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Aceito o desafio. 
Que poeta se nega 
A um aceno do acaso? 
Tenho o prazo 
Acabado, 
O que vier é ganho. 
Na lonjura 
Da última aventura 
É que a alma revela o seu tamanho. 
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Abstract 

Growing evidence implicates aberrant lipid signaling in Alzheimer‟s disease (AD). While phospholipases 

A2 and C have been recently shown to mediate key actions of amyloid β-peptide (Aβ) through a 

dysregulation of arachidonic acid and phosphatidylinositol-4,5-bisphosphate metabolism, respectively, 

the role of phospholipase D (PLD) has so far remained elusive. PLD produces phosphatidic acid (PA), a 

bioactive lipid involved in multiple aspects of cell physiology, including signaling and membrane 

trafficking processes. Here we show that oligomeric Aβ enhances PLD activity in cultured neurons and 

that this stimulatory effect does not occur upon ablation of PLD2 via gene targeting. Aβ fails to 

suppress long-term potentiation in PLD2-deficient hippocampal slices, suggesting that PLD2 is required 

for the synaptotoxic action of this peptide. In vivo PLD activity, as assessed by detection of 

phosphatidylethanol levels using mass spectrometry (MS) following ethanol injection, is also increased 

in the brain of a transgenic mouse model of AD (SwAPP). Furthermore, Pld2 ablation rescues memory 

deficits and confers synaptic protection in SwAPP mice despite a significant Aβ load. MS-based lipid 

analysis of Pld2 mutant brains in the presence or absence of the SwAPP transgene unmasks striking 

crosstalks between different PA species. This lipid analysis shows an exquisite acyl chain specificity and 

plasticity in the perturbation of PA metabolism, with the notable elevation in SwAPP brains of a pool of 

PA previously linked to degeneration. Collectively, our results point to specific molecular species of PA 

as key modulators of AD pathogenesis and identify PLD2 as a novel potential target for therapeutics. 

Moreover we expanded our MS analysis of the Pld2/SwAPP mice to other lipid groups, other than PA. 

We found that overexpression of the SwAPP transgene leads to significant increase in the ganglioside, 

GM3. Remarkably, Pld2 ablation leads to a decrease in GM3 in the non-transgenic background and to a 

rescue to normals in the SwAPP background. This lipidomic analysis uncovered interesting lipid 

signaling crosstalks that are modulated by PLD2 in the context of AD models. 
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Resumo 

Trabalhos anteriores indicam que distúrbios no metabolismo dos lípidos estão relacionados com a 

doença de Alzheimer (AD). Enquanto que as fosfolipases A2 e C foram demonstradas como 

mediadoras das acções do péptido, amilóide beta (Aβ), através da desregulação do metabolismo do 

ácido araquidónico e fosfoinositol-4,5-bifosfato, respectivamente, o papel da fosfolipase D (PLD) 

permanence por esclarecer. A PLD produz ácido fosfatídico (PA), um lípido envolvido em múltiplos 

aspectos da fisiologia cellular, como vias de sinalização e tráfico membranar. Neste trabalho, 

mostramos que oligómeros de Aβ levam a um aumento da actividade da PLD em culturas primárias 

de neurónios e que esse efeito estimulatório não ocorre após a delecção genética da PLD2.  

A Aβ perde o seu efeito suppressor de potenciação de longo termo em fatias de hipocampo de 

ratinhos Pld2--/-, sugerindo que a PLD2 é necessária para o efeito sinaptotóxico deste péptido. A 

actividade da PLD in vivo, medida através da detecção dos níveis de fosfatidiletanol, por espectrometria 

de massa (MS) após injecção de etanol, também está aumentada no cérebro de um modelo 

transgénico de AD (SwAPP). Para além disso a ablação da Pld2 recupera os défices de memória e leva 

a uma protecção sináptica em ratinhos SwAPP, apesar dos altos níveis de Aβ. Análise de lípidos por 

MS de cérebros de ratinhos mutantes para a Pld2 na presença ou ausência do transgene SwAPP 

revela haver uma intensa intraregulação nas espécies de PA. Esta análise lipídica mostra uma 

especificidade e plasticidade no modo como o metabolismo do PA está alterado, com uma marcada 

elevação nos cérebros SwAPP de uma espécie de PA previamente ligado a processos 

neurodegenerativos. Em suma, os nossos resultados apontam para espécies específicas de PA como 

moduladores da patogénese da AD e identificam a PLD2 como um novo alvo potencial terapêutico. 

