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Assessing the antifungal potential of Hypholoma fasciculare and its adherence to 

the roots of Castanea sativa 

 

Abstract  

In the region of Trás-os-Montes the chestnut has a high economic importance. In 

recent years, there has been a decrease of the area occupied by the chestnut, due to the 

emergence of diseases, like the ink disease, caused by Phytophthora cinnamomi and P. 

cambivora, or blight canker, caused by C. parasitica.  

The presence of the fungus Hypholoma fasciculare was recently observed in the 

chestnut orchards of Trás-os-Montes (Bragança). Preliminary studies have suggested that 

this fungus causes serious damage to chestnut trees. H. fasciculare seems also to have an 

expressive antagonistic action against various fungi, some of which harmful and other 

beneficial, which could compromise the chestnut orchard sustainability. In order to evaluate 

the consequences arising from the use of H. fasciculare as a biological control agent, the 

antagonistic spectrum of this fungus was assessed against different fungi using the dual 

culture method. The results indicate that H. fasciculare exerts an antagonist action against 

distinct fungi, but also presents its growth affected by the interaction.  

Keeping in mind the possible purification of compounds with antagonistic potential a 

fast and effective method to evaluate antimicrobial activity is desirable. Since the method of 

co-culture between filamentous fungi is relatively slow, requiring approximately 12 to 15 

days for giving results, a new assay was optimized by using yeasts as indicators of 

antagonistic activity of H. fasciculare. Given the sensitivity of the tested yeasts and its high 

growth rate, this new assay not only proved to be suitable but also faster to evaluate 

antimicrobial activity of H. fasciculare. This method is proposed to be used in place of the 

traditional method of co-culture for assessing the antimicrobial potential. The same assay, 

performed with Gram-positive and Gram-negative bacteria, also revealed the antibacterial 

activity of compounds produced by H. fasciculare.  

The interaction between C. sativa - H. fasciculare was evaluated by the 

macroscopic characterization of fungal adhesion to chestnut roots. Since the hydrophobin 

proteins could be involved in the adhesion process, the identification of the full sequence of 

the corresponding cDNA was attempted using RNA samples purified from samples 

collected during the process of interaction root-fungus. The prior identification of a genomic 

DNA sequence of H. fasciculare hydrophobin gene allowed starting the process of 

identifying the cDNA sequence of the same gene.  

 

Keywords: Hypholoma fasciculare, Castanea sativa, antagonism, antimicrobial activity, 

interaction fungi-plant, interaction fungi-fungi 
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Avaliação do potencial antifúngico do Hypholoma fasciculare e sua adesão as 

raízes de Castanea sativa 

Resumo 

Na região de Trás-os-Montes o castanheiro possui uma elevada importância 

económica. Nos últimos anos, tem-se assistido a um decréscimo da área ocupada pelo 

castanheiro, devido ao aparecimento de doenças como a doença da tinta, causada por 

Phytophthora cinnamomi e P. cambivora; e o cancro cortical, causado por C. parasitica. 

A presença do fungo Hypholoma fasciculare foi recentemente observada em 

soutos de Trás-os-Montes (Bragança). Estudos preliminares evidenciaram que este fungo 

causa sérios danos aos castanheiros. H. fasciculare possui ainda uma expressiva acção 

antagonista contra diversos fungos presentes no solo dos soutos, prejudiciais e benéficos, 

o que poderá comprometer a sustentabilidade dos soutos. Durante este projecto avaliou-se 

o espectro de acção antagonista de H. fasciculare contra diversos fungos, utilizando o 

método de cultura dupla, de forma a avaliar as consequências decorrentes da utilização 

deste fungo como agente de controlo biológico. Os resultados indicam que H. fasciculare 

exerce uma acção antagonista contra os fungos testados, mas também apresenta o seu 

crescimento afectado pela interacção.  

Com vista a uma possível purificação dos compostos com potencial antagonista é 

desejável um método rápido e eficaz para avaliar a actividade antimicrobiana. Dado que o 

método de co-cultura entre fungos filamentosos é relativamente moroso, requerendo cerca 

de 12 a 15 dias para visualizar os resultados, um novo ensaio foi optimizado, utilizando 

leveduras como microrganismos indicadores de sensibilidade à actividade antagonista de 

H. fasciculare. Dada a sensibilidade das leveduras testadas e a sua elevada taxa de 

crescimento, este novo ensaio revelou-se não só adequado como mais rápido para avaliar 

a actividade antimicrobiana de H. fasciculare. Propõe-se assim a sua utilização em 

substituição do tradicional método de co-cultura para avaliar o potencial antimicrobiano do 

fungo em estudo. O mesmo ensaio, realizado com bactérias Gram-positivas e Gram-

negativas, revelou ainda a actividade antibacteriana de compostos produzidos por H. 

fasciculare. 

O estabelecimento da interacção entre C. sativa - H. fasciculare foi avaliado pela 

caracterização macroscópica da adesão do fungo às raízes de castanheiro. Dado que no 

processo de adesão poderão estar envolvidas hidrofobinas, a identificação da sequência 

completa do seu cDNA foi tentada recorrendo à purificação de RNA de amostras 

recolhidas durante o processo de interacção raíz-fungo. A partir da prévia identificação de 

uma sequência de DNA genómico de hidrofobina de H. fasciculare foi iniciado o processo 

de identificação da sequência de cDNA do mesmo gene. 

 

Palavras-chave: Hypholoma fasciculare, Castanea sativa, antagonismo, actividade 

antimicrobiana, interacção fungo-planta, interacção fungo-fungo,  
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The European chestnut (Castanea sativa Mill.) has high economic 

importance in countries of Mediterranean Europe, due to the wood quality and 

value of the fruit.  Portugal is the second largest producer of chestnuts in the world, 

being the chestnut tree widely distributed through the north and center of the 

country, mainly in the interior region. One of the main producing areas is the north-

eastern region (Trás-os-Montes), where this crop has a high economic interest. 

The wood is a raw-material used in timber construction, carpentry, cooperage, 

flooring or shipbuilding, being one of the preferred choices for making high quality 

furniture. In addition, the fruit is the most important export product of the fruit sector 

in Portugal. Along with the economic value, the tree has acquired a great 

importance at a cultural level, mainly in Trás-os-Montes region (Martins, 2004; 

Baptista et al., 2007). Besides the use of chestnut fruits in the population diet, 

leaves and bark are also used to treat diseases due to their astringent, 

remineralizing, sedative and tonic properties (Carvalho, 2005). Associated with 

chestnut orchards found in this region, there are large quantities of edible 

mushrooms, some of which with high internationally commercial value (Baptista et 

al, 2007). Indeed, the mushroom harvesting represents an important source of 

income for the local population. 

Soil microorganisms, such as fungi, bacteria, protozoa, algae or viruses, 

play relevant activities in plant development, nutrition and health (Kennedy, 1998; 

Bowen & Rovira, 1999; Barea et al., 2005; Fageria & Stone, 2006). This action can 

be beneficial or harmful, depending on the interaction that occurs between 

microorganisms and plant roots. 

Fungi are well known by their ability to decompose debris of plants and 

animals. Indeed, the fungal contribution on the decomposition and recycling of 

nutrients is very important since the soil acidity usually limits the growth of other 

groups of microorganisms (Deacon, 1997). But fungi can also cause reactions of 

antagonism to other organisms, being capable of parasite and/or pathogenic 

associations that cause disease and mutually favorable associations with the plant 

roots (Klein & Paschke, 2004). The fungal contribution on the decomposition and 

recycling of nutrients is important since the soil acidity usually limits the growth of 

other groups of microorganisms (Deacon, 1997).  

The filamentous fungi are also associated with the translocation of nutrients 

within the soil. The penetration of hyphae into plant tissues could result in the 

release and incorporation of nutrients into the hyphae. Due to the fungal ability to 
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growth and colonize, the translocation of these nutrients to large areas will be 

promoted (Klein & Paschke, 2004). 

Fungi may display a multitude of interactions with other soil 

microorganisms, including interactions with other fungi. The antagonistic action that 

some fungi have on others is due to the action of antibiotics or enzymes produced 

by the fungus, as well as the competition for food or parasitism (Brimner & Boland, 

2003). As a result, the interaction may occur at a distance (antagonism at a 

distance) or after fungal contact (“hyphal interference” or parasitism). The most 

relevant type of antagonism that occurs in saprophytic fungi occurs through 

mycelial contact. Among the interactions that occur between fungus-fungus, the 

antagonism between filamentous fungi and yeast could be also included. A similar 

process happens when referring to antagonism between fungus and bacteria’s.  

In addition to the interactions with other microorganisms, soil fungi are also 

able to interact with root plants. These interactions can be also beneficial or 

harmful. Indeed, the most important plant pathogens are fungi. Chestnut trees 

could be strongly affected by diseases caused by fungi, such as ink disease or 

sudden oak death (caused by Phytophthora cinnamomi and Phytophthora 

cambivora), root disease (caused by Armillaria mellea) or chestnut blight (caused 

by Cryphonectria parasitica). These fungi are causing serious damage to chestnut 

groves, reducing the area occupied by this crop over the past decades, mainly in 

the region of Trás-os-Montes (Baptista, 2007).  

The symbiotic association between fungi and plants, mycorrhization, is an 

important interaction occurring in the rhizosphere. This interaction cause 

physiological changes on host plant resulting in the improvement of their growth, as 

well as better resistence/tolerance to biotic and abiotic stresses (Jeffries et al., 

2003; Barea et al., 2005). Despite the importance of mycorrhization for plant growth 

and productivity, the study of mycorrhizal fungi interaction with other 

microorganisms has been neglected. Most work has focused on the effect of 

inoculation of saprophytic fungi in mycorrhizal systems. The results indicate that, in 

general, saprophytic fungi reduce plant growth and inhibit root colonization by 

symbiotic fungus, impairing mycorrhization (Fracchia et al., 1998; Godeas et al., 

1999; Murphy & Mitchell, 2001; Martinez et al., 2004). However, this effect is not 

always observed and depends mainly on the species and strain of the saprophytic 

fungi or its symbiont (García-Romera et al., 1998; Fracchia et al., 2000, 2004; 

Werner et al., 2002). The suppression of mycorrhiza by saprophytic fungi mainly 

occurs during the pre-colonization of symbiotic development, through inhibition of 
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spore germination or hyphal growth of mycorrhizal fungi. Results concerning the 

suppression of ectomycorrhizae formation by saprophytic fungi were also obtained 

through antagonism studies between ectomycorrhizal and saprophytic fungi 

(Martinez et al., 2004). 

The effect of the interaction between saprophytic fungi in the soil and 

ectomycorrhizal fungi can also have an impact on the mineral nutrition of host 

plants, mainly in nitrogen and phosphorus (Koide & Kabir, 2001; Wu et al., 2003, 

2005). When the levels of these nutrients in the soil are not limiting, saprophytic 

fungi increase their availability to ectomycorrhiza resulting in an improvement of the 

nutritional status of the host plant. This increase is especially important for the 

mineral nutrients that came from complex polymers, which could not be hydrolyzed 

by the majority of ectomycorrhizal fungi, but are hydrolyzed by the saprophytic 

fungi (Koide & Kabir, 2001; Wu et al., 2005). When soils have limiting levels in 

these nutrients, there is a direct competition between saprophytic and 

ectomycorrhizal fungi, restricting the mineral nutrition of host plants (Koide & Kabir, 

2001). 

The presence of the fungus Hypholoma fasciculare was recently observed 

in the chestnut orchards of Trás-os-Montes (Baptista, 2007). Although this species 

is described as saprophytic, a preliminary study showed that H. fasciculare causes 

serious damage to chestnut trees and has a significant antagonistic action against 

several fungi present in the soil of the chestnut groves (P. Baptista, personal 

communication). Limiting the growth and spread of phytopathogenic fungi, H. 

fasciculare may give a significant contribution to the preservation of chestnut 

culture. However, as this fungus also restricts the growth of beneficial fungi, such 

as ectomycorrhizal fungus, Pisolithus tinctorius (Baptista, 2007), the sustainability 

of chestnut groves can also be compromised by the presence of H. fasciculare.  

Hypholoma fasciculare belongs to the Basidiomycetes class, being frequent 

in northern Europe and North America. This fungus has been described as 

saprophytic, since its mushrooms are easily found on the dead wood of deciduous 

trees. The mycelial growth is morphologically characterized by the formation of 

strands (cords), which are aggregates of hyphae aligned along. This typical feature 

from cord-forming fungi, combined with the high growth rate, allows the occupation 

of large areas that can reach more than 100m in diameter (Boddy, 1993).  As a 

result, cord-forming fungi present an ecological impact on the mobilization and 

translocation of biomass and nutrients within the soil, especially in forest 

ecosystems. As other fungal species that form mycelial cords, H. fasciculare has 

http://en.wikipedia.org/wiki/Deciduous
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been identified as a secondary colonizer of dead wood, showing ability to stay on 

the occupied site for many years (Dowson et al., 1988c; Holmer & Stenlid, 1997). 

Due to the high combative effect of H. fasciculare against other fungal 

species, its use as a biological agent against pathogenic fungi has been 

encouraged in recent years, such as the use in disease control of root rot cause by 

Armillaria ssp. (Chapman et al., 2004). Antagonist actions recognized against other 

microorganism encourage several studies to understand the strategies of growth 

adopted by H. fasciculare in different resources (Dowson et al., 1989), also inter-

specific actions establish with other fungi species present in the same resource and 

its repercussions are being studied (Dowson et al., 1988c, 1988a, 1988b; Nicolotti 

& Varese, 1996; Donnelly & Boddy, 2001; Wells & Boddy, 2002; Heilmann-Clausen 

& Boddy, 2005; Woods et al., 2005, 2006; Cox & Scherm, 2006).  

