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BENDING 
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Abstract:  
In the present paper a design oriented model is proposed to evaluate the flexural 
resistance of elements of fibre reinforced concrete (FRC) of tensile strain-softening or 
tensile strain-hardening behaviour and strengthened longitudinally by steel bars in the 
tensile zone of a rectangular cross section. The cross sectional moment-curvature response 
predicted by this model is used in a numerical approach to predict the load-deflection 
relationship of beams failing in bending. To appraise the predictive performance of this 
approach, the results obtained in an experimental program with shallow beams of steel 
fibre reinforced self-compacting concrete and strengthened with distinct reinforcement 
ratios are compared to those estimated by the developed model. The predictive 
performance of the model is quite satisfactory, taking into account the simplified 
approaches adopted in order to have a closed form solution that can be used in the scope 
of design FRC elements failing in bending.  

Keywords:  Fibre reinforced concrete, Tensile strain-softening, Tensile strain-
hardening, Longitudinal steel bars, Moment-curvature response; Flexural failure  

 

1. Introduction   
The benefits provided by the participation of discrete fibres in the reinforcement of 
cement-based structures are already well known by the scientific and technical community 
of the concrete technology. Discrete fibres can, in fact, decrease the crack opening and 
crack spacing of concrete elements, contributing to increase the load carrying capacity, the 
energy dissipation and the ductility at serviceability and at ultimate limit design states [1]. 
In consequence of the crack arrestment provided by the pullout resisting mechanisms 
offered by fibres bridging the crack surfaces, the durability and concrete integrity are also 
enhanced [2]. However, the potentialities of fibres as a reinforcement system are not yet 
well explored, mainly for structural applications, since models in a format adjusted for 
design practice, like closed-form solutions, are rare. Recently, Soranakom and Mobasher 
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[3] developed a closed-form solution for the prediction of the moment-curvature 
relationship of rectangular cross section elements failing in bending, constituted by fibre 
reinforced concrete (FRC) that can have a tensile strain-softening (SS) or a tensile strain-
hardening (SH) character [4]. A bilinear stress-strain softening diagram was utilized in [5] 
to study the FRC section strengthened with steel bars, composed by an abrupt stress decay 
branch (vertical branch) at crack initiation, followed by a constant residual tensile strength 
and a stress cut-off at a certain ultimate tensile strain. However, it is being recognized that 
between the crack initiation and the post-cracking residual strength phases,  a transition 
softening branch should be adopted, since it has a significant contribution on the 
performance of FRC structural members, mainly at the serviceability limit states [6].  

In the present work the model proposed in [3] is extended in order to derive a closed-form 
solution able of determining the moment-curvature relationship (MCR) of both SS or SH 
fibre reinforced concrete elements failing in bending that also includes tensile steel bars. 
Using the flexural stiffness (EI) provided by the MCR, a simple, but enough accurate 
numerical approach is developed that can predict the force-deflection relationship of 
statically determinate elements failing in bending. The predictive performance of the 
model was appraised by simulating experimental tests executed with steel fibre reinforced 
self-compacting concrete (SFRSCC) shallow beams reinforced with distinct steel 
reinforcing ratios.  

 

2. Constitutive laws for the intervening materials 
Tensile stress-strain relationship of FRC can be characterized in three different phases as 
depicted in Fig. 1a. The initial linear elastic behaviour is defined by an elastic tensile 
modulus ( )E  and concrete crack strain (

cr
ε ). For current practical applications of FRC, 

fibre reinforcement mechanisms have a negligible influence on this phase, therefore the E 
and 

cr
ε  can be assumed equal to the corresponding values of the homologous plain 

concrete. Experimental evidence [7] shows that after crack initiation in SS-FRC, in 
general, an abrupt decay of the residual tensile strength occurred for a relatively low 
increase of tensile deformability, since this phase is mainly controlled by the fracture 
characteristics of the cement matrix. This second phase is, in a simplified way, assumed as 
a linear branch characterized by the post-cracking modulus 

cr
E  and the transition strain 

trn
ε . These two variables are also used to simulate the second phase of SH-FRC, but in 

this type of high tensile and ductile FRC the 
trn

ε  can be several times higher the 
cr

ε  due 

to the formation of a diffuse crack pattern [8]. In the present approach, after the tensile 
transition phase, the tensile residual strength (

cst
σ ) is assumed constant up to the ultimate 

tensile strain (
tu

ε ), above which it is assumed that FRC loses its tensile capacity. 