Além disso, expandimos a nossa análise por MS para outros lípidos, para além de PA. Observámos 

que a sobreexpressão do transgene SwAPP leva a um aumento do gangliosídeo, GM3. A ablação 

genética de Pld2 leva a um decréscimo de GM3 nos animais não-transgénicos e a uma renormalização 
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dos valores nos animais SwAPP. Em conclusão, esta análise lipidómica revelou ligações mecanísticas 

interessantes reguladas pela PLD2, no contexto da AD. 
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Introduction 

 

1.1. Alzheimer’s Disease 

Alzheimer‟s disease (AD) is a neurodegenerative disease characterized clinically by progressive 

memory deficits, impaired cognitive function, altered behavior, and a decline in language function 

(Tanzi and Bertram 2005; Haass and Selkoe 2007; Querfurth and LaFerla 2010). The brain of AD 

patients displays cortical atrophy, loss of neurons and synapses, and typically presents at the 

anatomopathological analysis with plaques and neurofibrillary tangles (NFTs). While senile plaques are 

largely composed of aggregated amyloid β-peptide (Aβ) (Tanzi and Bertram 2005; Haass and Selkoe 

2007), tangles consist of pairs of ~10 nm filaments wound into helices, also called paired helical 

filaments, and contain hyperphosphorylated forms of the microtubule-associated protein tau (MAPT). 

Growing evidence indicates that there is crosstalk between Aβ and tau pathogenesis (Small and Duff 

2008). Genetic studies of families with AD have identified several genes, β-amyloid precursor protein 

(APP), presenilin 1 (PS1) and presenilin 2 (PS2), that are important in the pathogenesis of AD. APP is 

the precursor protein that after cleavage gives rise to Aβ, and the presenilins have been identified as 

components of the -secretase complex, which, alongside the β-secretase, are responsible for the 

generation of Aβ (Tanzi and Bertram 2005; Haass and Selkoe 2007) (figure 1). 

 Aβ is derived from the sequential cleavage of type I transmembrane protein APP by 

membrane-bound proteases, β- and -secretase (Selkoe, Podlisny et al. 1988; Landman and Kim 

2004; Wilquet and De Strooper 2004). Beta-site APP cleavage enzyme 1 (BACE1) has been identified 

as the major β-secretase activity that mediates the first cleavage of APP in the β-amyloidogenic 

pathway (Sinha and Lieberburg 1999; Haass 2004). BACE1-mediated cleavage leads to the release of 

the APP ectodomain sAPPβ into the extracellular space. The remaining COOH-terminal fragment (CTF) 

undergoes subsequent cleavage by -secretase to release Aβ and the APP intracellular COOH-terminal 

domain (AICD). The presenilins have been proposed to be the major catalytic component of the -

secretase complex, whose sequential intramembrane cleavage of APP produces a spectrum of Aβ 

peptides varying in length by a few amino acids at the COOH-terminus (Haass 2004; Landman and 

Kim 2004). The majority of Aβ normally ends at amino acid 40 (Aβ40), but the 42-amino acid variant 

(Aβ42) is more amyloidogenic, and has been hypothesized to nucleate senile plaque formation (Haass 

2004; Landman and Kim 2004; Haass and Selkoe 2007). In the past few years it has been shown that 

soluble oligomeric Aβ40/42 in various assembly states better correlate with synaptic malfunction and 
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cognitive impairment than neuritic plaques in vivo, consistent with mounting evidence that oligomeric 

Aβ is significantly synaptotoxic (Haass and Selkoe 2007) (figure 1). 