As mentioned earlier antagonism is not a mechanism unique of filamentous 

fungus. Antagonism can also occur in yeast and bacteria.  In the XIX century, 

Pasteur, observe that when different bacteria were placed side by side the growth 

inhibition of one bacterium could be inhibited by the other. One bacterium produced 

substances that were lethal to other more sensitive strains of bacteria. These 

observations revolutionized the work on infectious diseases, leading to the 

characterization of a wide range of antimicrobial substances and promoting the 

production of antibiotics, bacteriolytic enzymes, and bacteriocins (Polonelli & 

Morace, 1986). A similar event in yeasts was first reported by Bevan and Makower 

(1963). Isolates of Saccharomyces cerevisiae secreted a substance that was lethal 

to other strains of the same species (Bevan & Makower, 1963). Using S. cerevisiae 

as killer yeast presents some advantages, since this yeast has been for the past 

two decades, the model system for much of the eukaryotic molecular genetics 

research. The conservation of the basic cellular mechanics of replication, 

recombination, cell division and metabolism between yeast and larger eukaryotes 

turned S. cerevisiae a good research model.  

This project aims to evaluate the spectrum of antagonistic activity of 

H. fasciculare against other fungi present on the chestnut groves. The results 

would define the potential of this fungus as a biocontrol agent, and also determine 

the putative ecological consequences of that usage. Preliminary results have 

shown the antagonistic action of H. fasciculare against Phytophtora spp., which are 

extremely dangerous for chestnut groves (P. Baptista, personal communication). 

Keeping in mind the purification of a putative antagonistic compound, a simple and 

straightforward assay was optimized for testing the antagonistic activity of H. 
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fasciculare (Chapter 2). Because dual cultures with filamentous fungi will take too 

much time to give a result in a purification protocol, the assay optimization was 

focused on the application of yeasts (S. cereviseae) in the antagonistic assay. The 

spectrum of H. fasciculare action was also assessed co-culturing H. fasciculare and 

different strains of filamentous fungi (Chapter 3). To further evaluate the 

antagonistic spectrum of H. fasciculare and validate the use of the designed assay, 

this methodology was used for testing other yeasts and bacteria (Chapter 3).  

Another objective of this project is to study the establishment of C. sativa - 

H. fasciculare interaction. Proteins with adhesion capacity, such as hydrophobins, 

were previously suggested to play an important role during the first hours of 

interaction (Baptista, 2007). The previous identification of a partial sequence of H. 

fasciculare hydrophobin gene will allow obtaining the complete sequence of the 

corresponding coding region by RACE (Chapter 4). The sequences obtained will be 

used to design new primers for cloning the coding region. Using various 

bioinformatics tools the DNA sequence and hydrophobin protein will be analyzed 

and compared with other homologous sequences (Chapter 4).  
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2.1 Introduction  

Antimicrobial activity refers to the ability of a microorganism to inhibit the 

growth of another microorganism and is normally due to the production and release 

of substances with that activity. An antimicrobial activity was probably observed for 

the first time by Pasteur and Joubert, in the XIX century, who described an 

inhibitory effect of bacteria isolated from urine against Bacillus anthracis in 

Ullmann, 2007. Since this first observation, a wide range of substances possessing 

antimicrobial activity has been discovered and characterized in many species of 

bacteria, yeast and fungi, either displaying activity against the same microbial 

group or effective against microbes of different groups. Penicillin, produced by the 

fungus Penicillium notatum, was discovered by Alexander Fleming in 1928 and was 

an important mark in medicine, triggering the search and the development of new 

antibiotics. However, fungi also interact with other fungi, either belonging to the 

same species or to different ones. Most of the times this interaction is a 

competition, with one organism usually inhibiting the growth of another fungus 

(Boddy, 1999). 

In bacteria, the production of substances that are active against other 

bacteria - the bacteriocins – can be found in several species, either Gram-positive 

or Gram-negative, and different bacteriocins can be produced by a unique species. 

In yeasts a similar phenomenon is also found (Riley & Wertz, 2000; Savadogo et 

al., 2006). Killer yeasts and their killer toxins were first reported by Bevan and 

Markower, in 1963, who described that an isolated Saccharomyces cerevisiae 

strain secreted a substance lethal to other strains of the same species. The 

occurrence of this phenotype also proved to be widely distributed in yeasts. 

Furthermore, some killer yeasts can produce more than one killer toxin type, as 

found for bacteriocins producing bacteria. 

The antifungal potential of Hypholoma fasciculare is usually evaluated using 

a dual co-culture assay of H. fasciculare and other filamentous fungi which 

sensitivity is going to be tested. However, to see any interaction, it is necessary to 

wait for the growth of both fungi, which takes an average of 10-12 days.  

Yeasts are also fungi, although unicellular, and they growth more rapidly 

than filamentous fungi. Taking this into consideration, attempts were made to 

design and develop a procedure to detect H. fasciculare antimicrobial activity using 

yeasts as sensitive indicator microorganisms. Saccharomyces cerevisiae was 
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chosen as the sensitive indicator yeast to develop this assay. This yeast is a model 

eukaryote microorganism in Biology due to its basic mechanism of DNA replication, 

chromosomal recombination, cell division, gene expression and metabolism, 

generally well conserved among yeasts and higher eukaryotes (Rose and Harrison, 

1987, 1995; Sherman, 1998, 2002; Castrillo and Oliver, 2004). Several other 

properties make S. cerevisiae a particularly suitable organism for biological studies, 

such as its GRAS (Generally Regarded As Safe) status, the rapid growth, as well 

as the availability of simple methods of cultivation under controlled conditions. This 

yeast also represents a well defined system for which techniques of genetic 

manipulation have been extensively developed (Brown and Tuite, 1998; Sherman, 

1998, 2002; Castrillo and Oliver, 2004). The most favorable features of this yeast is 

accessibility and its importance in the world economy, mainly in brewing and 

baking industry (Castrillo and Oliver, 2004).  

A set of experiences was conducted in order to determine if yeasts – 

namely S. cerevisiae – could be used to evaluate the antimicrobial potential of H. 

fasciculate and, in such case, to define the best experimental conditions to detect 

and assess the fungal antagonist action. In particular, the effect of culture medium, 

inoculum concentration, H. fasciculare growth time or temperature and the 

temperature of the assay were studied. The aims of this work were essentially i) to 

reduce the time-response of the traditional methodology and ii) simultaneously 

evaluate the antimicrobial potential of H. fasciculare against other microorganisms, 

yeasts in particular.  

 

 

2.2. Material & Methods  

2.2.1. Culture and maintenance of microorganism  

 Saccharomyces cerevisiae used in this work belongs to the collection 

existent in the Biology Department in Universidade do Minho. They were transfer 

from the originals to new plates in YPDA medium and incubated, at their optimal 

growth temperature, at 30°C for 48h.  

Hypholoma fasciculare was kindly provided by the Instituto Politécnico de 

Bragança. Axenic cultures of fungi were made on medium Melin-Norkrans (MMN) 

medium and Potato Dextrose Agar (PDA) medium. They were transferred to new 

plates and incubated, in the dark, at a temperature of 20°-23°C. 
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Medium YPDA: yeast extract 10 g/L; peptone 20 g/L; glucose 20 g/L; agar 20 g/L 

Medium MMN: NaCl 0.025 g/L; (NH4)2HPO4 0.25 g/L; KH2PO4 0.50 g/L; FeCl3 0.050 g/L; 

CaCl2 0.50 g/L; MgSO4.7H2O 0.15 g/L; thiamine 0.10 g/L; casamino acid 1.0 g/L; malt 

extract 10 g/L; glucose 10 g/L; agar 20 g/L 

Medium PDA: 39 g/L 

 

 

 

2.2.2. Evaluation of the anti-yeast activity of Hypholoma fasciculare 

 

2.2.2.1. Culture of Hypholoma fasciculare 

A small piece of H. fasciculare was inoculated in the centre of a plate 

containing an appropriate culture medium: MMN and PDA. In standard conditions, 

these plates were incubated in darkness, at room temperature for 6 days. After 

incubation, the plates were overlaid with the sensitive indicator strain (see section 

2.2.2.2.). 

The effect of temperature of growth and the effect of H. fasciculare growth 

time in fungal antimicrobial potential were determined culturing the fungus at 

different temperature values (20°C, 25°C, 30°C, 35°C and 40°C) or during different 

periods of time (2, 4, 6, 8, 10 and 12), respectively, according to the objectives of 

each experiment. These plates were then used to assay fungal antagonistic action 

against the chosen sensitive yeast indicator strain, as describe in the following 

section. 

 

 

2.2.2.2. Detection of the anti-yeast activity of Hypholoma fasciculare 

A suspension of Saccharomyces cerevisiae was prepared from an YPDA 

fresh culture in saline solution 0.85% (w/v) and mixed with agar 0.8% (w/v) in order 

to have 106 cells/ml (Figure 2.1 A, B, C). A volume of 8 ml of this mixture was then 

transferred to a plate previously inoculated with H. fasciculare (section 2.2.2.1) 

(Figure 2.1. D) and then incubated for 48h. The assay temperature was normally 

25ºC unless in the experiments to evaluate the effect of temperature in fungal 

antagonistic action. In this case, plates were incubated at 20°C, 25°C, 30°C, 35°C 

and 40°C. 
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Figure 2.1 Assay to evaluate H. fasciculare antimicrobial activity (A) eppendorf tubes with 

different suspensions of S. cerevisiae in saline solution, (B) Neubauer chamber to count the 

number of cells in saline suspensions, (C) addition of cell suspension to agar 0.8%, and (D) 

making of the yeast overlay over H. fasciculare- inoculated plates.  

 

The inoculum size used in the assay (106 cells/ml) was defined after a first 

experiment where different cell concentrations were tested (104 cells/ml, 106 

cells/ml and 108 cells/ml) 

Anti-yeast activity was evaluated after incubation and both the diameter of 

the fungus and the diameter formed by the limits of any inhibition zone were 

measured. These values were used to calculate the areas occupied by the fungus 

and the halo created by the fungus anti-yeast action. 
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2.3. Results and discussion 

 

2.3.1. Choice of the assay medium to evaluate Hypholoma fasciculare 

antimicrobial activity 

 For this experiment H. fasciculare was cultivated in two different media - 

Mellin-Norkrans (MMN) and Potato Dextrose Agar (PDA) - for 6 days in the dark at 

room temperature.  After this period, the evaluation of the fungus antimicrobial 

potential was performed according to the procedure above described (section 

2.2.2.2). Figure 2.2 illustrates the type of results obtained.  

 

 

 

 

 

 

 

 

Figure 2.2. Assay for detection of the anti-yeast activity of H. fasciculare against S. 

cerevisiae in MMN (A) and PDA (B) media.  

 

 

H. fasciculare displays better growth in MMN than in PDA.  A S. cerevisiae growth 

inhibition zone or an inhibition halo was detected surrounding H. fasciculare, and 

corresponds to the fungus antagonistic action over the tested yeast. However, this 

antimicrobial activity is only observable in PDA, and not in MMN medium. The 

reasons that can lead to this result can be attributed to differences in pH as well as 

in the composition of each medium.  

This first experience allowed to detect an antagonistic action of H. 

fasciculare against the yeast S. cerevisiae, never reported before. As such effect 

was only visible in PDA medium, the assay for antimicrobial activity was further 

designed using this medium.  

 

 

 

1 cm 1 cm 
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2.3.2. Concentration of the sensitive indicator strain 

 To determine the inoculum size of the sensitive indicator strain to be used in 

the antimicrobial assay, H. fasciculare was cultured (section 2.3.2.1) for 6 days at 

25°C and covered with an overlay of 104, 106 and 108 cells/mL of S. cerevisiae. 

Results were obtained after 48h incubation at 25ºC (Figure 2.3). 

 

 

Figure 2.3. Effect of S. cerevisiae inoculum size on H. fasciculare anti-yeast activity (A) S. 

cerevisiae overlay consisting of 10
4
 cell/mL.

  
(B) 10

6
 cell/mL and

 
(C) 10

8
 cell/mL.

  
. 

 

 The S. cerevisiae growth inhibition zones become smaller with the increase 

of inoculum size, as would be expected. Therefore, the biggest halo size is seen in 

the assay with the smallest inoculum. However, the limit of this halo is not always 

clearly defined thus demanding special attention in its delimitation and measure. 

Therefore, the assay with an overlay with 106 cell/mL, although showing a smaller 

halo, seems to be the best experimental condition to detect and measure the H. 

fasciculare anti-yeast activity. 

 

 

2.3.3. Effect of the time of H. fasciculare growth on antimicrobial activity  

The effect of the time of growth of H. fasciculare on its anti-yeast activity 

was evaluated culturing the fungus for different periods of time - more precisely 

during 2, 4, 6, 8, 10 and 12 days – followed by the determination of its antagonistic 

potential against S. cerevisiae.  Figure 2.4 represents the area occupied by the 

fungus and the area occupied by the fungus and its inhibition halo against the yeast 

S. cerevisiae for each time of growth. To better evaluate this anti-yeast activity, a 

ratio between both areas was also determined and represented in the same graph. 

1 cm 
1 cm 

1 cm 
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Figure 2.4. Hypholoma fasciculare  antagonistic activity against Saccharomyces cerevisiae 

over time. The antimicrobial effect was evaluated after 2, 4, 6, 8, 10 and 12 days of fungal 

growth. The area occupied by the fungus is represented in red and the area occupied by 

the yeast growth inhibition zone in green. The line represents the ratio between both areas. 

From the left to the right, the images show the assay for detection of the antifungal activity 

of H. fasciculare in each experimental condition.  

