

Centro de Biologia Molecular e Ambiental Universidade do Minho

Vilela-Moura A.

Schuller D.

Mendes-Faia A.

Côrte -Real M.

THE EFFECT OF MICRO-OXYGENATION AND CELL IMMOBILIZATION ON THE REDUCTION OF EXCESSIVE VOLATILE **ACIDITY FROM WINES**

An enological problem

- Acetic acid is the main component of volatile acidity, and critical for wine quality;
- This acid is mainly produced by bacterial spoilage and Botrytis cinerea infecting grapes; also formed by yeasts during alcoholic fermentation;
- Above 0.8 g.l⁻¹, acetic acid has a detrimental organoleptical effect (acidic wine).

Aims of the study

To evaluate:

- the decrease of volatile acidity from acidic wines by S. cerevisiae strains
- the effect of micro-oxygenation on wine deacidification and aroma composition
- the efficiency of removal acetic acid by immobilized
 s. cerevisiae S26

yeast strains tested in "remostagem" assays:

"remostagem" process: white wine

"remostagem" process: red wine

Musts

Initial volatile acidity 1.12 g.l⁻¹ acetic acid

Marcs

Initial volatile acidity
1.14 g.l⁻¹ acetic acid

Acetic acid and glucose consumption by seven strains tested in grape must (Viosinho)

White wine refermentation with must of Viosinho variety							
(Limited-aerobic conditions)							
	48 hours of refermentation	264 hours of refermentation					
Yeast	Acetic acid (%) consumption Acetic acid (%) consumption						
strains	Glucose (%) consumption	Glucose (%) consumption					
43C	29.6 ± 2.61 ^a	37.4 ± 6.90 ^a					
	$0.0\pm0.0~^a$	99.5 ± 0.83^{a}					
44C	$20.6 \pm 0.50^{\rm b}$	(Increased) 10.4 ± 3.01 ^c					
	$0.0\pm0.0~^{\mathrm{a}}$	35.1 ± 1.36 b					
45C	$28.1 \pm 1.33^{a, c}$	$41.7 \pm 1.51^{a, b}$					
	0.0 ± 0.0 ^a	$100.0 \pm 0.0^{\text{ a}}$					
S26	30.7 ± 1.33^{a}	47.0 ± 1.51 ^b					
	18.0 ± 1.11 °	$100.0 \pm 0.0^{\text{ a}}$					
S29	$23.3 \pm 1.33^{\text{ b, c}}$	$42.6 \pm 1.33^{a, B}$					
	16.8 ± 1.15 b	100.0 ± 1.0^{a}					
S30	28.7 ± 1.51^{a}	36.5 ± 1.51^{a}					
	$0.0\pm0.0~^{\rm a}$	98.0 ± 0.66 a					
ISA 1307	28.7 ± 1.51^{a}	$27.8 \pm 0.00^{\text{ d}}$					
	$0.0\pm~0.0^{~a}$	79.0 ± 1.60 ^b					

Acetic acid and glucose consumption by two strains tested in red grape must or in marc