 As mentioned above, a number of links exist between Aβ and tau pathologies. Importantly, in 

an AD mouse model associated with a significant Aβ burden, the genetic ablation of tau was 

neuroprotective in the context of Aβ-induced deficits (Roberson, Scearce-Levie et al. 2007) (Ittner, Ke et 

al. 2010), supporting an intimate crosstalk between Aβ and tau. Even though, it is not clear whether 

the precise reasons for the protective role(s) of tau ablation are related directly to tau‟s pathogenic 

potential, it has been shown that the ablation of tau decreases the excitotoxic potential induced by Aβ, 

by decreasing the NMDAR/PSD95 interaction in a Fyn-dependent way (Ittner, Ke et al. 2010). Overall, 

this relationship between the two major pathogenic AD hallmarks remains under intense study (Small 

and Duff 2008). Nevertheless, development of an improved understanding of tau-related pathology may 

inform not only our knowledge of Aβ-related dysfunction in AD but the illness as a whole. While no 

familial genetic studies have shown a direct cause effect for tau mutations in AD, mutations in the 

MAPT gene were shown to cause a distinct neurodegenerative disorder, frontal temporal dementia, 

which is not associated with neuritic plaques. There is a single MAPT gene, which, through alternative 

splicing, can lead to the expression of six different isoforms in the human brain. MAP tau has a well-

established known function of stabilizing microtubules. The microtubule-binding capacity of tau is 

known to be regulated by post-translational modifications. The most well established process is 

phosphorylation, mediated by a number of kinases including glygogen synthase kinase 3 (GSK3), 

cyclin-dependent kinase 5 (CDK5) and microtubule-affinity-regulating kinase (MARK). The formation of 

NFTs is thought to be a sequential process that starts with impaired tau phosphorylation, detachment 

of tau from microtubules, accumulation of misfolded tau, tau aggregation in pretangles, formation of 

paired helical filaments and finally NFTs (Ballatore, Lee et al. 2007).  
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Figure 1. After Aβ is produced from the sequential cleavage of APP, if not cleared, it can be 

aggregated into oligomers, fibrils and plaques. It has been proposed that the Aβ oligomers are toxic 

species that can lead to neuronal dysfunction. PHF – paired helical filaments, AD – Alzheimer Disease. 

 

1.2. Phospholipids and Alzheimer’s Disease 

Lipid-mediated signaling regulates a plethora of physiological processes, including multiple aspects of 

brain function. Dysregulation of lipid pathways has been involved in a growing number of 

neurodegenerative disorders. While much attention has been given to the sterol link to AD (Puglielli, 

Tanzi et al. 2003), growing evidence, suggests that other classes of lipids, such as phospholipids, 

either mediate or modulate key pathological processes associated with AD (Landman, Jeong et al. 

2006; Berman, Dall'Armi et al. 2008; Sanchez-Mejia, Newman et al. 2008).  

 The interaction of both tau and Aβ with cellular and artificial membranes has been extensively 

investigated. Given direct binding of tau to membrane phospholipids, it was hypothesized that this 

interaction may be relevant for the physiological function of tau as well as AD pathogenesis (Baudier 

and Cole 1987). Similarly, Aβ can directly alter artificial lipid bilayers by forming pores that are 

permeable to various ions (Arispe, Rojas et al. 1993). More recently, after the discovery of the 

synaptotoxic properties of soluble Aβ oligomers, studies showed that these oligomers destabilize 

membranes and trigger Ca2+ influxes through unknown mechanisms (Demuro, Mina et al. 2005). In 



6 

 

part reflecting the pathophysiological relevance of oligomer-induced Ca2+ dyshomeostasis, acute and 

chronic treatments of neurons with soluble oligomers of Aβ were shown to disrupt the metabolism of 

phosphoinositol-4,5-bisphosphate [PI(4,5)P2] in a phenomenon requiring both extracellular Ca2+and PLC 

activity (Berman, Dall'Armi et al. 2008). Similarly, a recent study showed that dysregulation of the 

group IV A phospholipase A2 pathway mediates some aspects of synaptic and neurobehavioral 

dysfunction in a mouse model of AD (Sanchez-Mejia, Newman et al. 2008). These two studies provide 

further support to a prior hypothesis maintaining that phospholipases are highly dysregulated in AD 

(Farooqui, Rapoport et al. 1997).  

 Given the body of evidence presented above demonstrating the importance of phospholipids 

and AD, development of an improved understanding of phospholipid signaling is essential. Increasing 

evidence (see below) has pointed to one enzyme family especially in regulating biosynthesis and 

metabolism of phospholipids: phospholipase D (PLD). We conducted this work addressing the 

hypothesis that in AD there is an overall dysfunction of phospholipases. 

 

1.3. Phospholipase D – Structure, Function and Localization 

In the last two decades the purification (Wang, Dyer et al. 1993) and cloning (Wang, Xu et al. 1994) of 

PLD in plants boosted the follow-up studies in mammals with the cloning of two PLD isozymes, PLD1 

(Hammond, Altshuller et al. 1995) and PLD2 (Colley, Sung et al. 1997; Kodaki and Yamashita 1997). 