 

After 2 days of growth almost no inhibition halo was visible but the halo size 

increased with fungal growths. During growth, more cells are formed and probably 

more antagonistic substance, of a still unknown nature, is produced. The area 

occupied by the fungus is almost always larger than the area occupied by the 

respective yeast growth inhibition zones. However it seems that fungal growth is 

slowing and stabilizing over time whereas the halo size continues increasing, so 

after 12 days the area occupied by the halo was higher than the area occupied by 

the fungus. This experimental condition would thus be the best to see a higher 

antagonistic activity of H. fasciculare against S. cerevisiae but such antimicrobial 

activity is clearly detectable and already visible after 4 days of growth. In order to 

observe an even more evident phenotype, 6 days of fungal growth was the chosen 

time to perform the bioassay to evaluate H. fasciculare antimicrobial activity.  
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2.3.4. Effect of temperature on H. fasciculare  antimicrobial activity  

 H. fasciculare was incubated for 6 days at the usual conditions - in darkness 

and at room temperature - and assayed for antimicrobial activity against S. 

cerevisiae at 20°C, 25°C, 30°C, 35°C and 40°C. The assay lasted 48h (Figure 2.5).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Hypholoma fasciculare antagonist activity against Saccharomyces cerevisiae 

when expose at different temperatures. The antimicrobial effect was evaluated at 20°C, 

25°C, 30°C, 35°C and 40°C. The area occupied by the fungus is represented in red and the 

area occupied by the yeast growth inhibition zone in green. The line represents the ratio 

between both areas. From the left to the right, the images show the assay for detection of 

the antifungal activity of H. fasciculare in each experimental condition.  

 

 

H. fasciculare displayed anti-yeast activity at all the temperature values 

tested, except at 40°C - temperature at which neither the fungus nor the yeast 

seemed to have grown - and the halo size decreased with the increase of 

temperature .The highest antimicrobial activity was observed at 20°C and 25ºC, 

although it was at 25°C that the fungus displayed better growth. As S. cerevisiae 

grows poorly at 20°C this can lead to an apparently higher anti-yeast activity: a 

bigger halo size is obtained due to a lower number of sensitive cells. Any increase 

in temperature above 25ºC led to a slower fungal growth. 

Considering the ratio between both areas (Figure 2.4) it seems that the 

greatest H. fasciculare antimicrobial activity is displayed at 30ºC but it is also 

evident that fungal growth is negatively affected in this condition. In fact, when the 

same assay was performed in the presence of the vital dye methylene blue (Figure 
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2.6) the fungus acquired a blue coloration at 35ºC and was completely blue stained 

at 40ºC, indicating cell death.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Assay to detect H. fasciculare anti-fungal activity against S. cerevisiae in the 

presence of the vital dye methylene blue. 

 

Based on these results and considering that performing the assay at a 

temperature above 30ºC could have induced a heat stress, two new assays were 

performed.  In one experiment, the fungus grew and was tested for antimicrobial 

potential at the temperature values tested in the above experiment (Figure 2.7). In 

another experience, H. fasciculare was grown at the same different temperature 

values during the 6 days-culturing period and then assessed for anti-yeast activity 

at 25°C (Figure 2.8).  
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1 cm 

1 cm 
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Figure 2.7. Hypholoma fasciculare antagonist activity against Saccharomyces cerevisiae 

when H. fasciculare is expose to different temperatures during its growth (20°C, 25°C, 

30°C, 35°C and 40°C). The antimicrobial effect was evaluated at the same different 

temperatures. The area occupied by the fungus is represented in red and the area occupied 

by the yeast growth inhibition zone in green. The line represents the ratio between both 

areas. From the left to the right, the images show the assay for detection of the antifungal 

activity of H. fasciculare in each experimental condition.  

 

 

Once again, 25ºC showed to be the optimal temperature for fungal growth 

and also to obtain the biggest total area, on the contrary to the previous assay. At 

30°C the area occupied by the fungus was clearly lower but the ratio between both 

areas was the highest, which means a greater antimicrobial activity and hence the 

biggest halo. At 35°C and 40°C no inhibition halos were observed because the long 

exposure to these temperatures most probably has caused fungal death.  
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Figure 2.8. Hypholoma fasciculare antagonist activity against Saccharomyces cerevisiae 

when H. fasciculare is left to growth at is optimal temperature, 25°C. The antimicrobial 

effect was evaluated at 20°C, 25°C, 30°C, 35°C and 40°C. The area occupied by the 

fungus is represented in red and the area occupied by the yeast growth inhibition zone in 

green. The line represents the ratio between both areas. From the left to the right, the 

images show the assay for detection of the antifungal activity of H. fasciculare in each 

experimental condition.  

 

 

 When H. fasciculare was cultured at temperatures ranging from 20ºC to 

40ºC followed by the evaluation of its antimicrobial potential (Figure 2.8), the same 

main observations were made. Thus, 20ºC - 25ºC showed to be the optimal 

temperature range for fungal growth, the best value being 25ºC (Figures 2.5, 2.7 

and 2.8). These conditions were found in the laboratory throughout the working 

period, as room temperature values were confirmed to be in the same range, 

depending on the season of the year. The biggest total area is invariably obtained 

at 25ºC which is an optimal growth temperature as already referred, although the 

biggest halos were registered when the fungus was cultured and/or the assay was 

held at 30ºC. As this condition represents a stress to H. fasciculare growth – which 

however seems to favor the production of the antagonistic substance – the assay 

was decided to be conducted culturing the fungus (for 6 days) and evaluate its 

antagonistic potential at the same temperature: 25ºC. According to the other results 

here obtained, the bioassay for antimicrobial activity should be performed using 

PDA medium and an inoculum of 106 cell/ml of the sensitive indicator strain. 
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3.1. Introduction 

  In a biological community, the interaction between the various organisms 

that compose it is a constant phenomenon and has consequences in terms of its 

organization. These interactions can be permanent or temporary and are classified 

as positive, when there is mutual benefit for both living organisms, or just to one of 

them but without prejudice to the other; negative, if there is injury to both or to one 

of the interacting organisms in favor of the other and, finally, neutralism which is a 

type of interaction where none of the interacting species is affected. These forms of 

interaction can occur not only between individuals of different species but also 

between individuals of the same species (Baptista, 2007). The following table 

summarizes the main types of interaction in a biological community.  

 

Table 3.1- Types of interaction between two species and their characteristics (adapted from 

Baptista, 2007) 

Types of interaction Species 

A          B 

Characteristics of the interaction 

Neutralism 0  0 No species is affect by the other 

Negative interactions    

     Competition - - Both species are negatively affected, 
because their competition leads to 
the exhaustion of a particular 
resource 
 

    Amensalism (antibiosis and  

allelopathy) 

0 - Secretion of substances by one of the 
species that are harmful to the other 

    Parasitism + - One of the species (parasite) requires 
the presence of another species 
(host) to which is harmful 
 

   Predation + - One of the species (predator) 
consumes other species (prey) 

Positive interactions    

  Commensalism + 0 One of the species (commensal) 
benefits from the presence of other 
species, which is not affected  
 

  Protocooperation + + Both species favor each other, but 
they survive without the presence of 
the other 
 

  Mutualism + + Both species favor each other and 
require the presence of the other 

0 Species not affected by the presence of the other 
+ Species benefits with other or requires its presence  
- Species hampered by the presence of the other 
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3.1.1. Types of interactions between saprophytic fungi 

All the types of interaction described in table 3.1 can occur between 

saprophytic fungi; however competition is the most common type in this trophic 

group (Boddy, 2000). There is no single definition of competition but different 

definitions. The generally accepted one was proposed by Keddy (1989), who said 

that there is competition between two organisms when one of them carries a 

negative effect on the other, either consuming or controlling access to a resource 

whose availability is limited. Such interaction promotes a selective process that 

culminates usually with the preservation of the life forms best adapted to the 

environment, and the extinction of individuals with low adaptive power, thus 

constituting a key regulator of population density. We can define two types of 

competition: by interference (or direct) when an organism excludes the other 

directly on the availability of a resource usually through aggression (physical or 

chemical); and by exploitation (or indirect) if an organism uses a resource 

decreasing its availability or even making it unavailable for other organisms (Keddy, 

1989). In saprophytic fungi, the competition may occur in two distinct phases, 

according to the state of colonization of the resource. In the first stage competition 

occurs by the obtention of resources not colonized by other fungal species. The 

success of this phase depends on several factors such as the effective dispersal 

and rapid germination of spores and the mycelium growth rate and ability to utilize 

the organic compounds available in the non-colonized substrate (Boddy, 2000). In 

the second phase there is a competition for resources already colonized by other 

fungal species. The achievement, maintenance and defense of the resource at this 

stage is done through the antagonistic mechanisms developed by the fungi. These 

mechanisms can operate at distance (distance antagonism) or after contact, 

resulting in reactions such as “hyphal interference” and parasitism 

(mycoparasitism). The result of contact establishment between opponent fungi can 

be the total or partial replacement of the mycelium of one of the fungal species, 

with the attacker gaining territory to the opponent fungi. Alternatively, the attacker 

fungus can grow on or through the mycelium of the opponent and there is no 

occupation of the territory occupied by the opponent fungi (Boddy, 2000).  

In the antagonism at a distance the inhibition of fungal growth occurs in 

the absence of opposition, or prior to the establishment of physical contact between 

interacting fungal hyphae. Such antagonism is usually attributed to the production 

of volatile and/or diffusible compounds, such as antibiotics. The consequences vary 
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according to the combination of fungal species, the most common corresponding to 

the degeneration or replacement of the hyphae by the mycelium of the interacting 

species (Boddy, 2000). In contrast hyphal interference mechanism occurs when a 

hypha establishes contact with hypha or spores of other species which could result 

in the death of the interacting species with a series of scheduled events of 

cytoplasmic destruction. This type of antagonism is one of the most common found 

in saprophytic basidiomycete fungi. This mechanism is not fully understood, but is 

reported to be mediated by the production of diffusible metabolites, secreted only 

when the interacting hyphae make contact (Boddy, 2000).  

The mycoparasitism happens when a fungus act as a parasite to the 

other.  According to the general definition of parasite, a parasitic fungus obtains 

nutrients from other fungus (host) who lives in close association. Obtaining 

nutrients may occur after the death of host cells (necrotrophic parasite) or from its 

living cells (biotrophic parasite). Although not always existing in all parasitic – host 

interactions, the mycoparasitism process involves the following steps: perception of 

the host; growth of the parasite towards the host, contact and recognition of the 

host, and adhesion and penetration of the fungus parasite into the host (Whipps, 

2001). After recognition, the parasitic hyphae adhere and roll gradually on the 

surface of the host hyphae eventually penetrating and growing inside them. In 

some cases it is possible to observe hyphal host bottleneck due to strong hyphal 

parasitic winding (Boddy, 2000). Penetration of parasitic hyphae into host cells is 

normally mediated by production of several extracellular enzymes. The 

mycoparasitism may also be associated with the production of antibiotics, toxins in 

quantities that cause the death or destruction of the host. The antagonistic activity 

of mycoparasite may also be associated with the production of antibiotics and 

toxins, in quantities that cause the death or destruction of their host (Inglis & 

Kawchuk, 2002; Bara et al., 2003; Aggarwal et al., 2004). 

Mycelia contact is another mechanism of antagonism that has a great 

relevance to saprophytic fungi. It was named "mycelial interference" because of its 

similarity with the mechanism of “hyphal interference" (Dowson et al., 1988c). It 

occurs after establishment of contact mycelia of two fungal species, resulting in 

morphological changes in the interacting fungi. In general, these morphological 

changes have the function to increase resistance to the penetration of mycelium 

invader fungus or enable the mycelial growth over or through the opponent fungal 

colony (Dowson et al., 1988c). These morphological changes may specifically 

include the formation of dense mycelium which forms a "barrier" that prevents the 
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invasion of the interacting fungus; the formation an “invasive” mycelium by the 

creation of various growth fronts; the formation of a mycelium with aerial growth; or 

the formation of mycelial strands or rhizomorphs structures (Dowson et al., 1988c; 

Boddy, 2000; Donnelly & Boddy, 2001; Wald et al., 2004; Woods et al., 2005). 

These changes are usually accompanied by a redistribution of the mycelium, which 

appears less dense in distal areas of the zone of interaction. This makes the colony 

more susceptible to the attacker fungus in the event of fragmentation of the zone of 

interaction (Boddy, 2000). In some interactions with fungi that form mycelial cords, 

discoloration can occur and induce a lytic response in one or both segments of 

mycelial cords.  

 

 

3.1.2. Factors affecting the interaction between fungi 

The effect of an interaction between fungi depends on various factors such 

as abiotic factors, which includes the temperature, the substrate, pH, water 

potential, atmospheric pressure and CO2 levels; the physiological/nutritional state 

of interacting fungi species; the presence of a third species of fungi; and, most 

importantly, the intrinsic nature of the species, like its 

combativeness/aggressiveness (Boddy, 2000; Wald et al., 2004; Cano & Bago, 

2005). 

 Several studies have been undertaken in order to evaluate the effect of 

abiotic factors in establishing interactions between fungi. These abiotic factors may 

constrain the growth of interacting fungi in favor of another fungus. It was also 

demonstrated that most of the saprophytic species are greatly affected by water 

potential and even stop growing when the water potential reaches critical levels 

(Boddy, 2000; Wald et al., 2004). The temperature and pH of the substrate also 

influence the growth rate of saprophytic fungi with consequences in terms of the 

effect on interaction (Schoeman et al, 2000; Wald et al., 2004).  

The availability of nutrients for both fungal species influences the interaction 

established by directly determining the nutritional status of interacting fungi (Holmer 

& Stenlid, 1997; Boddy, 2000; Wells & Boddy, 2002; Wald et al., 2004). In general, 

fungi that occupy a larger volume of substrate have a greater combat capability 

compared to fungi that occupy lower volumes of substrate (Zakaria & Boddy, 2002; 

Wald et al., 2004). However, most studies about the interaction between 

saprophytic fungal species were not performed using substrate but rather in axenic 

conditions, where the fungal growth occurs in culture medium. Although the results 
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provide valuable information, their direct extrapolation to the natural field conditions 

must be done carefully and with some reservation, since the results do not always 

coincide with that obtained in natural substrates (Dowson et al., 1988c). 