Experimental research with SS-FRC shows that, in general, after a minimum post-crack 
residual strength, a pseudo-hardening phase occurred due to the fibre pullout mechanisms 
[7], followed by a smooth softening branch up to the complete loss of tensile load carrying 
capacity. Therefore, the amplitude of this third phase (between 

trn
ε  and 

tu
ε ) is, in general, 

of relatively high amplitude. In case of SH-FRC this third phase can be regarded the 
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transition phase between the stabilization of the diffuse crack pattern and the formation of 
the failure crack (localization), which corresponds to an amplitude that, in general, is 
smaller than the one corresponding to the second phase (between 

cr
ε  and 

trn
ε ). The third 

phase is, therefore, characterized by the residual tensile strength 
cst

σ . 

The experimental research shows that for both SS- and SH-FRC the pre-peak compression 
behaviour is marginally affected by the presence of fibres, unless quite high content of 
fibres are used. In fact, the benefits of fibre reinforcement for the compression behaviour 
are most reflected in the compression softening phase, since a significant increase of the 
post-peak energy absorption capacity can be obtained, depending on the characteristics of 
the fibres and surrounding matrix [9]. Therefore, the simplified constitutive law 
represented in Fig. 1b is adopted to simulate the FRC in compression, which is the same 
one proposed in [3]. This law is composed by an initial linear branch characterized by the 
compressive Young’s Modulus (

c
E ) up to the compressive “yield” strain (

cy
ε ), and 

continues with a constant value of compressive “yield” stress (
cy

σ ) up to the ultimate 

compressive strain (
cu

ε ), after which it is assumed that FRC loses the capacity of 

supporting compressive loads. In Fig. 1c is represented the idealized stress-strain 
relationship adopted for the steel bars, which is composed by an initial linear elastic 
branch, characterized by the elasticity modulus (

s
E ) up to the yield strain (

sy
ε ), and 

continues with a plastic response of a constant yield stress (
sy

ε ) up to attain the ultimate 

tensile strain (
su

ε ), after which it is assumed that the steel loses its tensile capacity. The 

symbols used for the characterization of the FRC are the same ones proposed in [3]. 

  

 Fig. 1: Idealized stress-strain response of FRC: (a) tensile behaviour, (b) compression behaviour 
(based on [3]); and (c) idealized stress-strain diagram for steel bars.  

3. Derivation of a closed-form solution for moment–curvature diagram 
The closed-form solution is derived for a rectangular cross section of width and height of b 
and d, respectively, as shown in Fig 2. The reinforcement ratio of steel bars (ρ ) is the 
quotient between the total area of steel bars (

s
A ) and the cross section area (bd). The 

concrete cover thickness of the steel bars is represented by d’. The tensile and the 
compressive stress variation of cross sectional components can be normalized by the FRC 
stress at crack initiation,

 cr
σ  ( =

cr
Eε ), in according to the following equations: 
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Fig. 2: Main variables that describe the geometry and the strain profile in a FRC reinforced 
rectangular cross section. 
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where, 
t

σ  and 
s

σ  are the tensile stress of FRC and steel bars, respectively, and 
c

σ  is the 

compressive stress of FRC. The other dimensionless parameters are obtained from the 
following equations (Fig. 1): 

= trn

cr

ε
α

ε
; = tu

tu
cr

ε
β

ε
; = cr

E
η

E
; = cst

cr

σ
μ

Eε
; = c

E
γ

E
; = cu

cu
cr

ε
λ

ε
                                                    (4) 

= cy

cr

ε
ω

ε
; = sy

cr

ε
ζ

ε
; = s

s

E
γ

E
; = su

su
cr

ε
ψ

ε
                                                                                          (5) 

The normalized concrete tensile strain at the bottom fibre (β ), normalized concrete 
compressive strain at the top fibre (λ ), and normalized steel tensile strain (ψ ) are defined 
as: 

= tbot

cr

ε
β

ε
;  = ctop

cr

ε
λ

ε
;  = s

cr

ε
ψ

ε
                                                                                    (6)  

A linear variation of strain is assumed on the depth of the section and, hence, 
parametersβ , λ , and ψ  are linearly related together: 
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 =
−1

k
λ β

k
; 

− −=
−

1 Δ

1

k
ψ β

k
                                                                                          (7)  

wherek and Δ  are the neutral axis depth ratio and normalized cover thickness of steel 
bars, respectively (Fig. 2). Regarding the material properties, nine possible strain 
configurations can be distinguished according to Tab. 1. 

Tab. 1 Possible strain variation of the material parameters [10]. 