In mammals there are three isozymes of PLD: PLD1, PLD2 and the recently-identified mitochondrion-

associated mitoPLD (Jenkins and Frohman 2005; Choi, Huang et al. 2006; Donaldson 2009). The 

majority of studies have so far focused on PLD1 and PLD2 (figure 2A), which share: (i) two HxKxxxxD 

(HKD) motifs that are essential for catalysis; (ii) a phox (PX) consensus sequence and (iii) a pleckstrin 

homology (PH) domain, which are phosphoinositide-binding modules that are required for proper 

targeting of PLD; and (iv) a PIP2-binding site, which is fundamental for the enzymatic activity. However, 

PLD1 differs from PLD2 by the presence of a loop region, which has been proposed to function as a 

negative regulatory element for catalysis (figure 2A) (Jenkins and Frohman 2005). In the presence of 

water, both PLD1 and -2 hydrolyze phosphatidylcholine (PC) to generate phosphatidic acid (PA) and 

free choline. However in the presence of primary alcohols, such as ethanol and 1-butanol, PLD 

preferentially (1000-fold) uses these nucleophiles over water for the transphosphatidylation reaction, 

thus leading to the formation of non-naturally occurring phospholipids, phosphatidylethanol (PtdEtOH) 

or phosphatidylbutanol (PtdBut), respectively (Gustavsson 1995) (figure 2B). This atypical property of 
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the enzyme has been exploited in a myriad of studies either to block the production of bioactive lipid PA 

or to measure PLD activity in intact cells or tissues. 

 PA has unique bioactive properties and can modify both the physical and signalling properties 

of lipid bilayers. Structurally, it is composed of a three-carbon glycerol backbone, two fatty acid chains 

and a small phosphate headgroup, thus referred to as a „cone shape‟ lipid (i.e., a lipid with a small 

head groups relative to a large hydrophobic domain) (Jenkins and Frohman 2005; Cazzolli, Shemon et 

al. 2006). This property not only confers PA a higher affinity for negative curvature within lipid bilayers, 

but it also reduces the energy barrier for bending membranes, thus acting as a fusogenic lipid. 

Somewhat reminiscent of phosphoinositides, PA also plays an important role at the membrane-cytosol 

interface through a direct interaction with effector proteins, such as PIP kinases, mTOR, SNARE 

proteins and sphingosine kinase (Stace and Ktistakis 2006). However, unlike a variety of 

phosphoinositide-binding modules (e.g., pleckstrin homology or FYVE domains), PA-binding 

(poly)peptides generally do not consist of well defined three dimensional folds, but instead involve basic 

residues in unstructured parts of effector proteins. Additionally, PA can be metabolized to other lipids 

with potent bioactivity. For instance, PA can be converted to diacylglycerol (DAG) by PA phosphatases 

(Sciorra and Morris 2002; Reue 2009) and to lysophosphatidic acid (LPA), which has an inverted cone 

shape and thus prefers positive curvature. Finally, PA can serve as a precursor for other lipids in the 

biosynthetic pathway, where it is consumed for the generation of lipids such as PI via the CDP-DAG 

pathway. It should be noted that PLD is not the only source of PA, as it can be produced by DAG 

kinases, LPA acid acyltransferase, mitoPLD and other enzymes in the biosynthetic pathway (Choi, 

Huang et al. 2006; Haucke and Di Paolo 2007) (figure 2C). However, the fatty acyl composition of PA 

pools varies, depending on the specific pathways mediating its production. For example, PLD-derived 

PA species harbor mainly saturated or monounsaturated fatty acids, rapidly giving rise to a pool of DAG 

with the same properties (i.e., a cone shape), although the negative charge of PA may confer distinct 

properties and allow for the binding to a different set of effector proteins compared to DAG. In contrast, 

the pool of DAG resulting from PI(4,5)P2 cleavage by PLC predominantly harbors polyunsaturated fatty 

acids, likely achieving different physiological functions (Pettitt, Martin et al. 1997; Pettitt, McDermott et 

al. 2001). 