The combativeness/aggressiveness of both interacting species is what 

mostly determines the type of interaction established. There are some fungi that 

are unfit in attack or in defense of a resource, while others do it in a very effective 

way; others are effective in the attack but disqualified on defense or in contrary, 

they have bad features for the attack but can be excellent in defense of the 

resource holding. This multiplicity of responses allowed the establishment of a   

ranking of species in terms of its combativeness (Boddy, 2000). This hierarchy took 

into account the effect of combativeness against other fungi and also the response 

level of aggressiveness. 

Interaction between saprophytic fungi may cause changes in the metabolic 

activity of interacting mycelia, which result mainly, from the 

defensive/combativeness ability against the opponent fungus (Freitag & Morrell, 

1992). Evidence suggests that competition between two saprophytic fungi is 

associated with energy costs related to CO2 changes during antagonistic 

interactions. In terms of functioning effects on the growth pattern and distribution of 

the mycelia in the translocation of nutrients or in the rates of CO2 release could be 

observe (Boddy, 2000). Thus, competition among saprophytic fungi is an important 

regulator of population density.   

The high aggressiveness displayed by saprophytic fungi suggests their potential 

use as biological control agent. Species like Hypholoma fasciculare, Hypholoma 

australe, Phanerochaete filamentosa, Phanerochaete velutina, Coriolus versicolor, 

Stereum hirsutum, Ganoderma lucidum, Schizophyllum commune and Xylaria 

hypoxylon have been describe for the biological control of Armillaria spp (Chapman 

et al., 2004). This species is a root pathogen that attacks several forest species, 

fruit trees and some herbaceous plants in temperate and tropical regions (Pearce & 

Malajczuk, 1990; Pearce et al., 1995; Chapman et al., 2004; Cox & Scherm, 2006). 

A success, field tested, is the use of Hypholoma fasciculare against Armillaria 

ostoyae (Chapman, 2004). In this study, during a period of 3 to 5 years, a 

significant reduction in the mortality rate was observed for those plants exposed to 

H. fasciculare. Similar results were obtained with other fungal species, including 

Hypholoma australe and Phanerochaete filamentosa which were inoculated with a 

chemical treatment, reducing significantly the colonization of plants by the 

pathogenic fungus Armillaria luteobubalina (Pearce et al., 1995). 
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3.1.3. Interactions between filamentous fungi and yeast and between  

filamentous fungi and bacteria 

Some reports refer the interaction between filamentous fungi and bacteria. 

Fermor and Wood (1981) describe a number of fungi that could degrade the cell 

wall of B. subtilis. Barron & Thorn (1987) reported that Pleurotus hyphae cause the 

lise of bacterial cells. Other more filamentous fungi that act in a similar way were 

then describing (Barron, 1988). Since the finding of this type of antagonism 

between microorganisms, several studies were conducted in order to 

discover/develop other antibiotics or other substances with antimicrobial activity. To 

our knowledge there are no relevant studies concerning interactions between 

filamentous fungi and yeast, both belonging to the fungi group. The literature 

available mainly refers to the action of filamentous fungi against filamentous fungi 

or to the interaction between different yeasts. 

In Castanea sativa orchards present in Bragança, Hypholoma fasciculare 

carpophores are common. This fungus belongs to the trophic group of saprophytic 

fungi and has displays antagonistic activity against Phytophthora spp. (Baptista, 

2007) and Armillaria mellea (Chapman & Xiao, 2000) two of the major chestnut tree 

pathogens. The antagonistic action of H. fasciculare against other fungi 

(mycorrhizal and phytopathogenic) needs to be evaluated to determine the interest 

of this fungus as a possible biocontrol agent. In this study the main goal was to 

assess the potential antagonistic activity of H. fasciculare on fungi present in 

chestnut orchards. 

  In chapter 2 an assay for the detection of antimicrobial activity of H. 

fasciculare cultures against S. cerevisiae was optimized. Given this anti-yeast 

activity other yeast were tested in this chapter. The assays were perform against 

different pathogenic species of the genus Candida. In the past decades infections 

caused by Candida spp. have been increasing. These infections are caused not 

only by the most common pathogen, Candida albicans but also by other Candida 

species. This generates some concerns since Candida glabrata, Candida krusei 

and Candida guilliermondi are highly resistant to antifungics. As certain filamentous 

fungi are known to have an antagonistic effect against bacteria, the H. fasciculare 

antibacterial action was also evaluated. The bacteria chosen were Bacillus subtilis, 

an example of a Gram-positive bacteria and Escherichia coli, an example of a 

Gram-negative one.  
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3.2. Material 

3.2.1. Biological material 

The fungi, Hypholoma fasciculare, Alternaria arborecens, Beauveria 

bassiana, Cordyceps sinensis, Epicocum nigrum, Fusarium chlamydosporum, 

Fusarium oxysporum, Gibberella moniliformes and Mucor circinelloides, used in 

this work, was kindly provided by the Instituto Politécnico de Bragança. The yeast 

and bacteria used in this work belong to the existing collections of yeast and 

bacteria at the University of Minho.  

 

3.3. Methods 

3.3.1. Culture and maintenance of filamentous fungi 

Axenic cultures of fungi were made on medium Melin-Norkrans (MMN) 

medium and Potato Dextrose Agar (PDA) medium. The filamentous fungi were 

transferred to new plates and incubated, in the dark, at a temperature of 20°-23°C. 

Sub-cultures of fungi were carried out in intervals of 3 weeks.  

 

Medium MMN: NaCl 0.025 g/L; (NH4)2HPO4 0.25 g/L; KH2PO4 0.50 g/L; FeCl3 0.050 g/L; 

CaCl2 0.50 g/L; MgSO4.7H2O 0.15 g/L; thiamine 0.10 g/L; casamino acid 1.0 g/L; malt 

extract 10 g/L; glucose 10 g/L; agar 20 g/L 

Medium PDA: 39 g/L 

 

 

 

3.3.2. Co-culture assays for testing Hypholoma fasciculare antagonist activity 

against other filamentous fungi 

 

3.3.2.1. Establishment of co-cultures  

The potential antagonism of the saprophytic fungi H. fasciculare against 

several fungi was assessed in co-culture. Co-cultures were established using petri 

dishes (9 cm diameter) containing 10 ml of MMN medium, pH 6.6 or containing 

PDA medium. Inocula (with 0.7 cm diameter) of H. fasciculare and other fungi were 

collected from the peripheralic regions of active growing cultures and placed at a 

distance of 3 cm from each other, onto MMN or PDA medium. Incubation of 

cultures was carried out in the dark at room temperature. Unless otherwise stated, 

3 different experiments were performed in which 6 replicas were used. 
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Figure 3.1. Establishment of co-culture assays. Sections of agar with 0.7 cm of diameter 

were removed from the actively growing peripheric regions of H. fasciculare cultures and 

from the cultures of the fungus to be tested (A) The inocula were transferred to MMN or 

PDA media and placed at distance of 3 cm between them (B) Three fungal combinations 

were made for each medium: H. fasciculare-interacting fungus; H. fasciculare-H. fasciculare 

and interacting fungus-interacting fungus. The radial growth of fungal colonies was 

measured (C) at intervals of 2 days, during 20 days after inoculation (Baptista, 2007). 
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3.3.2.2. Parameters assessed in co-cultures  

The radial growth of fungal colonies was measured by determination of 

internal and external radius (Figure 3.2), during 20 days and results were 

expressed in mm/day. The morphological characterization of fungal colonies was 

also made, noting the changes in shape and color of the colony and color changes 

in the culture medium. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Determination of the radial growth of fungal colonies. The internal radius was 

measured in inter-seeding in the region (blue) and the external radiius in diametrical 

opposed regions (red). 

 

 

3.3.3. Culture and maintenance of microorganisms 

Yeasts were cultured in yeast extract peptone dextrose agar medium 

(YPDA) and incubated a 30°C for 48h. Sub-cultures were carried out every week. 

The yeast tested in this work were Candida albicans (IGC 3436T), Candida 

dublinienesis (CIPO 70), Candida glabrata (IGC 2418T), Candida guilliermondii 

(26D), Candida krusei (IGC 3341T), Candida tropicalis (IGC 3097T), Candida 

parapsilosis (28B) and Saccharomyces cerevisiae (IGC 4455NT). Bacteria, 

cultures were made in solidified Luria-Bertani medium (LB), and incubated for 24h 

at 37°C. Sub-cultures were carried out weekly. The bacteria tested in this work 

were Bacillus subtilis (48886) and Escherichia coli (CECT 423).   

 

 

 

Medium YPDA: yeast extract 10 g/L; peptone 20 g/L; glucose 20 g/L; agar 20 g/L 

Medium LB: yeast extract 5 g/L; triptone 10g/L; NaCl 10 g/L; agar 15g/L 
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3.3.4. Evaluation of the anti-yeast activity of Hypholoma fasciculare 

The assay to evaluate the anti-Candida activity of H. fasciculare was 

performed by a modified agar diffusion assay, basically as described in Chapter 2. 

A small piece of the fungus with 0.7 cm diameter (inocula) was collected from the 

peripheral regions of an active growing culture, placed at the center of PDA plates 

and cultured in darkness at room temperature. After 3, 8 and 14 days of growth, 

these plates were overlaid with a suspension containing 106 cells/mL of the yeast 

to be tested, prepared in agar 0.8% (w/v). Anti-yeast activity was evaluated after 

48h incubation at 25ºC and both the diameter of the fungus, and the diameter of 

the inhibition zone plus the diameter of the fungus were measured. These values 

were used to calculate the area occupied by the fungus and the area occupied by 

the inhibition halo created by the fungus action.  

 

3.3.5. Evaluation of the anti-bacteria activity of Hypholoma fasciculare 

The assay to evaluate the anti-bacterial activity of H. fasciculare was 

performed as essentially described in the previous chapter to evaluate the fungal 

anti-yeast activity, with some modifications. A small piece of the fungus (inocula) 

was placed in the middle of PDA plates which were incubated in darkness at room 

temperature. After 6 days of growth these plates were overlaid with a bacterial 

suspension containing 106 cells/mL, prepared in agar 0.8% (w/v). Anti-bacterial 

activity was evaluated after 48h incubation at 25ºC, 30°C and 35°C. The diameter 

of the inhibition zone and the diameter of the fungus were measured and both 

areas were determined.  
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3.4. Results and discussion  

  

3.4.1. Interaction between Hypholoma fasciculare and filamentous fungi 

The interaction between H. fasciculare and other filamentous fungi was 

evaluated by co-culture assays, in MMN or PDA media. As controls, co-cultures 

were performed using the same fungi, either a co-culture of H. fasciculare - H. 

fasciculare or interacting fungus – interacting fungus. Mycelial growth of each 

fungus was followed by the radial growth of fungal colonies, up to 20 days of 

culture (Figure 3.3 and appendixes). The morphological aspect of interaction was 

also followed during the same period (Figures 3.4, 3.5 and appendixes).  

The assays were performed in Petri dishes of 9 cm diameter. Each fungal 

inoculum was placed 3 cm apart from each other.  

An initial understanding about the behavior of H. fasciculare toward the 

interacting fungus could be perceived by the analysis of the growth curves of 

internal radius during the assays and their comparison with the corresponding 

controls (external radius and control plates). However, in this analysis is important 

to keep in mind that the fungus is growing in a restricted space. Between inocula, 

both fungi only have a shared space of 3 cm to growth, limiting not only their 

growth but also compromising the full interaction between fungi.  

The effect of H. fasciculare over the interacting fungi is determined by 

comparison of interacting fungus growth in the presence of H. fasciculare and in 

the control (without H. fasciculare). In the same way, the effect of the interacting 

fungus on the H. fasciculare is determined by comparison of H. fasciculare growth 

in the presence of the interacting fungus and in the control (H. fasciculare-H. 

fasciculare).  

As an example, the growth curves obtained during the interaction between 

H. fasciculare and A. arborescens will be fully discussed (Figure 3.3). The 

remaining results will be only displayed in the annexes and discussed all together. 

 

 

 

 

 

 

 

 



36 

 

Alternaria arborecens 

 

  

  

 

  

  

 

 

 

 

 

 

Figure 3.3. Variation of radial growth of H. fasciculare and interacting fungi during the co-

culture assay in MMN (A) or PDA (B) media. After co-culture establishment, radial growth 

was measured for H. fasciculare (,,,) and interacting fungus (,,,), every two 

days, during 20 days. The internal (triangles) and external (squares) radial growths 

correspond to the distance from the center of the inoculum to the outside edge of the fungal 

colony between both inocula or in the opposing region, respectively. The results obtained in 

the co-culture assay of H. fasciculare – A. arborescens are represented in open symbols, 

whereas the corresponding controls are displayed in full symbols. All the assays comprised 

six replicates, from which mean and SEM were derived.  
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A. arborecens in MMN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Morphological aspect of co-cultures established between H. fasciculare-H. 

fasciculare (Hf-Hf) in PDA medium; H. fasciculare – A. arborescens (Hf-Aa);  A. 

arborescens – A. arborescens (Aa-Aa), during 20 days after inoculation.  
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 A. arborecens in PDA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Morphological aspect of co-cultures established between H. fasciculare-H. 

fasciculare (Hf-Hf) in PDA medium; H. fasciculare – A. arborescens (Hf-Aa);  A. 

arborescens – A. arborescens (Aa-Aa), during 20 days after inoculation.  
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Considering the H. fasciculare and A. arborescens internal growth curves 

(triangles, Figure 3.3), the growth of H. fasciculare seems to stabilize by the 10th 

day of co-culture, whereas the growth of A. arborescens stabilizes by the 4th day. 

