Centro de Biologia Molecular e Ambiental Universidade do Minho Vilela-Moura A. Schuller D. Mendes-Faia A. Côrte -Real M. THE EFFECT OF MICRO-OXYGENATION AND CELL IMMOBILIZATION ON THE REDUCTION OF EXCESSIVE VOLATILE **ACIDITY FROM WINES** ### An enological problem - Acetic acid is the main component of volatile acidity, and critical for wine quality; - This acid is mainly produced by bacterial spoilage and Botrytis cinerea infecting grapes; also formed by yeasts during alcoholic fermentation; - Above 0.8 g.l⁻¹, acetic acid has a detrimental organoleptical effect (acidic wine). ### Aims of the study #### To evaluate: - the decrease of volatile acidity from acidic wines by S. cerevisiae strains - the effect of micro-oxygenation on wine deacidification and aroma composition - the efficiency of removal acetic acid by immobilized s. cerevisiae S26 #### yeast strains tested in "remostagem" assays: ### "remostagem" process: white wine #### "remostagem" process: red wine #### Musts Initial volatile acidity 1.12 g.l⁻¹ acetic acid #### Marcs Initial volatile acidity 1.14 g.l⁻¹ acetic acid # Acetic acid and glucose consumption by seven strains tested in grape must (Viosinho) | White wine refermentation with must of Viosinho variety | | | | | | | | |---|---|--|--|--|--|--|--| | (Limited-aerobic conditions) | | | | | | | | | | 48 hours of refermentation | 264 hours of refermentation | | | | | | | Yeast | Acetic acid (%) consumption Acetic acid (%) consumption | | | | | | | | strains | Glucose (%) consumption | Glucose (%) consumption | | | | | | | 43C | 29.6 ± 2.61 ^a | 37.4 ± 6.90 ^a | | | | | | | | $0.0\pm0.0~^a$ | 99.5 ± 0.83^{a} | | | | | | | 44C | $20.6 \pm 0.50^{\rm b}$ | (Increased) 10.4 ± 3.01 ^c | | | | | | | | $0.0\pm0.0~^{\mathrm{a}}$ | 35.1 ± 1.36 b | | | | | | | 45C | $28.1 \pm 1.33^{a, c}$ | $41.7 \pm 1.51^{a, b}$ | | | | | | | | 0.0 ± 0.0 ^a | $100.0 \pm 0.0^{\text{ a}}$ | | | | | | | S26 | 30.7 ± 1.33^{a} | 47.0 ± 1.51 ^b | | | | | | | | 18.0 ± 1.11 ° | $100.0 \pm 0.0^{\text{ a}}$ | | | | | | | S29 | $23.3 \pm 1.33^{\text{ b, c}}$ | $42.6 \pm 1.33^{a, B}$ | | | | | | | | 16.8 ± 1.15 b | 100.0 ± 1.0^{a} | | | | | | | S30 | 28.7 ± 1.51^{a} | 36.5 ± 1.51^{a} | | | | | | | | $0.0\pm0.0~^{\rm a}$ | 98.0 ± 0.66 a | | | | | | | ISA 1307 | 28.7 ± 1.51^{a} | $27.8 \pm 0.00^{\text{ d}}$ | | | | | | | | $0.0\pm~0.0^{~a}$ | 79.0 ± 1.60 ^b | | | | | | # Acetic acid and glucose consumption by two strains tested in red grape must or in marc | | | Red wine referr | mentation with must | Red wine refermentation with marc | | | | | | |---------|---|--|---|--|---|--|---|-------------------------------|--| | | 48 h | | 264 | h | 72 1 | h | 96 h | | | | | Limited-aerobic
conditions
plus one hour/day
micro-oxygenation | Limited-aerobic conditions | Limited-aerobic
conditions
plus one hour/day
micro-oxygenation | Limited-aerobic conditions | Limited-aerobic
