
Preparation and characterization of CrNxOy thin films: the effect of composition and 

structural features on the electrical behavior 

 

R Arvinte1,2, J. Borges1, R. E. Sousa1, D. Munteanu2, N.P. Barradas3, E. Alves3, F. Vaz1, 

L.Marques1
 

 

1Departamento/Centro de Física, Universidade do Minho, 4710-057 Braga, Portugal 

2Dept. of Technological Equipment and Materials Science, Transilvania University, 29 

Eroilor Blvd., 500036 Brasov - Romania 

3Departamento de Física, Instituto Tecnológico Nuclear, E.N. 10, 2686-953 Sacavém, 

Portugal 

 

Abstract 

Metallic oxynitrides have attracted the attention of several researchers in the last decade 

due to their versatile properties. Through the addition of a small amount of oxygen  into a 

transition metal nitride film, the material’s bonding states between ionic and covalent types 

can be tailored, thus opening a wide range of electrical, optical, mechanical and tribological 

responses. Among the oxynitrides, chromium oxynitride (CrNxOy) has many interesting 

applications in different technological fields. In the present work the electrical behavior of 

CrNxOy thin films, deposited by DC reactive magnetron sputtering, were investigated and 

correlated with their compositional and structural properties. The reactive gas flow, gas 

pressure, and target potential were monitored during the deposition in order to control the 

chemical composition, which depend strongly on reactive sputtering process. Depending on 

the particular deposition parameters that were selected, it was possible to identify three types 

of films with different growth conditions and physical properties. The electrical resistivity of 



the films, measured at room temperature, was found to depend strongly on the chemical 

composition of the samples. 
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1. Introduction 

Thin film technology has been applied with enormous success in several technological fields, 

such as solar cells/collectors, optical devices for UV-visible spectral region applications, 

colored layers, automotive parts, barrier and insulating layers in electronic devices, providing 

unique benefits in terms of lifetime and performance. In terms of specific examples of 

synthetic materials used in the above mentioned applications, the transition metal oxide thin 

films, MeOx, are frequently applied in optical devices, such as anti-reflection and dense 

wavelength multiplexing devices and switchable windows [1-3]. These applications are 

enabled by the excellent mechanical properties of oxide-based films together with a good 

chemical stability, high index of refraction and wide optical band gap, high electrical 

resistivity and dielectric constant. On the other hand, transition metal nitrides such as ZrN, 

TiN and HfN are used as refractory compounds. They exhibit a wide number of exceptional 

physical properties, including their relatively high hardness, high melting point, chemical 

stability and corrosion resistance [4]. These properties are related with the binding 

mechanism, which comprises three bonding types: metallic, covalent and ionic [5,6]. 

Combining these two alloys gives rise to a new class of materials, the oxynitrides, MeOxNy 

(Me = early transition metal). The ternary alloys are gaining importance in several 

technological applications [7-12] due to the possibility to tune the properties between those of 

metallic nitrides, MeN, and those of the correspondent insulating oxides, MeOx, by changing 

the O content. Balancing the oxide/nitride ratio allows us to tune the band-gap and 



crystallographic order between oxide and nitride and hence the electronic and optical 

properties of the oxynitride alloy.  

Of particular interest is CrOxNy due to the importance of their nitrides and oxides in a number 

of technological applications [13-16]. In fact CrN has excellent mechanical properties, 

oxidation resistance, chemical stability, it has been used as a material for cutting tools, plastic 

metal moulds, and frictional parts [17]. It also finds applications in automotive industry as 

coatings for lubricated tribological systems. They are also used in moulds and pins for 

aluminium die casting, where mechanical resistance and high temperature oxidation resistance 

is required [18]. Also, Cr2O3 is very stable under ambient conditions and it is characterized by 

its chemical inertness, stability, mechanical strength and relatively high hardness. Previous 

research shows that the hardness of chromium oxide coatings strongly depends on the 

stoichiometric polycrystalline Cr2O3 phase present in the coating [19], with high quality Cr2O3 

stoichiometric coatings reaching nearly 30 GPa hardness combined with good scratch 

resistance. In terms of optical-based applications, Cr2O3 thin films include electrochromic 

coatings, infrared (IR)-transmitting coatings, selective black absorbers, and optically selective 

surfaces of solar collectors [20]. As chromium oxide is an insulating antiferromagnetic 

material it is also suitable as a tunnel junction barrier [21]. 

