23

CONCLUSIONS

In conclusion, this study demonstrates that gelatin
type influences the degradation of gelatin micropar-
ticles incorporated in CaP cements. However, this
difference in degradation and the concomitant subse-
quent macroporosity did not induce differences in
the biological response.

The authors thank the Dutch Technology Foundation
(STW) applied science division of NWO.
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