conditions
plus one hour/day
micro-oxygenation | Limited-aerobic conditions | Limited-aerobic
conditions
plus one hour/day
micro-oxygenation | Limited-aerobic
conditions | | | Yeast | Acetic acid | | strains | Glucose | | | 35.7 ± 1.57 ^a | 37.5 ± 4.72 ^a | 66.1 ± 6.30 ^b | 62.5 ± 5.45 ^b | 38.6 ± 3.15 ^a | 41.2 ± 6.86 ^a | 40.4 ± 4.17 ^a | 39.5 ± 8.18 ^a | | | S26 | $20.6 \pm 4.33~^a$ | $14.6 \pm 6.51^{\text{ a}}$ | $100.0 \pm 0.0^{\ b}$ | $100.0 \pm 0.0^{\ b}$ | $100.0 \pm 0.0^{\ b}$ | $100.0\pm0.0^{\ b}$ | $100.0\pm0.0^{\ b}$ | $100.0 \pm 0.0^{\ b}$ | | | S29 | 42.9 ± 5.68 a 25.8 ± 10.10 a | 44.6 ± 12.30 a 23.8 ± 4.10 a | 59.8 ± 7.22 b 100.0 ± 0.0 b | 66.1 ± 9.58 b 100.0 ± 0.0 b | - | - | - | - | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | # Characterisation of the wines obtained after deacidification processes | Conditions | Strains | Ethanol
% (v/v) | pН | Acetic acid (g.l ⁻¹) | Titratable acidity (g.l ⁻¹) | Total SO ₂ (mg.l ⁻¹) | Free SO ₂ (mg.l ⁻¹) | | |-----------------|---------------|--------------------|-----------------|----------------------------------|---|---|--|--| | White wine | | | | | | | | | | Limited-aerobic | 43C must | 11.9±0.14 | 3.16 ± 0.01 | 0.72±0.08 | 7.13±0.95 | 36.1±3.61 | 0.80 ± 0.68 | | | | S26 must | 12.1 ± 0.04 | 3.19 ± 0.01 | 0.61±0.02 | 6.62 ± 0.19 | 33.3±1.08 | 0.48 ± 0.23 | | | | 45C must | 11.9±0.11 | 3.14 ± 0.01 | 0.67 ± 0.02 | 6.73 ± 0.24 | 39.4 ± 2.54 | 0.91 ± 0.98 | | | | S30 must | 11.8 ± 0.04 | 3.16 ± 0.01 | 0.73 ± 0.02 | 7.11 ± 0.18 | 37.9 ± 3.26 | 0.64 ± 0.45 | | | | 44C must | 8.0 ± 5.59 | 3.08 ± 0.03 | 1.40 ± 0.20 | 8.63 ± 1.59 | 4.6 ± 3.53 | 1.14±1.56 | | | | ISA 1307 must | 11.4 ± 0.11 | 3.17 ± 0.01 | 0.83 ± 0.02 | 6.75 ± 0.08 | 38.4 ± 3.26 | 0.32 ± 0.98 | | | | S29 must | 11.9 ± 0.04 | 3.19 ± 0.01 | 0.66 ± 0.08 | 6.62 ± 0.04 | 34.3 ± 2.54 | 0.33 ± 0.23 | | | Red wine | | | | | | | | | | Limited-aerobic | S26 must | 11.8 ± 0.2 | 3.29 ± 0.02 | 0.42 ± 0.06 | 8.35 ± 0.61 | 115.01±4.86 | 0.0 ± 0.0 | | | | S29 must | 11.3 ± 0.1 | 3.31 ± 0.03 | 0.38 ± 0.11 | 7.80 ± 0.27 | 130.71±17.05 | 0.0 ± 0.0 | | | | S26 marc | 12.1±0.6 | 3.44 ± 0.03 | 0.69 ± 0.09 | 7.46 ± 0.16 | 46.93±2.96 | 0.0 ± 0.0 | | | | | | | | | | | | | Micro-oxyg | S26 must | 11.1±0.3 | 3.29 ± 0.05 | 0.38 ± 0.07 | 8.35 ± 0.17 | 105.22±15.57 | 0.0 ± 0.0 | | | | S29 must | 11.0 ± 0.3 | 3.32 ± 0.05 | 0.45 ± 0.08 | 8.03 ± 0.40 | 102.57±2.24 | 0.0 ± 0.0 | | | | S26 marc | 11.9±0.3 | 3.50 ± 0.03 | 0.68 ± 0.05 | 7.56 ± 0.49 | 56.32±7.13 | 0.0 ± 0.0 | | | | | | • | | | | | | ### Organoleptical evaluation Trained panel of 5 judges Other atributes The attributes were quantified using a six-point intensity scale Average scores for appearance (\Box) , aroma (\diamondsuit) and taste (\triangle) attributes #### SPME - GC-MS Analysis of the wines # Ongoing work: S26 cell immobilization in double layer alginate-chitosan beads #### Double layer