Strain 
configuration 

FRC 
Steel bars 

Tension Compression 

1 ≤ ≤β0 1  ≤ ≤λ ω0  ≤ ≤ψ ζ0  
2.1.1 < ≤β α1  ≤ ≤λ ω0  ≤ ≤ψ ζ0  

2.1.2 < ≤β α1  ≤ ≤λ ω0  < ≤
su

ζ ψ ψ  

2.2.1 < ≤β α1  < ≤
cu

ω λ λ  ≤ ≤ψ ζ0  

2.2.2 < ≤β α1  < ≤
cu

ω λ λ  < ≤
su

ζ ψ ψ  

3.1.1 >β α  ≤ ≤λ ω0  ≤ ≤ψ ζ0  

3.1.2 >β α  ≤ ≤λ ω0  < ≤
su

ζ ψ ψ  

3.2.1 >β α  < ≤
cu

ω λ λ  ≤ ≤ψ ζ0  

3.2.2 >β α  < ≤
cu

ω λ λ  < ≤
su

ζ ψ ψ  
 

For each value of applied normalized concrete tensile strain, β , the net force is obtained as 
a difference between the tensile and compression forces equated to zero for internal 
equilibrium, and solved for the neutral axis depth ratio k , which is obtained from the 
equations included in Tab. 2 for the distinct possible stages. Depending on the stage of 
loading (i), the resisting bending moment and the corresponding curvature ( φ

   
 ,   

i i
M ) of the 

cross section can be calculated from the following equations: 

i i cr
M M M   ′= ; 

i i cr
   ′φ = φ φ                                                                                           (8)

 

where, ′
i

M  and ′φ
i

 are the normalized moment and curvature at stage i obtained from the 

equations indicated in Tab. 3, while 
cr

M  and φ
 cr
 are the cracking moment and the 

corresponding curvature calculated for a rectangular section from the following equations: 

    
( )cr cr

M bd Eε21

6
= ; cr

cr

ε

d

2
φ =                                                                                       (9)

 

After having been supplied the geometric characteristics and reinforcement arrangement of 
the cross section, as well as the parameters defining the constitutive laws of the intervening 
materials, an incremental procedure of the normalized concrete tensile strain at bottom 
fibre Δβ  is given up to a maximum supplied limit of β  (

max
β ). For the applied value of 

β , parameter k  is obtained by trial and error using gradually the equations of Tab. 2 for 
stage 1 up to stage 3.2.2. The resultant force is obtained as the difference between the 
tensile and compression forces indicated elsewhere [10].  
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Tab.  2 Equation for the neutral axis depth ratio for each strain configuration [10]. 
Strain 
configuration k  

1 
 

( )

( )
( )

 − + =

= − + + < >
 −



s

1

1
s 1

2γ 1 Δ 1   1

2 D

1 γ D
  1    1

γ 1

ρ for γ

k
ρ

for γ or γ

                     

( )= + − + +
1 s s

2γ 0.5 γ γ γΔ Δ γD ρ ρ
 

2.1.1 

( ) + − + − − + −  =
−

2 2 2 2 2 2
211 211 211 211

211 2
211

( ) ( 2 2 Δ)
s s s s

D γ β ρ D γ β ρ D β γ D γ β ρ γ β ρ
k

D β γ

( )= − + + −2
211

2 1 2 1D η β β β
 

2.1.2 

( ) + − + − − +  =
−

2 2
212 212 212 212

212 2
212

( ) ( )
s s s

D ζγ βρ D ζγ βρ D β γ D ζγ βρ
k

D β γ
 

( )= − + + −2
212

2 1 2 1D η β β β
 

 

2.2.1 

( ) + + − + + − + + −
 =

+

2 2 2 2 2

221 221 221 221

221
221

( ) 2Δ ( 2 2 Δ)

2

s s s s
D ωγβ γ β ρ D ωγβ γ β ρ D γβ D γ β ρ γ β ρ

k
D ωγβ

( )= − + + − +2 2
221

2 1 2 1D η β β β ω γ  

2.2.2 
 

+
=

+
222

222
222

2

2

s
D βζγ ρ

k
D ωγβ                                       

( )= − + + − +2 2
222

2 1 2 1D η β β β ω γ
 

 

3.1.1 

( ) + − + − − + −  =
−

2 2 2 2 2 2
311 311 311 311

311 2
311

( ) ( 2 2 Δ)
s s s s

D γ β ρ D γ β ρ D β γ D γ β ρ γ β ρ
k

D β γ
 

( )= − + + − + −2
311

2 1 2 1 2 2D η α α α μβ μα
 

 