		Red wine referr	mentation with must	Red wine refermentation with marc					
	48 h		264	h	72 1	h	96 h		
	Limited-aerobic conditions plus one hour/day micro-oxygenation	Limited-aerobic conditions	Limited-aerobic conditions plus one hour/day micro-oxygenation	Limited-aerobic conditions	Limited-aerobic conditions plus one hour/day micro-oxygenation	Limited-aerobic conditions	Limited-aerobic conditions plus one hour/day micro-oxygenation	Limited-aerobic conditions	
Yeast	Acetic acid	Acetic acid	Acetic acid	Acetic acid	Acetic acid	Acetic acid	Acetic acid	Acetic acid	
strains	Glucose	Glucose	Glucose	Glucose	Glucose	Glucose	Glucose	Glucose	
	35.7 ± 1.57 ^a	37.5 ± 4.72 ^a	66.1 ± 6.30 ^b	62.5 ± 5.45 ^b	38.6 ± 3.15 ^a	41.2 ± 6.86 ^a	40.4 ± 4.17 ^a	39.5 ± 8.18 ^a	
S26	$20.6 \pm 4.33~^a$	$14.6 \pm 6.51^{\text{ a}}$	$100.0 \pm 0.0^{\ b}$	$100.0 \pm 0.0^{\ b}$	$100.0 \pm 0.0^{\ b}$	$100.0\pm0.0^{\ b}$	$100.0\pm0.0^{\ b}$	$100.0 \pm 0.0^{\ b}$	
S29	42.9 ± 5.68 a 25.8 ± 10.10 a	44.6 ± 12.30 a 23.8 ± 4.10 a	59.8 ± 7.22 b 100.0 ± 0.0 b	66.1 ± 9.58 b 100.0 ± 0.0 b	-	-	-	-	
		· · · · · · · · · · · · · · · · · · ·							

Characterisation of the wines obtained after deacidification processes

Conditions	Strains	Ethanol % (v/v)	pН	Acetic acid (g.l ⁻¹)	Titratable acidity (g.l ⁻¹)	Total SO ₂ (mg.l ⁻¹)	Free SO ₂ (mg.l ⁻¹)	
White wine								
Limited-aerobic	43C must	11.9±0.14	3.16 ± 0.01	0.72±0.08	7.13±0.95	36.1±3.61	0.80 ± 0.68	
	S26 must	12.1 ± 0.04	3.19 ± 0.01	0.61±0.02	6.62 ± 0.19	33.3±1.08	0.48 ± 0.23	
	45C must	11.9±0.11	3.14 ± 0.01	0.67 ± 0.02	6.73 ± 0.24	39.4 ± 2.54	0.91 ± 0.98	
	S30 must	11.8 ± 0.04	3.16 ± 0.01	0.73 ± 0.02	7.11 ± 0.18	37.9 ± 3.26	0.64 ± 0.45	
	44C must	8.0 ± 5.59	3.08 ± 0.03	1.40 ± 0.20	8.63 ± 1.59	4.6 ± 3.53	1.14±1.56	
	ISA 1307 must	11.4 ± 0.11	3.17 ± 0.01	0.83 ± 0.02	6.75 ± 0.08	38.4 ± 3.26	0.32 ± 0.98	
	S29 must	11.9 ± 0.04	3.19 ± 0.01	0.66 ± 0.08	6.62 ± 0.04	34.3 ± 2.54	0.33 ± 0.23	
Red wine								
Limited-aerobic	S26 must	11.8 ± 0.2	3.29 ± 0.02	0.42 ± 0.06	8.35 ± 0.61	115.01±4.86	0.0 ± 0.0	
	S29 must	11.3 ± 0.1	3.31 ± 0.03	0.38 ± 0.11	7.80 ± 0.27	130.71±17.05	0.0 ± 0.0	
	S26 marc	12.1±0.6	3.44 ± 0.03	0.69 ± 0.09	7.46 ± 0.16	46.93±2.96	0.0 ± 0.0	
Micro-oxyg	S26 must	11.1±0.3	3.29 ± 0.05	0.38 ± 0.07	8.35 ± 0.17	105.22±15.57	0.0 ± 0.0	
	S29 must	11.0 ± 0.3	3.32 ± 0.05	0.45 ± 0.08	8.03 ± 0.40	102.57±2.24	0.0 ± 0.0	
	S26 marc	11.9±0.3	3.50 ± 0.03	0.68 ± 0.05	7.56 ± 0.49	56.32±7.13	0.0 ± 0.0	
			•					

Organoleptical evaluation

Trained panel of 5 judges

Other

atributes

The attributes were quantified using a six-point intensity scale

Average scores for appearance (\Box) , aroma (\diamondsuit) and taste (\triangle) attributes