alginate-chitosan beads: deacidification assays Alginate 2% (w/v) and chitosan 1% (w/v) Alginate 2% (w/v) Alginate 2%(w/v) and chitosan 1.5% (w/v) # Acetic acid consumption and cell leakage after refermentation assays with entrapped S26 cells | | | Alginate 2% (w/v) and chitosan 1% (w/v) | | | | | | | |---|-----------------------|---|-----------------------|-------------------------------------|-----------------------|---|-----------------------|-----------------------| | | $4.0 \text{x} 10^6$ | | 4.0×10^7 | | 4.0×10^7 | | $8.0 \text{x} 10^7$ | | | Media | 48h | 72h | 48h | 72h | 48h | 72h | 48h | 72h | | | Acetic acid% | | Cell ml ⁻¹ | Glucose 130g.l ⁻¹ Acetic acid 1.1 g.l ⁻¹ | 21.0 ± 6.6 | - | 29.1 ± 4.4 | - | 30.2 ±4.2 | - | - | - | | Ethanol 4%(v/v) | $(35x10^5)$ | | $(15x10^6)$ | | $(26x10^3)$ | | | | | Glucose 50 g.l ⁻¹ Acetic acid 1.1 g.l ⁻¹ Ethanol 10%(v/v) | - | 21.9 \pm 7.6 (40×10^3) | | 34.5 ± 5.3 (55×10^{6}) |) - (| 34.4 ± 7.8 $(55 \times 10^{3})^{*}$ | - | - | | Wine (1.10 g.l ⁻¹ sugars) | | , | | | | | | | | Acetic acid 1.1 g.l ⁻¹ Ethanol 12.5%(v/v) | - | - | 24.5 ± 5.2 | 29.6 ± 3.2 | 18.7 ± 1.2 | 22.1 ± 2.3 | 26.4 ± 1.55 | 29.1 ± 3.2 | | | | | $(35x10^5)$ | $(20x10^6)$ | $(44x10^2)^*$ | $(35x10^3)^*$ | $(56x10^2)$ * | $(67x10^3)^*$ | ^{*} Cell flocculation ## SEM images: beads prior use ### SEM images: beads after wine deacidification #### **Final Remarks** - Generally, the S. cerevisiae strains characterized herein are capable to remove acetic acid from acidic white or red wines during a refermentation process - *S. cerevisiae* strain S26 is the most efficient acid degrading strain in both refermentation processes but its efficiency is higher in red acidic wines; - Acetic acid removal efficiency was obtained for initial concentrations about two-fold higher (1.1 g l⁻¹) than the values proposed for a typical refermentation assay (0.6 g.l⁻¹); - Micro-oxygenation was not a key factor for acetic acid removal; - The refermented wines treated with micro-oxygenation revealed a vegetable character and mouth hardness in comparison to the more floral notes that predominated in wines obtained without micro-oxygenation; - Immobilized cells of S26 strain can decrease volatile acidity of wines with ethanol up to 12.5% and 1.1 g l⁻¹ of acetic acid; - Cell leakage is lower in beads with alginate-chitosan double layer beads. ## Future perspectives - Evaluate the capacity of entrapped cells of S. cerevisiae S26 and S29 to perform biological deacidification of wines with excessive acetic acid either directly or through a "remostagem" process at an industrial scale; - Evaluate fermentative profiles and sensory properties of wines deacidified by Saccharomyces cerevisiae entrapped cells. ## Acknowledgements Universidade de Trás-os-Montes e Alto Douro Arlete Faia Virgílio Falco **Pedro Tavares** Universidade do Minho Manuela Côrte-Real **Dorit Schuller**