 While PLD1 localizes to the Golgi complex, secretory granules and endosomes, PLD2 is 

concentrated at the plasma membrane, with smaller pools present in the Golgi apparatus, caveolae 

and in endosomes (Freyberg, Sweeney et al. 2001; Freyberg, Bourgoin et al. 2002; Freyberg, 

Siddhanta et al. 2003; Bader and Vitale 2009). In part consistent with their subcellular localization, 
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PLD1 has been implicated in the budding and fusion of trans-Golgi–derived secretory vesicles, whereas 

PLD2 mediates the internalization and recycling of a variety of receptors. Importantly, PLD1 

translocates to the plasma membrane upon various stimuli and follows the endosomal internalization 

route (Jenkins and Frohman 2005; Roth 2008; Donaldson 2009). 

  

 

 

Figure 3. PLD structure, PA metabolism and reactions catalyzed by PLD. (a) Structure of PLD 

isozymes. Structurally, the two isozymes differ by the presence of a loop domain in the PLD1 isozyme. 

(b) PA metabolism. Besides the PLD source, PA can be generated from other sources and further 

metabolized as represented in the figure. The dashed arrow represents the biosynthetic pathway. The 

enzymes catalyzing the respective reactions are shown in red. (c) PLD activity. In the presence of 

water, PLD produces PA. In the presence of primary alcohols, such as ethanol, PLD has a 1000-fold 

higher affinity for primary alcohols as nucleophiles, leading to a preferential generation of 

phosphatidylethanol (PEtOH). PLD, Phospholipase D; PC, phosphatydilcholine; PA, phosphatidic acid; 

LPA, lyso-PA; DAG, diacylglycerol; CDP-DAG, cytidine diphosphate-DAG; PLA2, phospholipase A2; 

LPAAT, LPA acyltransferase; PAP, PA phosphatase; DGK, DAG kinase; CDS, CDP-DAG synthase; 

mitoPLD, mito-phospholipase D. (adapted from (Oliveira and Di Paolo 2010)) 
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1.4. Lipids and Lipidomics 

Although genomic and proteomic studies are nowadays commonly used in research, the field of 

lipidomics is only now having increased attention, which was in part allowed by technological advances 

in liquid chromatography and mass spectrometry (Wenk 2005). Lipidomics studies allow the 

characterization of a vast array of lipid species from a given sample. For instance, as for genomics and 

proteomics, lipidomics studies allow the identification of potential pathways, in this case involving 

lipids, which are dysregulated in a certain disease, such as neurodegenerative disorders (Wenk 2005). 

In the case of AD, this approach is starting to be employed to identify new possible targets, using 

human and mouse model brain samples (Sanchez-Mejia, Newman et al. 2008) (Han 2010). 

Lipidomics can also be used to understand mechanistically the lipid alterations of a given alteration. 

 

1.5. Phospholipase D and Alzheimer’s disease 

Previously, some studies have addressed the link between PLD and AD. Kanfer et al using PEtOH 

production as a read-out for PLD activity in ethanol-incubated brain homogenates, found an increase in 

PLD activity in AD brain extracts relative to those from control subjects (Kanfer, Singh et al. 1996). 

Also, using cell culture models the impact of APP overexpression and extracellular Aβ applications on 

PLD activity was assessed. Overexpression of the neuronal isoform of human wild type APP in P19 

mouse embryonic cells caused an increase in PLD activity (Lee, Oh et al. 2001). Aβ application 

experiments were used as well with various peptide preparation types. In LA-N-2 cells, a neuroblastoma 

cell line, an increase in PLD activity was observed after incubating cells with Aβ25-35, a peptide 

sequence whose pathophysiological significance has been questioned (Singh, Mccartney et al. 1995). 

Additionally, the same group showed that indomethacin (a non-steroid anti-inflammatory drug), 

nordihydroguaiaretic acid (an anti-oxidant drug) and nicotine inhibited the increase in PLD activity 

produced by Aβ25-35 applications (Singh, Sorrentino et al. 1997; Singh, Sorrentino et al. 1998). 