3.1.2 

( ) + − + − − +  =
−

2 2
312 312 312 312

312 2
312

( ) ( 2 )
s s s

D ζγ βρ D ζγ βρ D β γ D ζγ βρ
k

D β γ
 

( )= − + + − + −2
312

2 1 2 1 2 2D η α α α μβ μα  

3.2.1 

( ) + + − + + − + + −
 =

+

2 2 2 2 2

321 321 321 321

321
321

( ) 2Δ ( 2 2 Δ)

2

s s s s
D ωγβ γ β ρ D ωγβ γ β ρ D γβ D γ β ρ γ β ρ

k
D ωγβ

( )= − + + − + + −2 2
321

2 1 2 1 2 2D η α α α ω γ μβ μα  

3.2.2 

+
=

+
322

322
322

2

2

s
D βζγ ρ

k
D ωγβ                                           
( )= − + + − + + −2 2

322
2 1 2 1 2 2D η α α α ω γ μβ μα
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Tab. 3  Equation for the normalized moment and curvature for each strain configuration [10]  
Strain 
configuration 

M´ 

1 
( ) ( ) ( )( ) − + + + − − + − +
 ′ =

−

3 2 2
1 1 1

1
1

2 1 3 3 6 Δ 1 3 3 (Δ 1) 1

(1 )

s s s
β γ k γ ρ k γ ρ k γ ρ

M
k

 

2.1.1 

( ) ( ) ( ) ( )
( )

+ + − + + − + − −
′ =

−

23 2
211 211 211 211 211 211 211

211

211

2 6 3 (3 12 Δ 1 ) 6 Δ 1

1

s s s
βγ C k γ βρ C k C γ βρ k γ βρ C

M
k

 

− + − − +=
3 2 2

211 2

2 3 3 1ηβ ηβ β η
C

β   

2.1.2 

( ) ( ) ( )
( )

+ + − + + − + − −
′ =

−

3 2
212 212 212 212 212 212 212

212

212

2 3 2 3( 2 Δ 2 ) 6 (1 Δ)

1

s s s
βγ C k γ ζρ C k C γ ζρ k γ ζρ C

M
k

 

− + − − +=
3 2 2

212 2

2 3 3 1ηβ ηβ β η
C

β  
 

2.2.1 

( ) ( ) ( ) ( )
( )

− + + + + + − − + − +
′ =

−

23 2
221 221 221 221 221 221 221

221

221

3 3 2 3(4 Δ 1 ) 6 Δ 1

1

s s s
ωγ C k ωγ C γ βρ k γ βρ C k γ βρ C

M
k

− + − + −=
3 2 2 3

221 2

2 3 3 1ηβ ηβ β ω γ η
C

β  
 

2.2.2 

( ) ( ) ( )′ = + − + + − +2

222 222 222 222 222 222
3 2 3 6 Δ

s s s
M ωγ C k ζγ ρ C k ζγ ρ ζγ ρ C  

− + − + −=
3 2 2 3

221 2

2 3 3 1ηβ ηβ β ω γ η
C

β  
 

3.1.1 

( ) ( ) ( ) ( )
( )

− − + + − − − − −
′ =

−

23 2
311 311 311 311 311 311 311

311

311

2 3 2 3( 4 Δ 1 ) 6 Δ 1

1

s s s
C βγ k γ βρ C k C γ βρ k γ βρ C

M
k

 

( )− − + + + −
=

2 2 2 2 3

311 2

3 2 1μβ μα ηα α ηα η
C

β
 

 

3.1.2 

( ) ( ) ( )
( )

− − + + + − + − −
′ =

−

3 2
312 312 312 311 312 312 312

312

312

2 3 2 3( 2 2 Δ ) 6 (Δ 1)

1

s s s
C βγ k γ ζρ C k C γ ζρ k γ ζρ C

M
k

 

( )− − + + + −
=

2 2 2 2 3

311 2

3 2 1μβ μα ηα α ηα η
C

β
 

 

3.2.1 

( ) ( ) ( ) ( )
( )

− + + + + + − − + − +
′ =

−

23 2
321 321 321 321 321 321 321

321

321

3 3 2 3(4 Δ 1 ) 6 Δ 1

1

s s s
ωγ C k ωγ C γ βρ k γ βρ C k γ βρ C

M
k

( )+ + +
=

2 2 2 2 3 3

321 2

3 - - 2 - -1μβ μα ηα α ηα ω γ η
C

β
 

3.2.2 

 