Depending on its stoichiometry CrNx shows a metallic-like (ρCrN ≈ 6.4×10-4 
Ω cm, x ≈ 0.93) 

or semiconducting behaviour (ρCrN > 1×10-2 Ω cm, x ≈ 1.06), while chromium oxide is a 

insulator (Eg ≈ 4 eV, ρCr2O3 >> 1 Ω cm). Combining both materials as chromium oxynitride 

opens the possibility to tune the energy band gap and hence the electronic properties in a wide 

range [16], just by controlling the oxide/nitride ratio. 

In the present work, the electrical behavior of CrNxOy thin films, deposited by DC reactive 

magnetron sputtering, was investigated and correlated with their compositional and structural 

properties. 



 

 

2. Experimental details 

For the present work, CrNxOy films were deposited on glass and silicon (100) substrates 

by reactive DC magnetron sputtering, in a laboratory-sized deposition system. The deposition 

system is formed by two vertically opposed rectangular magnetrons (unbalanced of type 2), in 

a closed field configuration. The films were prepared with the substrate holder positioned at 

70 mm from the target in all runs, using a DC current density of 75 A m-2 on the chromium 

target (99.6 at. %). Before each deposition the substrates were subjected to an etching process, 

using pure argon with a partial pressure of 0.3 Pa (70 sccm) and a pulsed current of 0.6 A (Ton 

= 1536 ns and f = 200 kHz) for 900 s. 

A gas atmosphere composed of Ar + N2+O2 gas mixture (17:3 ratio) was used for the 

preparation of the all set of films. The Ar flow was kept constant at 60 sccm during all 

depositions. The mixed reactive gas flow (N2+O2) varied from 2 to 32 sccm (corresponding to 

a partial pressure variation between 1.0×10-2 and 2.5×10-1 Pa). The working pressure was 

approximately constant during the depositions (varying slightly between ~0.4 and 0.5 Pa). 

The substrates were grounded and a temperature close to 100 ºC was kept during the films 

deposition. The temperature evolution of the coated substrates (resulting from the deposition 

process itself) was monitored with a thermocouple placed close to the surface of the substrate 

holder. A delay time of five minutes was used before positioning the surface of the samples in 

front of the Cr target. This delay time was used to avoid film contaminations resulting from 

target poisoning from previous depositions and also to assure a practically constant deposition 

temperature of the substrates during film growth. 

The atomic composition of the as-deposited samples was measured by Rutherford 

Backscattering Spectrometry (RBS) using either 1.4 or  1.75 MeV 1H+ and 2 MeV  4He+ 



beams. The scattering angles were 140º (standard detector, IBM geometry) and 180º (annular 

detector), tilt angles 0º and 30º. Composition profiles for the as-deposited samples were 

generated using the NDF [22] software. For the 14N, 16O and 28Si data, the cross-sections 

given by Gurbich were used [23].  

The crystallographic structure was investigated by X-ray diffraction (XRD), using a 

Philips PW 1710 diffractometer (Cu-Kα radiation) operating in a Bragg- Brentano 

configuration. XRD patterns were deconvoluted, assuming to be Pearson VII functions to 

yield the peak position, peak intensity and integral breadth [24]. 

The electrical resistivity of the conducting films was measured using the four-pointed 

probe method (in linear geometry) [25]. For high resistivity films, aluminum contacts (1×6 

mm2) were vapor deposited on the top of the coatings and the electrical resistivity of the films 

was obtained from the I-V characteristic. 

 

3. Results and discussion 

3.1. Deposition rate and film composition  

Fig. 1 shows the evolution of the target potential and deposition rate as a function of the gas 

mixture (N2+O2) partial pressure. From the analysis of the target potential evolution with 

reactive gas pressure one can observe two major deposition regimes for the prepared samples. 

A first regime, with gas partial pressures between 0.01 and 0.1 Pa, characterized by relatively 

low target voltages with values around -380 V. The set of samples within this zone were 

prepared with reactive gas flows lower than 8 sccm, exhibiting metallic-like surface tones. A 

second zone follows, for partial gas pressures between 0.1 and 0.27 Pa, where the target 

voltage increased gradually from -375 V to values close to -420 V. Due to this variation of 

target voltage one would expect a gradual change in the growth modes of the samples within 

this zone as well as in its properties. This assumption was firstly confirmed by the sudden 



modification in the surface appearance of the coatings within this second zone, which varied 

from metallic-like to interference-like ones. 