As A. arborecens (,) as a stepper growth curve compared with H. fasciculare 

(,), the space available for both fungi to grow is soon occupied by A. 

arborescens. These results indicate that this co-culture assay could be seriously 

compromised when testing fungi with very different growth rates. Differences on 

fungal growth rates will be also evident when analyzing the external growth curves 

(squares, Figure 3.3). The number of days that A. arborescens takes to reach the 

board of Petri dish (2.5-2.7 cm) are fewer when compared to H. fasciculare. 

In MMN medium (Figure 3.3 A), the H. fasciculare internal growth of the 

control () is slightly higher than of the assay (). In contrast, the A. arborescens 

internal growth of the assay () is higher than in the control (). Differences in the 

internal growth rates could indicate the presence of growth inhibitory or promoting 

substances that makes the interacting fungi to grow less or faster. Therefore, the 

results suggest that both fungi are affected by the presence of the other. However, 

these results should be interpreted with caution, since the differences could only 

reflect the higher growth rate of A. arborescens when compared to H. fasciculare.  

In MMN medium (Figure 3.3 A), the A. arborescens external growth in the 

assay () is slightly higher than in the control (). However, no differences were 

detected between the external growth rate of H. fasciculare in the control () and in 

the assay (). The results suggest that H. fasciculare is not affected by the 

presence of A. arborescens, but this fungus could be positively affected by H. 

fasciculare compounds. Promoting substances to A. arborescens growth could be 

produced by H. fasciculare, leading to an increase of A. arborescens external 

growth in the assay. Although these substances could be either diffusible in the 

media or volatile, as they are affecting the external growth and do not have a major 

effect in the internal growth, they most probably are volatile substances. This 

analysis can only be made up to 14 days of growth, since from that day the fungus 

reaches the limit of the plate and their growth is restricted by the lack of space. 

 In PDA medium (Figure 3.3 B), the growth rate differences for both fungi are 

retained. Indeed, A. arborecens (,) also has a much higher growth rate 

compared to H. fasciculare (,). The internal growth of A. arborecens in the 

control () is interrupted by the 4th day, in contrast to the growth in the assay () 

that continues up to the 14th day. This result seems to be mainly due to the more 

available space when A. arborescens is growing in the presence of the slow 
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growing fungus H. fasciculare. In contrast, the growth of H. fasciculare is negatively 

affected by the presence of A. arborescens (), which could be also due to the 

restriction of growth space. However, for both fungi other phenomenon seems to 

be contributing for the differences in the internal growth rates. By the 6th up to 12th 

days of interaction both fungi still have space to growth but they are growing 

slower. This result is evident from the morphological aspect of the co-cultures 

(Figure 3.5). The production of inhibitory substances by both fungi could be 

reducing the growth of the interacting fungus. 

 In PDA medium (Figure 3.3B), the H. fasciculare external growth in the 

control () is much lower than in the assay (). This difference could be attributed 

to a growth promoting compound produced by A. arborescens that could be either 

volatile or diffusible in the medium. However, as this effect was not detected when 

considering the internal growth curves, the result could be also attributed to the 

irregular fungal colony growth. When comparing the external growth of A. 

arborecens in control () and on the assay () no differences are detected.  

Altogether the results indicate that the interaction process between H. 

fasciculare and A. arborescens is strongly dependent on the growing media. In 

MMN medium, H. fasciculare seems to produce a substance that could promote A. 

arborescens growth. In PDA, this effect was not detected, but the production of 

inhibitory substances from both fungi is suggested. Different media could contribute 

for a differential production of growth inhibitory/promoting substances, leading to 

distinct antagonist reactions. In addition, different media lead to distinct fungal 

growth rates, which could interfere with this co-culture assay.  

 Following the same analysis for all the fungal interactions tested (growth 

curves and morphological aspects in appendixes) the results were all summarized 

in table 3.2.    
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Table 3.2. Effect of interacting fungi on the growth of Hypholoma fasciculare and effect of 

this fungus on the growth of the interacting fungi. This analysis was performed in MMN or 

PDA media. The symbols ↑ (or ↓) represents a promotion (or reduction) of growth in the 

presence of interacting fungus compared to control. The symbol = represents no effect. 

Note: Hf - Hypholoma fasciculare; Aa – Alternaria arborescens; Bb – Beauveria bassiana; 

Cs – Cordyceps sinensis; En – Epicocum nigrum; Gm – Gibberella moniliformis; Fc – 

Fusarium chlamydosporum; Fo – Fusarium oxysporum; Mc – Mucor circinelloides 

 

In MMN medium, in interactions between H. fasciculare and C. sinensis, E. 

nigrum, G. moniliformis, F. chlamydosporum, F. oxysporum and M. circinelloides, in 

internal growth the results suggest that both fungi are affected by the presence of 

the other. In external growth the results obtain to C. sinensis, suggest that H. 

fasciculare is not affected by the presence of this fungi, but the fungi could be 

positively affected by H. fasciculare compounds. Promoting substances to the fungi 

growth could be produced by H. fasciculare, leading to an increase of fungi external 

growth in the assay. To the interactions between G. moniliformis, F. 

chlamydosporum and M. circinelloides the results suggested reduction substances 

to the fungi growth could be produced by H. fasciculare, leading to an reduction of 

fungi external growth in the assay.  In the case of B. bassiana, E. nigrum and F. 

oxysporum, the external growth to both fungi is similar in assays and in control to 

the external growth of H. fasciculare. Suggesting that, probably, there’s no 

MMN Radial Hf-Aa Hf-Bb Hf-Cs Hf-En Hf-Gm Hf-Fc Hf-Fo Hf-Mc 
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interaction between the fungi. In contrast B. bassiana internal growth also suggests 

that B. bassiana is affected by the presence H. fasciculare. Reduction substances 

to B. bassiana growth could be produced by H. fasciculare, leading to an reduction 

of B. bassiana external growth in the assay. 

In PDA medium in the interactions between H. fasciculare and B. bassiana, 

C. sinensis, E. nigrum, G. moniliformis, F. chlamydosporum, F. oxysporum and M. 

circinelloides in internal growth suggest that H. fasciculare is negatively affected by 

the presence of these fungi. At the external growth the results that E. nigrum and 

G. moniliformis, seems to be affected by H. fasciculare. This difference could be 

attributed to a growth promoting compound produced by the fungi that could be 

either volatile or diffusible in the medium. G. moniliformis, F. chlamydosporum and 

M. circinelloides seems to affect H. fasciculare. This result coul be attributed to a 

inhibiting compound produced by the fungi hat could be either volatile or diffusible 

in the medium. In the case of F. oxysporum the external growth to both fungi is 

similar in assays and in control to the external growth of H. fasciculare. Suggesting 

that, probably, there’s no interaction between the fungi.  

However these results (MMN and PDA) should be interpreted with caution, 

since the differences could only reflect the higher or lower growth rate of fungi 

when compared to H. fasciculare. 

As the co-culture assay could be seriously compromised when testing fungi 

with very different growth rates, another approach was used to evaluate the 

interference of one fungus in the growth of another. Growth rates determined by 

external radius were compared in the absence (control) or in the presence of 

interfering fungi (table 3.3).  
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Table 3.3 Fungal growth rates determined from the external radius obtained in the assay on 

MMN (left) and PDA (right) for the interaction between H. fasciculare and each of the 

interacting fungus. The days correspond to the period of time from which growth rates were 

determined. The values in brackets correspond to the growth rates obtained in the 

corresponding controls. 

Note: Hf - Hypholoma fasciculare; Aa – Alternaria arborescens; Bb – Beauveria bassiana; 

Cs – Cordyceps sinensis; En – Epicocum nigrum; Gm – Gibberella moniliformis; Fc – 

Fusarium chlamydosporum; Fo – Fusarium oxysporum; Mc – Mucor circinelloides 

 

In MMN medium, the external growth rates of H. fasciculare are greater in 

the presence of A. arborecens, F. chlamydosporum and F. oxysporum than in the 

control. These values may be the result of the release of growth promoting 

compounds from the interacting fungus or could only reflect the irregular growth of 

H. fasciculare colony. In contrast, in the presence of B. bassiana, C. sinenesis, E. 

nigrum, G. moniliformis e M. circinelloides, the external growth rate of H. 

fasciculare is greater in the control than in the presence of interacting fungi. In this 

case there should be no liberation of compounds by interacting fungus. 

H. fasciculare has a slower growth in PDA medium than in MMN medium. 

While in the presence of F. chlamydosporum and F. oxysporum, H. fasciculare 

presents a higher growth rate than in the control assay, in the presence of B. 

bassiana, C. sinensis and E. nigrum, the growth rate of H. fasciculare is more 

reduced. The remaining fungi (A. arborescens, G. moniliformis and M. 

circinelloides) do not interfere with H. fasciculare growth. This difference between 

MMN and PDA media suggest that H. fasciculare display a different behavior from 

one medium to another when interacting with certain fungi. 

 MMN medium PDA medium 

 Growth rate (cm/day) Growth rate (cm/day) 

 H. fasciculare 

(0.17) 

Interacting fungi Day H. fasciculare  

(0.11) 

Interacting fungi Day 

Hf-Aa 0,20 0,40 (0.30) 6 0,10 0,30 (0.40) 6 

Hf-Bb 0.16 0.16 (0.16) 12 0,05 0,17 (0.16) 10 

Hf-Cs 0.13  0.18 (0.19) 10 0,06 0,19 (0.18) 10 

Hf- En 0.15 0.30 (0.30) 8 0,08 0,22 (0.34) 8 

Hf-Gm 0.10 0.30 (0.30) 6 0,10 0,30 (0.30) 6 

Hf- Fc  0.20 0.40 (0.30) 6 0,20 0,40 (0.30) 6 

Hf-Fo 0.20 0.10 (0.20) 6 0,20 0,10 (0.20) 6 

Hf- Mc 0.10 0.50 (0.40) 6 0,10 0,50 (0.40) 6 
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Table 3.4 Fungal growth rates determined from the internal radius obtained in the assay on 

MMN (left) and PDA (right) for the interaction between H. fasciculare and each of the 

interacting fungus. The days correspond to the period of time from which growth rates were 

determined. The values in brackets correspond to the growth rates obtained in the 

corresponding controls. 

Note: Hf - Hypholoma fasciculare; Aa – Alternaria arborescens; Bb – Beauveria bassiana; 

Cs – Cordyceps sinensis; En – Epicocum nigrum; Gm – Gibberella moniliformis; Fc – 

Fusarium chlamydosporum; Fo – Fusarium oxysporum; Mc – Mucor circinelloides 

 

Internal radius values were also used for determining growth rates, in the 

absence (control) or in the presence of interfering fungi (table 3.4). In MMN 

medium, H. fasciculare always display a more reduced growth rate in the presence 

of A. arborecens, B. bassiana, C. sinenesis, E. nigrum, G. moniliformis, F. 

chlamydosporum, F. oxysporum and M. circinelloides than in the control assay. 

This result suggests that all fungi that have been in contact with the H. fasciculare 

could have produced compounds that led to the growth inhibition of H. fasciculare.     

In contrast with this result, in PDA medium only in the presence of F. 

oxysporum, the growth rate of H. fasciculare is greater in the assay than in the 

control. In the remaining interactions (A. arborecens, B. bassiana, C. sinensis, E. 

nigrum, G. moniliformis, F. chlamydosporum and M. circinelloides) the result 

obtained is identical to that achieved with MMN medium.  

Until now has been discussed the effect of interacting fungi on H. 

fasciculare, now will be discussed the effect of H. fasciculare on the interacting 

fungi. In MMN medium H. fasciculare, at internal growth, lead to a reduce in the 

growth of B. bassiana and F. oxysporum. This effect also happens in the external 

 MMN medium PDA medium 

 Growth rate (cm/day) Growth rate (cm/day) 

 H. fasciculare 

(0.13) 

Interacting fungi Day H. fasciculare  

(0.09) 

Interacting fungi Day 

Hf-Aa 0.12 0.17 (0.14) 10 0.07 0.19 (0.14) 10 

Hf-Bb 0.11 0.09 (0.10) 12 0.04 0.16 (0.15) 10 

Hf-Cs 0.11 0.17 (0.14) 10 0.07 0.16 (0.14) 10 

Hf- En 0.10 0.23 (0.21) 8 0.05 0.30 (0.18) 8 

Hf-Gm 0.09 0.27 (0.18) 8 0.06 0.18 (0.18) 12 

Hf- Fc  0.11 0.20 (0.15) 10 0.11 0.21 (0.19) 10 

Hf-Fo 0.09 0.12 (0.13) 10 0.06 0.14 (0.12) 10 

Hf- Mc 0.10 0.25 (0.75) 10 0.05 0.25 (0.38) 10 
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growth of F. oxysporum and C. sinensis. H. fasciculare don’t affect the growth of G. 

moniliformis.  On the other fungi H. fasciculare doesn’t seem to affect their growth 

on the contraire seems to promote it. In PDA medium, different results are obtain. 

H. fasciculare, at internal growth, only reduces the growth of M. circinelloides, to 

the remaining fungi H. fasciculare doesn’t display any effect, once again it seems 

promoting the growth. At external growth H. fasciculare effect A. arborescens, E. 

nigrum and F. oxysporum, the remaining fungi are not affected by H. fasciculare. 

Like in MMN H. fasciculare don’t affect the growth of G. moniliformis.   