( ) ( ) ( )′ = + + + +2

322 322 222 322 322 322
3 -2 3 6 - Δ

s s s
M ωγ C k ζγ ρ C k ζγ ρ ζγ ρ C

 ( )+ + +
=

2 2 2 2 3 3

322 2

3 - - 2 - -1μβ μα ηα α ηα ω γ η
C

β
  

2(1 )i
ik

β
′φ =

−
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If the resultant force is smaller than a given force tolerance value, the correct value of k  is 
obtained, otherwise the trial procedure continues in the following stage. After having been 
obtained the correct value of thek parameter and the stage number, the normalized 

moment ( ′
i

M ) and the corresponding curvature (′φ
i

) are calculated from the equations 

included in Tab. 3. These values are introduced in Eq. 8 to calculate the moment and 
curvature due to that specific normalized tensile strain. This incremental-iterative process 
is terminated when the normalized concrete tensile strain at bottom fibre attains

max
β . 

Using the obtained moment-curvature relationship, the force-deflection response of a 
statically determinate beam failing in bending can be determined. The beam is discretized 
in Euler-Bernoulli beam elements of 2 nodes. The tangential or the secant flexural stiffness 
of each element, (EI)Te, is determined from its moment-curvature relationship that is stored 
in a data file (each element has its own M-φ  file). Therefore, the present approach can 
simulate the deformability of a beam composed of zones of distinct moment-curvature, 
giving to the model the possibility of predicting with enough accuracy the force-deflection 
response of quite heterogeneous beams in terms of material constitutive laws and 
arrangements of the materials, if these constitutive laws are known [11] 

 

4. Model appraisal  
To evaluate the predictive performance of the proposed model, an experimental program 
with shallow beams of steel fibre reinforced self-compacting concrete (SFRSCC) was 
carried out. The mix composition adopted for the manufacture of the SFRSCC was 
optimized for a solid skeleton that includes 45 kg/m3 of hooked end steel fibres (SF) of a 
length (l f ) of 60 mm, a diameter (df ) of 0.75 mm, an aspect ratio (l f / df) of 80 and a yield 
stress of 1100 MPa. The performed experimental program included three series of shallow 
beams, submitted to a four points load configuration (Fig. 3).  

150mm

1600mm

125mm 125mm450mm 450mm
1350mm

F/2

Concrete

F/2

 

 

Fig. 3:  Dimensions (in mm), support and load conditions, and monitoring system. 
 

Using 3φ6, 3φ8 and 3φ10 of steel bars for the series of beams designated by A-6-45, B-8-
45 and C-10-45, respectively, the influence of the reinforcement ratio on the effectiveness 
of the fibre reinforcement can be assessed. In all beams three steel bars of 6 mm diameter 
were used in the top part of the cross section, which contribution was, however, 
disregarded in the numerical simulations. The force was applied by a load cell of 300 kN 
capacity, and the deflections were measured by five LVDT’s. The values of the parameters 
of the constitutive model are indicated in Tab. 4.  
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Tab. 4 - Values computed for the constitutive models for series of beams   

Series’ 
designation 

E 
(GPa) 

cr
ε  

(%) 

α  μ  
tu

β  γ  ω  cu
λ  ρ (%) 

s
γ  ζ  

su
ψ  

A-6-45 45 0.01 2.5 0.6 30 1.0 25.96 37.5 0.2 4.51 28 100 
B-8-45 45 0.01 2.5 0.6 43 1.0 25.96 37.5 0.36 4.33 30 143 
C-10-45 45 0.01 2.5 0.6 43 1.0 25.96 37.5 0.56 4.38 30 115 

 

The force-deflection curves predicted by the numerical approach and recorded in the 
experimental tests are compared in Fig. 4, from which it can be concluded that the 
predictive performance of this approach is quite good for design purposes of FRC elements 
failing in bending. 

 

   
Fig. 4: Evaluation of the predictive performance of the developed model. 

5. Conclusions 
In the present work, a closed form solution was develop to predict the moment-curvature 
relationship of rectangular cross sections of strain-hardening or strain-softening fibre 
reinforced concrete (FRC) beams that can also include tensile longitudinal steel bars. The 
moment-curvature relationship was used as the entity capable of supplying the tangential 
or the secant flexural stiffness of small elements that discretize a statically determinate 
beam, in order to predict its force-deflection response. The predictive performance of this 
design-oriented approach was evaluated in an experimental program composed of three 
series of shallow steel fibre reinforced self-compacting concrete beams with distinct 
percentage of longitudinal steel bars. The predictive performance evidences that the 
developed strategy can be adopted by designers, since the obtained levels of accuracy are 
quite satisfactory, taking into account the adopted simplifications in order to turn the model 
of simple implementation. 
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