To explain the behavior of the target voltage with the reactive gas pressure, one has to 

consider the gettering of the reactive gas by the target material, as shown by Berg et al. [26], 

leading to the formation of a compound layer on the target surface and thus affecting the 

reactive gas partial pressure and also the ion-induced secondary electron emission (ISEE) 

coefficient of the target material [27]. In this respect, it is widely known and accepted that the 

minimum voltage required to sustain the magnetron discharge is roughly inversely 

proportional to the γISEE coefficient of the target material [28]. The dependence of this 

coefficient on the reactive gas partial pressure varies for different target materials and reactive 

gases, increasing for some metals like Al and Y, with increasing reactive gas incorporation on 

the target, while for Cr, Ti, Zr it decreases with the reactive gas incorporation [26]. In the 

present case, at low reactive gas flow, the reactive gas is almost completely gettered and 

hence the target condition remains metallic, which explains the low constant target voltage 

observed for the Cr target. On increasing the reactive gas flow, the amount of gas that can be 

gettered by the Cr target is reached, the reactive gas partial pressure increases and the target 

becomes gradually poisoned, which explains the steady increase in the target voltage observed 

for the set of samples that were indexed to the second zone. 

Following the variation of target potential, the deposition rate measurements reveal again 

different types of films, confirming the analysis made above of the different film depositions. 

The evolution of deposition rate, Fig. 1b), indicates that the set of samples that were firstly 

divided into two major zones after the target potential analysis, should in fact be split into 3 

different modes (regimes): i) a set of samples that were deposited within a metallic mode 

regime, which will be indexed from hereafter as zone I films; ii) a second set of samples that 

were deposited in an compound mode (oxide) regime, indexed from hereafter as zone II films; 



and in between, a set of films that seem to have been deposited in a transition regime, which 

will be  named zone T. The first regime – metallic mode, includes the group of samples 

prepared with reactive gas flows up to 8 sccm (corresponding to partial pressures varying 

from 0.01 to 0.1 Pa), revealing higher deposition rates (above 35 nm/min), which is 

characteristic of the sputtering process occurring in the metallic regime [29].  

For reactive gas partial pressures above 0.16 Pa, there is a clear tendency for a 

progressive decrease of the deposition rate from roughly 40 nm/min to a value close to 10 

nm/min at the highest reactive gas flow. The progressive decrease of the deposition rate 

within the oxide zone (zone II) is a consequence of the well-known poisoning effect of the 

target by both reactive gases [30]. Both chromium nitride and oxide layers form at the surface 

of the Cr target. Since the sputtering yield of both compounds is lower than that of Cr, a 

decrease in the deposition rate is expected. Between these two main zones (corresponding to 

the group of samples prepared with reactive gas flows between 12 and 20 sccm), one can 

clearly distinguish the previously mentioned transition zone, which maybe associated to the 

transition regime between the metallic and compound oxide regimes in the hysteresis cycle of 

pure nitrides, where the deposition rate tends to stabilize at about 40 nm/ min. The fact that 

the deposition rate does not change significantly makes the set of samples prepared within this 

growth mode share similar characteristics, namely in what concerns the morphology and 

structure, and thus their set of basic properties. The consistency in the deposition rate values 

suggests that the constant target potential values are responsible for an almost steady state of 

the sputtering process.  

The evolution of deposition rate with the reactive gas flow is also well correlated with the 

change of the composition of the films and the correspondent ratios between the concentration 

of the different elements, shown in Figs. 2a) and b). Following the previous analysis, the 

samples in fig 2a) can be divided in the same three zones, which actually correspond to 



important variations of the composition. Films in zone I, prepared with low partial pressure of 

reactive gas mixture (pN2+O2 ≤ 0.1 Pa), reveal a chromium decrease from 75 at. % to a value 

close to 58 at. %, thus confirming the high sub-stoichiometric condition of these samples and 

their metallic nature, as was anticipated by their visual inspection. Oxygen and nitrogen 

present quite similar behaviors in this first zone, with the oxygen varying from about 13 to 21 

at. %., and the nitrogen from around 11 to 21 at. %. For films prepared within zone T, the 

chromium content reveals a slight decrease from around 47at.% to a value close to 45 at. %. 

Oxygen and nitrogen contents are approximately constant and quite similar within this zone, 

at about 30 at. %. Regarding the samples prepared with the highest gas mixture partial 

pressures (between 0.16 to 0.25 Pa), zone II, the composition analysis, shown in Fig. 2a), 

again reveals the decrease of the chromium content from around 40 at.% to a value close to 32 

at.%. The RBS analysis shows for this zone a slight decrease of the nitrogen content to around 

8 at.% and a significant increase of the oxygen content from 43 at.% to a value close to 56 

at.%.  