Taken all the results together, in MMN medium, H. fasciculare displays an 

antagonistic action against A. arborecens, B. bassiana, E. nigrum and F. 

oxysporum. However, H. fasciculare also suffers from an antagonizing effect 

promoted by the interacting fungi. The mycelial contact in MMN medium was 

observed during H. fasciculare interaction with C. sinensis, G. moniliformis, F. 

chlamydosporum and M. circinelloides. In this case, besides having mycelial 

contact between H. fasciculare and M. circinelloides, H. fasciculare appears to 

continue to growth beneath M. circinelloides mycelium (Figure 2 g; Appendix). In 

PDA medium, the behavior of H. fasciculare and the interacting fungi is slightly 

different. H. fasciculare in the presence of A. arborecens, F. chlamydosporum, G. 

moniliformis and M. circinelloides presents an antagonism by mycelial contact, 

whereas in the presence of B. bassiana, E. nigrum and F. oxysporum presents and 

antagonism at distance. For C. sinensis - H. fasciculare interaction the occurrence 

of antagonism is not obvious by analyzing the growth curves (Figure 4 b; 

Appendix). But the morphological aspect of interaction assays suggests a dual 

distance antagonism, because both fungi avoid mycelial contact (Figure 4 b; 

Appendix). Indeed, C. sinensis grows faster than H. fasciculare, and completely 

surrounds H. fasciculare colony without mycelial contact.  Can also be observe 

(Figure 3 b, c, d, e; Appendix) that C. sinensis, E. nigrum, G. moniliformis and F. 

chlamydosporum suffers a discoloration.  

Previous studies had demonstrated that the H. fasciculare antagonist ability 

could be used as a biological control agent against different fungal species 

belonging to the genus Armillaria. With the present work the antagonist effect of H. 

fasciculare was confirmed for all tested fungi, corroborating its potential use as a 

biological control agent against other fungal species. 
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3.4.2. Interaction between Hypholoma fasciculare and yeasts 

The interaction between H. fasciculare and different yeasts was evaluated 

in vitro through the ability of this fungus to inhibit, or not, the growth of yeasts.  After 

fungal growth for 3, 8 and 14 days, the plates were overlaid with a lawn of the yeast 

to be tested and the presence of an anti-yeast activity was detected after 48h 

growth at 25ºC as a growth inhibition zone or inhibition halo surrounding H. 

fasciculare. To determine and express this antifungal activity the area occupied by 

the fungus and the area occupied by the halo created by the fungus action were 

calculated.  

H. fasciculare has the ability to inhibit the growth of all the tested yeasts 

being its antifungal activity more notorious against some of the species, as showed 

in Figure 3.7, which represents the areas occupied by the fungus and by the growth 

inhibition zones observed in each assay. C. albicans, C. dubliniensis and C. 

parapsilosis as well as S. cerevisiae are the most sensitive species after 3 days of 

fungal growth. The relatively large standard deviations values observed can 

possibly be explained by fungal sensitivity to temperature: it has grown at room 

temperature during the assays and these were performed during late winter and 

spring, when temperature fluxes were registered, ranging between 20ºC and 25ºC. 

On the contrary, C. glabrata, C. guilliermondii, C. krusei and C. tropicalis were 

more resistant to antifungal action, either after 3, 8 and even 14 days of fungal 

growth. 
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Figure 3.7  Influence of the Anti-fungal activity of H. fasciculare against C. albicans, C. dublinienesis, 

C. glabrata, C. guilliermondii, C. krusei, C. parapsilosis, C. tropicalis and S. cerevisiae. The 

antimicrobial effect was evaluated after 3, 8 and 14 days of fungal growth at 25ºC and was detected 

as the occurrence of yeast growth inhibition zones surrounding the fungus, as illustrated in the figures 

at the top of each chart. The areas occupied by the fungus and by the inhibition halos are respectively 
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represented in red and green. And morphological aspect of anti-fungal activity established between H. 

fasciculare and the different yeast. 

 

In spite of the fact that the area occupied by the fungus is almost always 

higher than the area occupied by the inhibition halos, different patterns of yeast 

sensitivity could be observed. Thus, H. fasciculare antagonist action was stronger 

against S. cerevisiae and C. parapsilosis, and not so expressive but also very good 

against C. albicans and C. dublinienesis. C. krusei is apparently the most resistant 

yeast to fungal antimicrobial activity.  

The observation that H. fasciculare displays an antagonistic action against 

yeasts is particularly interesting considering the panel of sensitive indicator strains 

used. As already referred, the majority of yeasts belongs to the genus Candida and 

is associated to drug-resistant opportunistic infections, which demand an urgent 

clinical alternative treatment. In this context, the isolation and identification of the 

fungal antimicrobial substance(s) can lead to the discovery and/or design of new 

antifungal drugs.  

 

 

3.4.3. Interaction between Hypholoma fasciculare and bacteria 

H. fasciculare exhibited a strong antagonist action against both bacteria 

tested, but its activity was higher against Bacillus subtilis than against Escherichia 

coli (Figure 3.8). As the optimal temperature for growth is 25°C for the fungus and 

37°C for bacteria, the assays for antibacterial activity were performed at 25°C, 

30°C and 35°C. 

The halo size was always bigger in the case of B. subtilis than the observed 

for E. coli and the area occupied by the halo was constantly higher than the area 

occupied by the fungus, independently of the temperature of the assay. The lowest 

value was observed at 30°C and the highest when the temperature of the assay 

was raised to 35°C. In E. coli the halo size was slightly bigger at 30°C than the 

inhibition zone formed at 25°C. The apparent decrease at 35°C was accompanied 

by a simultaneous decrease of fungal growth. The increased susceptibility of the 

Gram positive bacteria, like B. subtilis, over the Gram negative, such as E. coli, to 

several compounds has been frequently supported by their differences in cell wall 

composition and structure. The presence of a lipid outer membrane external to the 

peptidoglycan layer in Gram negative bacteria can therefore constitute a barrier to 

the entrance of substances produced by H. fasciculare.  
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Figure 3.8. Influence of the temperature assay in H. fasciculare anti-bacterial activity 

against B. subtilis and E. coli. The areas occupied by the fungus and by the inhibition halos 

are respectively represented in red and green. And morphological aspect of anti-fungal 

activity established between H. fasciculare and B. subtilis and E. coli. 

 

 

Contrary to what happens in yeasts, several studies were carried out in 

order to evaluate and elucidate the interactions between filamentous fungi and 

bacteria. Between 1987-88, Barron, described that filamentous fungi could cause 

the lyses of bacterial cells. However most fungi, from the different groups are not 

capable of causing the bacterial lyses.  

These results could be due, in yeast and bacteria, to the release of 

compounds/substances by H. fasciculare resulting in the yeast/bacteria death. But 

to confirm this would be necessary to perform biochemical assays to determine the 

presence of possible compounds/substances.   
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4.1. Introduction  

 Plants have developed many strategies in order to survive stresses caused 

by biotic and abiotic factors. One of the most successful strategies is the 

mutualistic association formed with fungi, referred to as mycorrhiza (Smith & Read, 

1997). In this relation the host plant receives mineral nutrients through the fungus 

and in turn the fungus obtains carbon from photosynthetic compounds. The 

majority of angiospermi and all gimnospermi plants are able to form mycorrhizal 

(Marschner, 1995).  

 Based on morphofunctional characteristics, mycorrhizae can be classified 

into tree distinct groups: endomycorrhizae, ectomycorrhizae and 

ectendomycorrhizae. The main characteristics of endomycorrhizae are the absence 

of fungal mantle at the root surface and the inter-intracellular growth of hyphae in 

root cortical cells (Smith & Read, 1997). In ectomycorrhizae hyphae develop in the 

intercellular spaces, penetrating between epidermal root cells and endodermal 

roots cells, forming a structure designated as Harting net. Characteristic of this 

association is also the development of a dense tangle of hyphae on the root 

surface, forming the so-called mantle (Smith & Read, 1997). The 

ectendomycorrhizae, as the name implies, are characterized by presenting fungal 

structures of the endo- and ectomycorrhizae, such as a poorly developed mantle, 

Hartig net and a slight penetration of hyphae within root cortical cells (Yu et al., 

2001).  

 Besides mycorrhiza, plants and fungi could interact through parasitic 

relations. Pathogenic fungi can develop strategies to penetrate into the plants cells 

and then obtain an abundant source of nutrients. In spite of all plants efforts to 

avoid fungal attack, pathogenic fungi seem to always develop a strategy to 

penetrate into the plant (Mendgen et al., 1996).    

 

 

4.1.1. Involvement of hydrophobins in the adhesion of H. fasciculare to the 

roots of C. sativa 

 

The initiation, development and maintenance of a functional symbiosis 

involve a series of events that occur between soil fungi and root. After plant-fungus 

contact the plant has the capacity to recognize and interact with the fungus. In turn 

the fungus can adhere and penetrate into the root, bypassing the defense 

mechanisms of the host plant (Tagu et al., 2002). In this process, the occurrence  is 
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essential occurred the exchange of signals between the symbionts, to be 

recognized for their compatibility and to occur the preparation of both partners for 

the key morphological and physiological changes in the formation of mycorrhizal 

organs (Martin et al., 2001b; Voiblet et al., 2001; Podila, 2002). It was proposed 

that the initiation and maintenance of communication established between the 

symbionts is due to the fact that both have developed sensing molecules 

responsible for rapid adaptation to environmental change in the immediate 

immediacy of the root cells, they may transfer intracellular signals to the nucleus 

through signaling pathways, inducing or repressing specific genes responsible for 

phenotype mycorrhizal. Thus the formation of mycorrhizae appears as a process of 

interaction, marked by a sequence of events highly regulated and coordinated 

(Tagu et al., 2002; Martin et al., 2001; Voiblet et al., 2001). Until now the nature of 

signals and the mechanisms of recognition and interactions are not clear. 

Hydrophobins are proteins produced by filamentous fungus and are one of 

the most surface active proteins known. They were first described by Wessels and 

co-workers when studying highly expressed genes during fruit body formation of 

Schizophyllum commum (Wessels et al., 1991).  Hydrophobins are amphiphile 

proteins, comprising a hydrophilic and a hydrophobic part. These proteins can be 

found in liquid media of fungal cultures. They gather towards the fungal cell walls, 

cover fungal spores and coat the surface and cavities in fruiting bodies (Linder et 

al., 2004; Sunde et al., 2007; Szilvay et al., 2006). 

As a consequence, hydrophobins seem to perform different roles in fungi 

survival and adaptation to the environment. The most functional feature of these 

proteins seems to be their ability to interact with surfaces, coating surfaces and 

lowering the surface tension (Linder et al., 2004; Martin et al., 1999). Although all 

the work developed for several years on hydrophobin features, the biological role of 

these proteins still remains a challenge. Hydrophobins were suggested to play a 

role in protection, adhesion, growth and also may be involved in pathogenesis 

(Linder et al., 2004). Indeed, hydrophobins are usually found as structural proteins 

located on surfaces of aerial structures, being already established a link between 

the hydrophobin expression and the ability of the fungus to develop aerial 

structures (Linder et al., 2004). It was then proposed that the hydrophobic coating 

had a role in protecting structures against dissection and wetting. Hydrophobins 

can also mediate the attachment of fungal infection structures to their targets, 

either by acting as structural components of the appressorium cell wall or by 

binding and modifying host surfaces (Linder et al., 2004). Hydrophobin genes have 
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been found in filamentous fungi belonging to Ascomycetes and Basidiomycetes 

(Linder et al., 2004).  

The amino acid sequence alignment of hydrophobins put in evidence a 

conserved sequence of 8 Cys residues, which is common to all hydrophobin. This 

feature suggests that all hydrophobins share a common disulfide network and a 

common fold (Linder et al., 2004). Cys residues are critical for structural reasons, 

while other residues can vary substantially in different hydrophobin variants (Linder 

et al., 2004). Two different classes of hydrophobins (class I and II) can be 

distinguished based on the patterns of clustering of hydrophobic and hydrophilic 

groups (Wösten, 2001, Linder et al., 2004; Askolin et al., 2006). Until now, class II 

hydrophobins were only observed in Ascomycetes, whereas class I hydrophobins 

were observed in both Ascomycetes and Basidiomycetes (Linder et al., 2004). 

Class II forms the most uniform group, which turns easier to compare how 

conserved residues are related. In contrast, class I hydrophobins have more 

sequence variation and a wider range of sequence lengths. After comparing 

sequences from class I hydrophobins, it was convenient to further divide the class I 

in the sub-groups Ia and Ib, representing the hydrophobins of Ascomycetes and 

Basidiomycetes respectively (Linder et al., 2004). Because of the similarity 

between hydrophobins class I and II, it was speculated that class II have evolved 

independently of class I, thus representing a case of convergent evolution (Linder 

et al., 2004). Class Ia shows high divergence but distinct sub-groups are easily 

identified. The hydrophobicity of the amino acid sequence after the first Cys is 

higher in most class I hydrophobins than in class Ia or class II proteins (Linder et 

al., 2004). While over 60% of the class I proteins have a high hydropathy level in 

that region, only 20% of class Ia and class II hydrophobins have high overall 

hydrophobicity.  

Hydrophobins are found as multigene families. This multiple presence can 

be explained by two ways. Different genes could be differentially expressed as a 

response to development stages or environmental conditions, but are largely able 

to functional complement each other. Alternatively, different genes could fulfill 

different functional roles that are reflected in structural differences (Linder et al., 

2004). 

Indeed, while class I hydrophobins generate highly insoluble aggregates 

that are only able to dissolve in the presence of a strong acid, the aggregates 

formed by class II hydrophobins are amphipathic and much more easier to dissolve 

(Hektor and Scholtmeijer, 2005). Different applications of hydrophobin proteins are 
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now being studied, such as those for industry (materials technology), food additives 

or medical devices (Linder, 2009).   

Similarly to plant-pathogen interaction, response defense mechanisms have 

been suggested to occur in host plant. Clarification of these processes will allow 

ascertaining the role of saprophytic fungi as stress agents on the plant.  