SPME - GC-MS Analysis of the wines

Ongoing work: S26 cell immobilization in double layer alginate-chitosan beads

Double layer alginate-chitosan beads:

deacidification assays

Alginate 2% (w/v)

and chitosan 1% (w/v)

Alginate 2% (w/v)

Alginate 2%(w/v) and

chitosan 1.5% (w/v)

Acetic acid consumption and cell leakage after refermentation assays with entrapped S26 cells

		Alginate 2% (w/v) and chitosan 1% (w/v)						
	$4.0 \text{x} 10^6$		4.0×10^7		4.0×10^7		$8.0 \text{x} 10^7$	
Media	48h	72h	48h	72h	48h	72h	48h	72h
	Acetic acid%	Acetic acid%	Acetic acid%	Acetic acid%	Acetic acid%	Acetic acid%	Acetic acid%	Acetic acid%
	Cell ml ⁻¹	Cell ml ⁻¹	Cell ml ⁻¹	Cell ml ⁻¹	Cell ml ⁻¹	Cell ml ⁻¹	Cell ml ⁻¹	Cell ml ⁻¹
Glucose 130g.l ⁻¹ Acetic acid 1.1 g.l ⁻¹	21.0 ± 6.6	-	29.1 ± 4.4	-	30.2 ±4.2	-	-	-
Ethanol 4%(v/v)	$(35x10^5)$		$(15x10^6)$		$(26x10^3)$			
Glucose 50 g.l ⁻¹ Acetic acid 1.1 g.l ⁻¹ Ethanol 10%(v/v)	-	21.9 \pm 7.6 (40×10^3)		34.5 ± 5.3 (55×10^{6})) - (34.4 ± 7.8 $(55 \times 10^{3})^{*}$	-	-
Wine (1.10 g.l ⁻¹ sugars)		,						
Acetic acid 1.1 g.l ⁻¹ Ethanol 12.5%(v/v)	-	-	24.5 ± 5.2	29.6 ± 3.2	18.7 ± 1.2	22.1 ± 2.3	26.4 ± 1.55	29.1 ± 3.2
			$(35x10^5)$	$(20x10^6)$	$(44x10^2)^*$	$(35x10^3)^*$	$(56x10^2)$ *	$(67x10^3)^*$

^{*} Cell flocculation

SEM images: beads prior use

SEM images: beads after wine deacidification

Final Remarks

- Generally, the S. cerevisiae strains characterized herein are capable to remove acetic acid from acidic white or red wines during a refermentation process
 - *S. cerevisiae* strain S26 is the most efficient acid degrading strain in both refermentation processes but its efficiency is higher in red acidic wines;
 - Acetic acid removal efficiency was obtained for initial concentrations about two-fold higher (1.1 g l⁻¹) than the values proposed for a typical refermentation assay (0.6 g.l⁻¹);
 - Micro-oxygenation was not a key factor for acetic acid removal;
 - The refermented wines treated with micro-oxygenation revealed a vegetable character and mouth hardness in comparison to the more floral notes that predominated in wines obtained without micro-oxygenation;
 - Immobilized cells of S26 strain can decrease volatile acidity of wines with ethanol up to 12.5% and 1.1 g l⁻¹ of acetic acid;
 - Cell leakage is lower in beads with alginate-chitosan double layer beads.

Future perspectives

- Evaluate the capacity of entrapped cells of S. cerevisiae
 S26 and S29 to perform biological deacidification of wines with excessive acetic acid either directly or through a "remostagem" process at an industrial scale;
- Evaluate fermentative profiles and sensory properties of wines deacidified by Saccharomyces cerevisiae entrapped cells.

Acknowledgements

Universidade de Trás-os-Montes e Alto Douro

Arlete Faia

Virgílio Falco

Pedro Tavares

Universidade do Minho

Manuela Côrte-Real

Dorit Schuller