Beyond these absolute values of composition and their variations, it is particularly 

important to notice the evolution of the atomic ratios of the different elements as shown in 

Fig. 2b), which may give the first indication about the particular tendency for compound 

formation. Within zone I, results show that all non-metals to chromium atomic ratios (CO/CCr, 

CN/CCr and CO+N/CCr) have values below one, indicative of the sub-stoichiometric nature of 

the films, forming a kind of metastable solid solution of Cr(N,O)x.  

Within the transition zone, the CO/CCr and CN/CCr ratios are approximately constant, with 

values close to 0.6, while the CO+N/CCr ratio is higher than 1, characteristic of an over-

stoichiometric compound. On the other hand, the fact that the CO+N/CCr ratio in this zone is 

still below 1.5 (the value that would correspond to the Cr2O3 compound) would mean, in a 

first approximation, that there is not enough oxygen (even if together with N) to form oxide-



like compounds (N-doped if this element could occupy some of the O positions within a 

Cr2(O,N)3-type compound). But at the same time it is also too high to form a oxygen-doped 

nitride-like phase. This may induce the possibility to have over-stoichiometric Cr(O,N)-type 

compound in this transition zone.  

Finally, the films from zone II show an increase of the CO/CCr and the CO+N/CCr ratios to 

values around 1.7 and 2, respectively, with the CN/CCr ratio decreasing to a value close to 0.3. 

This set of results can be explained by the higher binding enthalpy of chromium oxide (-564 

kJ/mol per chromium atom) compared to chromium nitride (-125 kJ/mol), thus favouring the 

bonding of Cr atoms with oxygen [16]. The films from this zone are likely to be oxide-based 

Cr2O3 or CrO2 compounds, with the excess of nitrogen probably being incorporated in lattice 

or in interstitial positions within the oxide phase [31,32].  

 

3.2. Structural properties 

Fig. 3 shows a summary of the different structural features revealed by the overall set of 

prepared samples. In fact, and following both the deposition characteristics (target potential 

and deposition rate) and composition analysis, the structural characterization revealed the 

development of three major types of crystalline structures, represented by each of the 

diffractograms depicted in Fig. 3. Thus, the set of samples that were prepared within the 

metallic-like zone I, represented in Fig. 3 by the sample prepared with the highest CO+N/CCr 

ratio within this zone (CrN0.36 O0.37), showed the development of a very poorly crystallized 

structure (quasi-crystalline), where the position of the different diffraction patterns suggests 

some similarity to a fcc CrN-type. It is worth mentioning that a hcp Cr-type phase may also 

be present as evidenced by the large and broad peak at around 2Ɵ = 44º as well as the peak 

tail at 2Ɵ ≈ 65º, meaning that the samples in this zone probably consist of a mixture of both 

CrN(O) and Cr(O) phases. The presence of (O) here takes into account the non-negligible 



possibility that it may be incorporated in both structures [31,32]. Notice also the relatively 

high shift in the peak positions for the CrN(O) phase, which can be easily understood taking 

into account the sub-stoichiometric condition of the samples in this zone (CO/CCr and CN/CCr 

below 0.4 and CO+N/CCr ratio below 0.7), and the fact that oxygen, being very reactive, may be 

occupying nitrogen positions in the CrN lattice (as mentioned above), thus inducing 

significant lattice distortions. 

Regarding the samples from zone T, Fig. 3 clearly shows that a CrN-type structure is 

present, with relatively high crystallinity, as demonstrated by the XRD pattern of the CrN0.71 

O0.65 sample. The two diffraction peaks observed correspond to (111) and (200) planes of that 

fcc CrN(O)-type structure, with a (111) preferential growth. As already anticipated by the 

composition analysis no oxide phase is observed which may be easily understood by the 

insufficient oxygen content in the films to form such a Cr2O3 phase. It is also important to 

note the much higher crystallinity of these samples when compared to the results obtained for 

the zone I samples. Furthermore, it is also worth to note the significantly lower shift in the 

peaks position compared to those of zone I. The main reason for such behavior is certainly 

associated with the particular stoichiometry of the samples within this zone. As demonstrated 

in Fig. 2 the samples prepared within zone T have CO/CCr and CN/CCr ratios close to 0.6, while 

the CO+N/CCr ratio varies between about 1 and 1.3. Taking into account the possibility to have 

O occupying N positions within the fcc CrN lattice (quite probable due to the low CN/CCr 

ratio), this would lead to an increasing stoichiometric condition of the crystalline phase and 

thus to a continuous approach towards the CrN peak positions. 

Finally the samples prepared within zone II, reveal structural features are clearly different 

from the samples of the two previous zones, as shown in the diffractogram of the sample with 

composition CrN0.25O1.64, developing an amorphous-type structure that may correspond to a 

oxide-like phase, as demonstrated by R. Mientus et al. [16].  