The study of host-fungus interactions requires the establishment of 

mycorrhizae in axenic conditions, since in natural conditions there are many abiotic 

and biotic factors that may interfere (Smith & Read, 1997). In these conditions, the 

pre-colonization and hyphae adhesion to the root surface typically occurs within the 

first 24 hours, whereas the mantle formation and Hartig net development occurs 

between 24 hours and 7 days of mycorrhization (Martin & Tagu, 1995; Le Quéré et 

al., 2005).  

In the adhesion process between fungi and host plant are involve several 

classes of proteins with specific properties at cellular adhesion level secreted by 

fungus.  The search for genes differentially expressed during these interactions has 

greatly contributed to the identification of other classes of proteins with adhesion 

functions. Among these proteins are the hydrophobins, describe as being involve in 

other process of fungi development  such as aerial growth of hyphae, hyphal 

aggregation during the formation of fruiting bodies (carpophores), sporulation and 

dispersal of spores in filamentous fungi, and in the infection of some fungal 

pathogens of plants and insects (Wessels, 1996; Kershaw & Talbot, 1998; Wösten, 

2001). In the infection of fungal pathogens of plants, hydrophobins, play a key role, 

since the penetration and subsequent infection depend on the adherence of the 

pathogen to the host hydrophobic surface (Wessels, 1996; Wösten, 2001). Paula 

Baptista (2007) began develop a work aiming evaluated the involvement of 

hydrophobins in the adhesion of the saprophytic fungus H. fasciculare the roots of 

chestnut was initiated to study the expression of genes encoding hydrophobins H. 

fasciculare during the fungus-root contact. With this work was obtain the nucleotide 

sequence putatively coding for a hydrophobin of H. fasciculare as well the 

respective amino acid sequence deduced.  

    In this present work, using the nucleotide sequence obtain previously, 

keeping in mind the possible involvement of hydrophobins in the process of 

adhesion of H. fasciculare to the roots of C. sativa, the complete sequencing of the 

hydrophobin cDNA was aimed. Using biological samples, in which high 

hydrophobin gene expression is expected, a RNA fraction was purified from 

fungus-root interaction. After synthesizing the corresponding cDNAs, the use of 
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specific primers would allow the amplification of cDNA 3’ ends. The complete 

sequence of hydrophobin coding region will allow phylogenetic and structural 

studies, as well the cloning of the complete coding region.  

  

4.2. Material  

4.2.1. Biological material 

Chestnut seedlings were harvested at Bragança region (Trás-os-montes). 

Hypholoma fasciculare was provided by the Instituto Politécnico de Bragança 

(Paula Baptista).  

 

 

4.3. Methods 

4.3.1. Culture and maintenance of the fungi 

 Axenic cultures of Hypholoma fasciculare were cultured on MMN medium, 

in the dark, at a temperature of 23°-25°C. Sub-cultures were carried out in intervals 

of 3 weeks. For promoting the fungal interaction in chestnut root seedlings, 

Hypholoma fasciculare mycelium was on modified MMN liquid medium. Ten 

inocula, from the peripheral region of actively growing cultures of Hypholoma 

fasciculare on MMN medium were used to inoculated 250ml of MMN liquid 

medium. The cultures were kept in the dark, without agitation, at 23°-25°C, until 

dense mycelium was evident.  

 

Medium MMN: NaCl 0.025 g/L; (NH4)2HPO4 0.25 g/L; KH2PO4 0.50 g/L; FeCl3 0.050 g/L; 

CaCl2 0.50 g/L; MgSO4.7H2O 0.15 g/L; thiamine 0.10 g/L; casamino acid 1.0 g/L; malt 

extract 10 g/L; glucose 10 g/L; agar 20 g/L 

MMN liquid medium modified: NaCl 0.025 g/L; (NH4)2HPO4 0.25 g/L; KH2PO4 0.50 g/L; 

FeCl3 0.050 g/L; CaCl2 0.50 g/L; MgSO4.7H2O 0.15 g/L; thiamine 0.10 g/L; glucose 5 g/L 
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4.3.2. Castanea sativa hydroponic culture 

All the procedure for the hydroponic culture of chestnut seedlings is 

displayed in Figure 4.1.  Chestnut seeds were washed in running tap water and 

disinfected with a solution of sodium hypochlorite (commercial solution, containing 

3.5% (w/v) effective chloride) for 1 hour, with shaking (100 rpm). After five washes 

with sterile distilled water, seeds were sowed in sterile layers of moist sand and 

sealed within sterile plastic bags. Seed germination occurred in the dark, at a 

temperature of 4ºC during the first month, followed by an 18ºC incubation in the 

next two months. 

Germinated seeds displaying an evident radicle were washed in running tap 

water to remove the sand and disinfected with sodium hypochlorite (commercial 

solution, containing 3.5% (w/v) effective chloride) for 15 minutes. Disinfected seeds 

were then rinsed in sterile water (at least three washes) and root tips were cut to 

promote the branching of the root system. Finally, two-three seeds were deposited 

in previously prepared sterile growing flasks (1.5L), which contained plastic nets 

suspended by wires and were filled with 250 ml of tap water. Flasks were kept in 

the dark at 23°C, until the emergence of the first leaves. Afterwards, the seedlings 

were incubated at same temperature, under a photoperiod of 16 h light 

(60 μE.m‐2.s‐1 light intensity) /8 h dark, for two months.  
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Figure 4.3. Hydroponic culture of Castanea sativa seedlings. Chestnut seeds were 

superficially disinfected with sodium hypochlorite [3.5% (w/v) effective chloride] under 

agitation (A). Seed stratification occurred at 4ºC in moist sand (B). After germination, seeds 

were again superficially disinfected in sodium hypochlorite [3.5% (w/v) effective chloride] 

(C) and the apical 4 cm of radicle was removed. Seeds were then deposited on a plastic net 

into the culture flasks (D) and cultures were kept in the dark at 23°C (E). After leaf 

emergence, seedlings were further incubated under a 16 h light/8 h dark photoperiod at 

23ºC (F). (Baptista, 2007). 
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4.3.3. Inoculation of Castanea sativa root seedlings with Hypholoma 

fasciculare 

Four-month-old chestnut seedlings with well-developed roots were used for 

studying the interaction of H. fasciculare with plant roots. The mycelium was 

prepared from axenic cultures in liquid modified MMN medium. After being 

extensively washed with sterile water, H. fasciculare mycelium was transferred to 

the culture flasks, containing the chestnut seedlings about four months. The culture 

flasks were then gently agitated to promote an even distribution of the mycelium. 

Seedlings incubation proceeded in the same conditions (photoperiod of 16 h light 

(60 μE.m‐2.s‐1 light intensity) /8 h dark, 23ºC).Root samples were collected after 24 

or 48 hours of root-fungus contact. After being homogenized to a fine powder, 

using liquid nitrogen and a mortar and pestle, the biological material was kept at 

80ºC until use. 

 

4.3.4. Identification of the cDNA complete sequence of Hypholoma 

fasciculare hydrophobin  

Using the nucleotide sequence obtain previously, aims to obtain the 

complete sequencing of the hydrophobin cDNA. To accomplish this aim was use 

biological samples, in which high hydrophobin gene expression is expected, a RNA 

fraction was purified from fungus-root interaction, for that the RNA was extracted 

using the Hot-Borat method (4.3.4.1). After synthesizing the corresponding cDNAs, 

the use of specific primers would allow the amplification of cDNA 3’ ends, at this 

step the 3` RACE kit will be use (4.3.4.2). The complete sequence of hydrophobin 

coding region will allow phylogenetic and structural studies, as well the cloning of 

the complete coding region.   

 

4.3.4.1 RNA extraction 

           The RNA extraction was performed using the hot-borate method (Wan and 

Wilkins, 1994).  

          The extraction buffer XT (10 ml) was previously incubated at 80°C, for 

10min. After adding 1g of homogenized biological material, the solution was quickly 

homogenized, and 600µl proteinase K (20 mg/ml) was added. The mixture was 

then incubated at 42°C, 150 rpm, for 1.5h. The supernatant was placed into a new 

centrifuge tube and 800µl of KCl 2M was added. After vortexing, the solution was 

incubated on ice for 1h and centrifuged at 10,000 rpm, for 25 min, at 4°C (Avanti J-



Adhesion of Hypholoma fasciculare to the roots of Castanea sativa Chapter 4 

61 

 

25, Beckman; JA-25.50 rotor, Beckman). After supernatant recovering to a new 

corex tube, LiCl concentration was adjusted to 2 M using a LiCl 8 M solution. After 

mixing, the final solution was incubated overnight, at 4°C.  

             On the next day, the solution containing the precipitated RNA was 

centrifuged at 10,000 rpm, for 20 min, at 4°C (Avanti J-25, Beckman; JA-25.50 

rotor, Beckman). The pellet was washed twice with 3 ml of cold LiCl 2M. For the 

washing steps, the solution was vortexed and centrifuged at 10,000rpm, for 15 min, 

at 4°C. The supernatant was solubilized in sterile ultrapure water (150 µl) and the 

insoluble material was precipitated by centrifugation at maximum speed in a 

microcentrifuge.  

 

 

Hot – Borate extraction buffer (XT): 0.2 M sodium borate decahydrate (Borax); 30mM EDTA; 1% 

(p/v) SDS;  1% (p/v) sodium deoxycholate;  10mM DTT; 1% (v/v) NP-40;  2% (p/v) PVP-40 

Note: DTT, NP-40 and PVP-40 were added just before use.   

 

 

4.3.4.2. Analysis and spectrophotometric quantification of RNA 

The amount and quality of purified RNA was determined by 

spectrophotometry (Nanodrop ND 1000).  The analysis was performed by the 

determination of the value A230, A260 and A280 of the sample solution. The quality of 

the sample was calculated based on the reasons A260/A280 (protein contamination) 

and A260/A230 (contamination by other compounds), is expected pure samples of 

RNA from a value 2 and 2.2 for both reasons. In order to assess the RNA integrity 

an electrophoretic analysis was performed, as described in section 4.3.4.4.    

 

 

4.3.4.3 Primer design 

  

            The primers were designed for the previously identified H. fasciculare 

hydrophobin gene sequence (Baptista, 2007). For designing the PCR primers the 

program Oligo 6 was used. The main criteria considered were the size (21 bases), 

the melting temperature (Tm), the difference in Tm between primer pairs (less than 

5ºC) and the difference between primers Tm and template (below 20ºC). The 

designed primers were HydSP1 (5´- GTTGCCAGAGGCGCCGATCAC), HydSP2 

(5´- GGACGACGACGCCCAAGATGC) and HydSP5 (5´-CCTCTGGCAACTCCTG 
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CTCCG), being distributed along the already identified sequence as depicted in 

Figure 4.4.  

 

 

 

Figure 4.4. Nucleotide and deduced amino acid sequences of HydHf fragment of 

Hypholoma fasciculare (Baptista, 2007). The deduced amino acid sequence is shown in 

one letter code. The numbers on the right refer to nucleotides and numbers above refer to 

amino acids. The gray shaded nucleotide sequence represents the untranslated sequence 

(intron). The cysteine residues conserved in all hydrophobins are highlighted in yellow. The 

arrows represent the primers used in the work. Forward primer at red (HydSP5), reverse 

primers at blue (HydSP1) and green (HydSP2). 

 

4.3.4.4. Agarose gel electrophoresis  

          RNA and DNA fragments were resolved by electrophoretic separation 

through an agarose gel in horizontal system. 

RNA fragments were resolved by electrophoretic separation through an 

agarose gel in horizontal system. To prepare the gel, agarose (1% p/v) was 

prepared in TAE 0.5x buffer, that was also used as gel running buffer. The samples 

were mixed with 1µl of Gel Red (Biotarget). The molecular weight marker used was 

MassRuler DNA Ladder Mix ready-to-use (Fermentas). Electrophoresis occurred at 

100 V until the front dye migrated two thirds of gel length.  

DNA fragments were resolved by electrophoretic separation through an 

agarose gel in horizontal system. To prepare the gel, agarose (1% p/v) was 

prepared in TAE 0.5x buffer that was also used as gel running buffer. The samples 

were mixed with 1µl of Gel Red. The molecular weight marker used was MassRuler 

DNA Ladder Mix ready-to-use. Electrophoresis occurred at 50 V until the front dye 

migrated two thirds of gel length.  
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4.3.4.5. cDNA preparation and 3’ RACE reaction 

        For determining the 3’-terminal sequence of hydrophobin transcript, cDNA will 

be prepared from mRNA, using the RACE kit of Roche. The reaction mixture 

(20 µl) was prepared according to the manufacturer instructions, using 4 µl of 

cDNA synthesis buffer, 2 µl of deoxynucleotide mixture, 1 µl oligo dT-anchor 

primer, 10 µl of total RNA extracted from chestnut roots associated with 

H. fasciculare, and 2 µl of sterile ultrapure water. After addition of 1 µl of transcript 

reverse transcriptase, the mixture was gently mixed and briefly spun down. The 

reaction proceeded at 55°C, for 1.5h, being further incubated at 85°C, for 5 min.  