 

3.3. Electrical resistivity 

The electrical resistivity of the samples is plotted in Fig. 4 as a function of the non-

metallic/metallic chemical ratio, CO+N/CCr. Regarding the samples from zone I, which 

presented a sub-stoichiometric condition and a poorly crystallized fcc CrN-type structure, the 

resistivity analysis revealed relatively low values of resistivity, from 7.2×102 
µΩ cm to around 

1.5×103 µΩ cm, which are characteristic of metallic-like compounds. The values are relatively 

close to those of chromium nitride with varied stoichiometries, CrNx (1×102 < ρCrNx < 15×104 

µΩ cm) [33]. Furthermore, Mientus et al. [16] reported resistivity values of CrON films in the 

vicinity of 1×104 µΩ cm for the lower nitride range in nitride-based coatings, the equivalent 

to zone I in this paper. In any case, one must keep in mind that their coatings were already in 

the stoiciometric condition, and thus the range did not include the entire set of sub-

stoichiometric nitride compositions (O doped), which in the present case explains the 

variation from 1×102 to 1×104
 µΩ cm. 

For the samples prepared within the transition zone, where the composition analyses 

revealed a CO+N/CCr ratio increase to an over-stochiometric condition and the structural 

analysis showed a highly crystalline fcc CrN-type phase, the resistivity analysis  reveals an 

increase of the electrical resistivity of the films with values ranging between 7×103 and 

1.4×105 
µΩ cm. Again, there is a good agreement between these results and those obtained for 

both the CrNx and CrOxNy systems [33]. The first important note is the good agreement 

between the results obtained for the films within this transition zone and those obtained by R. 

Mientus et al. [16], which have quite similar values in their stoichiometric to close-

stoiciometric-like CrOxNy films. It is also important to note the agreement of the resistivity 

values of the samples from zone T with those of bulk chromium nitride (ρCrN = 1×104 Ω cm) 

[16]. 



Finally, the oxide-like samples prepared within zone II presented, as expected, insulator-

type behavior with high values of resistivity varying between 1.9×107 and 1.1×109 µΩ cm, 

consistent with Cr2O3 resistivity (ρCr2O3 >>108 µΩ cm) and far beyond the values obtained in 

zone T. This increase in the resistivity is also consistent with the increase in the stoichiometry 

of the samples, Fig. 2, especially that of CO/CCr, which goes even beyond that of Cr2O3. 

 

4. Conclusion 

Chromium oxynitride films CrNxOy were prepared by reactive DC magnetron sputtering 

using a chromium target and a gas mixture composed of argon and a reactive mixture of 

oxygen + nitrogen (3:17 atomic ratio). From the evolution of the target voltage and deposition 

rate as a function of the partial pressure of reactive gas mixture three different types of films 

were found: metallic like films (Zone I), oxide like ones (Zone II) and a transition zone (Zone 

T) between them. The films in Zone I were prepared with low values of partial pressure and 

high deposition rates, with the composition, structural and electrical characterization revealing 

sub-stoichiometric films with a quasi-crystalline CrN- type compounds and low electrical 

resistivity values. The films from Zone T, corresponding to intermediate reactive gas partial 

pressures, reveal an over-stoichiometric character and fcc structure (CrN) with relatively high 

degree of crystallinity and electrical resistivity values comparable to those of Zone I. Finally 

the films prepared with high partial pressures of reactive gas, that is, Zone II (oxide zone) 

semi-transparent films, present an over-stochiometric oxide like character with an amorphous-

type structure and high values of electrical resistivity consistent with insulator behavior. This 

work suggests that by simply changing the reactive gas flow it is possible to tune the electrical 

properties of CrNO compounds in a wide range, from metallic like to semiconducting 

behaviour. 
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FIGURE CAPTIONS 

 

Fig.1 a) Evolution of the target potential and deposition rate b) as a function of the partial 

pressure of reactive gas (N2+O2). The pressure was measured prior to discharge ignition. 

 

Fig. 2. Evolution of the: (a) chemical composition and (b) concentration ratio as a function of 

the partial pressure of reactive gas (N2+O2). The pressure was measured prior to discharge 

ignition. The chemical composition of all samples was determined within an error of about 3-

5 at. %. 

 

Fig. 3. X-ray diffraction patterns for representative samples of each of the three identified 

zones with different crystallographic features. 

 

Fig. 4. Electrical resistivity at room temperature of the films as a function of the CO+N/CCr 

concentration ratio. 
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Figure 1 b) 
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Figure 2 a) 
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Figure 2 b) 
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Figure 4 
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