        According to the RACE kit instructions, the cDNA was then directly amplified 

by PCR without a prior purification. A PCR reaction mixture (50 µl) was prepared 

containing 10µl of previously prepared cDNA product, 1µl of PCR anchor primer, 

1µl of specific primer HydSP5, 1µl of dexyonucleotide mixture, 5 µl reaction buffer 

and 40.5 µl of sterile ultrapure water.  After adding 0.5 µl of Taq Polimerase, the 

mixture was spun down and the PCR was initiated in a thermocycler (MJ-mini - 

BioRad), comprising the following steps:      

 

 Denaturation for 5min at 94°C 

 35 cicles of 

  Denaturation for 45sec a 94°C 

  Pairing for 45sec between 50°C and 60°C 

  Extension for 30sec at 72°C 

 Final extension for 5min at 72°C 

 

 

4.4 Results and Discussion 

 

4.4.1. Adhesion ability of Hypholoma fasciculare to the roots of Castanea 

sativa 

The adhesion capacity of H. fasciculare to the roots of C. sativa was 

evaluated macroscopically. As soon as the fungus enters into contact with chestnut 

roots, it becomes adherent to the plant tissue. The adhesion to the host surface is 

the initial process of infection of pathogenic fungi, from which the success of 

pathogenicity is largely dependent (Epstein & Nicholson, 1997). The adhesion of H. 

fasciculare to the roots of chestnut tree was already described by Baptista (2007). 
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Observations by scanning electron microscopy revealed a high adhesion of hyphae 

to the root surface, just after 48h hours of inoculation. The hyphae adhesion 

increased along the contact time between root and fungus. After 25 days, a 

compact coating of hyphae enveloping the roots was observed and secondary root 

cross sections revealed the xylem obstructed after 60 days of contact (Baptista, 

2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Inoculation of chestnut seedlings with Hypholoma fasciculare. Chestnut 

seedlings were cultivated in hydroponic system, under a 16 h light/8 h dark photoperiod, at 

23°C (A). H. fasciculare was grown in liquid MMN medium, in darkness, at room 

temperature (B). After transferring the mycelium into the seedling culture flasks, the 

seedlings were further incubated under the same conditions (C). 

 

 

 

Buffer TAE 50x: 2 M Tris; 0.95 M acetic acid; 50 mM EDTANa2 (pH 8.0) from 0.25 M 

EDTA (pH 8.0).  



Adhesion of Hypholoma fasciculare to the roots of Castanea sativa Chapter 4 

65 

 

4.4.2. Identification of the complete sequence of hydrophobin transcript 

In the work carried out by Paula Baptista, the response of chestnut 

seedlings to the saprophytic fungus H. fasciculare was studied during the first 48 h 

of root-fungus contact. Among other features, the adhesion ability of fungus to the 

chesnut root was evaluated, as well as the involvement of hydrophobins in this 

process. Using degenerated primers, a short genomic sequence from a H. 

fasciculare hydrophobin gene was identified. The objective of the present work is to 

obtain the full cDNA sequence of this hydrophobin gene. In order to guarantee the 

expression of this gene that has been described as being induced by the presence 

of plant roots, the interaction between chestnut roots and H. fasciculare was 

promoted.  

The interaction between H. fasciculare – C. sativa roots occurred for 24 h 

and for 48 h. A mixture of RNAs purified from both samples will be used to 

synthetize the cDNA and to perform the RACE reactions. Following the RNA 

extraction, the determination of RNA quantity was determined by 

spectrophotometry and RNA integrity by agarose gel electrophoresis (Figure 4.6). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Electrophoretic analysis of RNA existent in the samples with 24h of root-fungus 

contact (1) and 48h of root-fungus contact (2). Electrophoresis was performed in a 1% (w/v) 

agarose gel, in which 10µl of each sample were applied.  
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The purification of an adequate amount of RNA for downstream reactions 

was only successful using the samples obtained after 24 h of chestnut root – H. 

fasciculare interaction. For this reason, the cDNA synthesis proceeded using only 

this single sample. For obtaining the complete cDNA sequence of hydrophobin 

gene, the 3` RACE kit of Roche will be used. The kit enables the transcription of 

specific mRNA sequences into first-strand cDNA as describe in section 4.3.4.5.   

This Kit was design for the rapid amplification of either 5`or 3` cDNA ends, in this 

step only the protocol of 3`will be used. For amplifying the 3` cDNA transcript, a 

PCR step will be performed using 3 different annealing temperatures. In the PCR 

was use the specific primer HydSP5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Electrophoretic analysis of the resulting products of the cDNA amplification with 

HydSP5 primer. The amplification was performed at different temperatures, in the figure are 

represented the electrophoretic result when subjected to 55°C (1), 60°C (2) and  65°C (3). 

MM: molecular height marker 

The amplification of the putative 3’-terminal sequence of hydrophobin cDNA 

only occurred at an annealing temperature of 55°C (Figure 4.7). This result 

suggests that at least at 24 h after chestnut root and H. fasciculare contact the 

production of hydrophobins occurs. This product will be soon re-amplified, in order 

to allow its sequencing. Only the complete sequencing of this fragment will confirm 
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if this PCR product is from a hydrophobin transcript. When the success of 3’ RACE 

is confirmed, the 5’ RACE will be followed by using HydSP1 and HydSP2 primers.  
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In the course of this work, the antimicrobial potential of the saprophytic 

fungus H. fasciculare against filamentous fungi was studied. The fungal interactions 

were established in two different culture media (MMN and PDA), using the dual 

culture method. In both media H. fasciculare displays an antagonistic action against 

all fungi tested. The antagonism was evidenced by growth reduction of interacting 

fungi in the presence of H. fasciculare. Besides this effect the interaction assays 

also suggest a high susceptibility of H. fasciculare to the presence of other fungi. 

Previous works suggested that the aggressiveness of saprophytic fungi, like 

Hypholoma fasciculare, Hypholoma australe, Phanerochaete filamentosa, 

Phanerochaete velutina, Coriolus versicolor, Stereum hirsutum, Ganoderma 

lucidum, Schizophyllum commune and Xylaria hypoxylon could be used as a 

biocontrol strategy for controlling Armillaria spp (Chapman, 2004). In this work it is 

shown that H. fasciculare not only displays an antagonistic action against all the 

tested fungi, but it also suffers from the antagonistic action of the interacting fungi. 

Face to these results, the use of H. fasciculare as a biocontrol agent could be 

restricted.   

The antagonism mechanism adopted by H. fasciculare, in MMN medium, 

against F. oxysporum and B. bassiana was an antagonism at distance. C. sinensis, 

G. moniliformis, F. chlamydosporum and M. circinelloides presents an antagonism 

by mycelial contact. During the first days of interaction in MMN medium, A. 

arborescens and E. nigrum displayed antagonism at a distance, but later on 

presented an antagonism by mycelial contact. In PDA medium H. fasciculare 

display an antagonism at a distance for F. oxysporum, B. bassiana and E. nigrum. 

For A. arborescens, F. chlamydosporum, G. moniliformis and M. circinelloides; H. 

fasciculare display an antagonism by mycelial contact. In the case of C. sinensis 

the occurance of antagonism is not obvious, however the morphological aspect 

suggest a dual distance antagonism. The antagonism at a distance could be the 

result of compounds release by the antagonistic fungi. When studying the 

interaction between H. fasciculare and Pisolithus tinctorius, the volatile fraction was 

analyzed during the time course of the interaction (P. Baptista, personal 

communication). From this analysis, several volatile compounds (like linalool, β-

pinene, β-elemene, valencene, among others) were identified that display an 

antifungal activity against fungi, leading to a fungal growth inhibition.  

Keeping in mind a future project to purify the substance that confers the 

antagonistic activity, a faster and reliable method for determining the antimicrobial 

activity would be desirable. Using filamentous fungi in co-culture is a procedure that 
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requires 12 to 15 days to give an evident result, due to fungal slow growing rates, 

making this methodology a rather lengthy one. A bioassay using yeasts as 

indicators of H. fasciculare antagonistic activity was implemented. As H. fasciculare 

grown in MMN medium did not present as high anti-yeast activity as the one grown 

in PDA medium, all the assay design and optimization was performed in PDA. A 

set of experiments were then conducted using variable number of Saccharomyces 

cerevisiae cells and studying the influence of fungal growth time as well as the 

effect of temperature in H. fasciculare antimicrobial activity. The optimized bioassay 

should be performed with 106 cells/ml of the sensitive yeast and the antagonist 

effect is more evident when the fungus has grown for longer periods, although it 

could be distinguished after four days of fungal growth. Regarding the assay 

temperature, and considering all the variables, the best results were obtained at 

25ºC. The design of this bioassay allows assessing the antimicrobial activity of 

fungi in a quick way and seems to be an innovative method since it was never 

performed.  

The kinetics of antimicrobial compound production was also followed by 

incubating H. fasciculare at different temperatures for distinct periods and using the 

optimized assay for evaluating the antimicrobial activity. The ability to inhibit the 

yeast growth increases with H. fasciculare incubation temperature. Although fungal 

growth is restricted at high temperatures (30ºC), the antimicrobial activity is also 

higher, suggesting that in stressful conditions the fungus reacts by producing more 

antimicrobial compounds in an effort to survive, leading to the inhibition of S. 

cerevisiae. At higher temperatures (35°C or 40°C) the fungus seems to not grow.  

In order to further confirm the antimicrobial activity of H. fasciculare against 

yeasts, the optimized bioassay was performed using different species of Candida, 

including C. albicans, C. dublinienesis, C. glabrata, C. guilliermondii, C. krusei, C. 

parapsilosis, C. tropicalis. The bioassay was performed with H. fasciculare grown 

for 3, 8 and 14 days. This fungus displayed antimicrobial activity against all the 

tested yeast species, although the results obtained with S. cerevisiae, C. 

parapsilosis, C. albicans and C. dubliniensis were more remarkable. From all the 

tested yeasts, C. krusei seemed to be the most resistant against H. fasciculare 

anti-yeast compounds, and its inhibition only became evident after 14 days of H. 

fasciculare growth. This experiment suggests that H. fasciculare displays a strong 

antagonist action against some Candida species that are pathogenic. These results 

could lead to the isolation and identification of new fungal antimicrobial 

substance(s) that could lead to the design of new antifungal drugs of interest, due 
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to the growing resistance of Candida opportunistic isolates to conventional 

antifungal agents.  

H. fasciculare antibacterial activity was also evaluated using Gram-positive 

(Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. Both bacteria are 

susceptible to fungal action at all the tested temperatures, being B. subtilis more 

sensitive than E. coli. This difference could be related to the distinct cell wall 

structures. As Gram-positive bacteria do not have an outer membrane, they can be 

more vulnerable to H. fasciculare antimicrobial compounds. The identification and 

isolation of the compound(s) with antimicrobial activity, either against yeast or 

against bacteria, are future perspectives of this work.  

When H. fasciculare was put in contact with Castanea sativa roots, in a 

liquid medium, a strong adhesion of the fungus to the root surface was clearly 

observed. In other plant root-fungus interactions this process has been associated 

to the production of hydrophobins, fungal proteins that play several important roles 

in the survival and adaptation of fungi (Linder et al, 2004). The previous 

identification of a genomic hydrophobin sequence from H. fasciculare allowed the 

design of RACE strategy to identify the complete sequence of hydrophobin cDNA. 

Following this approach, the detection of a putative PCR hydrophobin fragment 

obtained from RNA root-fungus samples suggests that the expression of 

hydrophobins only occurs after 24h of fungal inoculation. The final objective of this 

project was to infer the involvement of this protein in the adhesion process of the 

fungus to the roots. With the achieved results a re-amplification of the PCR product 

will be necessary in order to identify the hydrophobin 3’ sequence. When the 

success of 3’ RACE is confirmed, the 5’ RACE will be followed. After the sequence 

is completed the analysis of gene expression in the situation of interaction between 

the fungus and the plant will be evaluated by qRT-PCR. 
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Figure 1. Variation of radial growth of H. fasciculare and interacting fungi during the co-

culture assay in MMN (A) or PDA (B) media. After co-culture establishment, radial growth 

was measured for H. fasciculare (red ,,,) and interacting fungus (blue ,,,), 

every two days, during 20 days. The internal (triangles) and external (squares) radial 

growths correspond to the distance from the center of the inoculum to the outside edge of 

the fungal colony between both inocula or in the opposing region, respectively. The results 

obtained in the co-culture assay of (a) H. fasciculare – B. bassiana; (b) H. fasciculare – C. 

sinensis; (c) H. fasciculare – E. nigrum; (d) H. fasciculare – G. moniliformis; (e) H. 

fasciculare – F. chlamydosporum; (f) H. fasciculare – F. oxysporum; (g) H. fasciculare – M. 
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circinelloides  are represented in open symbols, whereas the corresponding controls are 

displayed in full symbols. All the assays comprised six replicates, from which mean and 

SEM were derived.  
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Figure 3. Morphological aspect of co-cultures established between H. fasciculare-H. 

fasciculare (Hf-Hf) in MMN medium; H. fasciculare-Interacting fungus (Hf-If); Interacting 

fungus-Interacting fungus (If-If), during 20 days after inoculation. a) B. bassiana (b) C. 

sinensis (c) E. nigrum (d) G. moniliformis (e) F. chlamydosporum (f) F. oxysporum (g) M. 

circinelloides 
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Figure 2. Variation of radial growth of H. fasciculare and interacting fungi during the co-

culture assay in MMN (A) or PDA (B) media. After co-culture establishment, radial growth 

was measured for H. fasciculare (red ,,,) and interacting fungus (blue ,,,), 

every two days, during 20 days. The internal (triangles) and external (squares) radial 

growths correspond to the distance from the center of the inoculum to the outside edge of 

the fungal colony between both inocula or in the opposing region, respectively. The results 

obtained in the co-culture assay of (a) H. fasciculare – B. bassiana; (b) H. fasciculare – C. 
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sinensis; (c) H. fasciculare – E. nigrum; (d) H. fasciculare – G. moniliformis; (e) H. 

fasciculare – F. chlamydosporum; (f) H. fasciculare – F. oxysporum; (g) H. fasciculare – M. 

circinelloides  are represented in open symbols, whereas the corresponding controls are 

displayed in full symbols. All the assays comprised six replicates, from which mean and 

SEM were derived.  
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Figure 4. Morphological aspect of co-cultures established between H. fasciculare-H. 

fasciculare (Hf-Hf) in PDA medium; H. fasciculare-Interacting fungus (Hf-If); Interacting 

fungus-Interacting fungus (If-If), during 20 days after inoculation. (a) B. bassiana (b) C. 

sinensis (c) E. nigrum (d) G. moniliformis (e) F. chlamydosporum (f) F. oxysporum (g) M. 

circinelloides 
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