Furthermore, alanine substitution for the amino acids on the position 29-34 of Aβ25-35 prevented the 

peptide from having an effect on PLD activity (Singh, Sato et al. 1997). Finally, pre-treatment with 

Aβ25-35 desensitized the cells, which did not exhibit a PLD activity increase in response to a new 

Aβ25-35 treatment, thus prompting the authors to suggest that Aβ25-35 might mediate its effects on 

PLD upon receptor binding (Singh, Sorrentino et al. 1998). Aβ1-40 also produced an increase in PLD 

activity in rat hippocampal primary cultures, but this effect was seen with high concentrations of Aβ 

aged at 37ºC (likely reflecting a requirement for some aggregated state of Aβ for this phenomenon to 
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occur) (Cox and Cohen 1997). The increase in PLD activity induced by Aβ correlated with increased 

release of cytosolic protein lactate dehydrogenase, suggesting it is associated with Aβ-induced toxicity 

(Cox and Cohen 1997). Besides neurons, Aβ1-42 used in the low micromolar range caused an 

increase in PLD activity in astrocytes and microglia in a process dependent upon formyl-peptide-

receptor-like 1 (FPRL1). Specifically, Aβ1-42 was internalized alongside the FPRL1 receptor and 

stimulated a downstream signaling pathway involving the phosphorylation of extracellular signal-

regulated kinase (ERK). Because both Aβ1-42 internalization and FPRL1-mediated signaling were 

abrogated by a primary alcohol, a role for PLD in this process was proposed (Brandenburg, Konrad et 

al. 2008). 

 While the above studies addressed the effects of Aβ on PLD, there were other groups that 

addressed the role of PLD on the trafficking of APP and its cleavage machinery. Because Aβ originates 

from the sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases, tremendous 

effort has been put into attempting to understand the molecular mechanisms regulating the subcellular 

localization and intracellular sorting of APP and its cleaving enzymes, all of which are transmembrane 

proteins or protein complexes. Generally, an increasingly popular hypothesis in the field is that 

perturbation of the trafficking of APP, BACE1 and γ-secretase complex [including its catalytic 

components, presenilins] may profoundly affect amyloidogenesis and thus impact AD pathogenesis 

(Small and Gandy 2006). While the bulk of the studies addressing the relationship between the γ-

secretase complex and APP focus on the APP processing, some evidence indicates that presenilin can 

also regulate the trafficking of APP independently of its catalytic activity. Specifically, TGN-derived 

secretory vesicles produced from PS1-deficient cells contain higher levels of APP, thus resulting in 

increased cell surface delivery of APP. The converse phenomenon was observed in cells expressing an 

FAD mutant version of PS1 (i.e., ΔE9), suggesting that these findings may be relevant for the 

pathogenesis of AD (Cai, Leem et al. 2003). Collectively, these results converged onto a transport 

pathway involving APP, PS and PLD1, although evidence for a bona fide crosstalk between these three 

molecules in the context of TGN-to-plasmalemma traffic emerged in subsequent studies.  

 Accordingly, PLD1 overexpression was shown to promote the formation of APP-containing 

secretory vesicles from TGN, thus mimicking the effect of PSEN1 nullizygosity (Cai, Zhong et al. 2006). 

However, primary alcohols failed to rescue this phenotype in PS1 knockout cells, suggesting that the 

increased biogenesis of APP-containing vesicles observed in PS1-deficient cells is PLD-independent. 

While these data suggested that WT PS1 and PLD1 may regulate the traffic of APP through 

independent pathways, there is a clear functional link between these two proteins in the FAD mutant 
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background (at least, for the PS1ΔE9 mutant). For instance, a subcellular fractionation experiment 

showed that expression of FAD PS1ΔE9 mutant in cells leads to an enrichment of PLD1 in the 

Golgi/TGN fraction at the expense of lighter fractions (which may in part represent endosomal 

structures) and that this redistribution was concomitant with a decrease in total PLD activity (Cai, 

Zhong et al. 2006). Importantly, overexpression of catalytically-active PLD1 (but not the lipase-dead 

mutant) was found to rescue the defect in the budding of APP-containing vesicles from the TGN as well 

in the cell surface delivery of APP induced by the PS1 ΔE9 (Cai, Zhong et al. 2006). Whether PLD1 

interacts with APP or not is a matter of debate as conflicting data were obtained in independent studies 

(Jin, Kim et al. 2006; Liu, Zhang et al. 2009). 

 While the aforementioned study highlights the effects of PLD1 on APP trafficking, Cai et al. also 

addressed the role of PLD1 in amyloidogenesis. First, it was shown that PLD1 (but not PLD2) physically 

interacts with the cytoplasmic loop region of PS1 and that through this binding PS1 mediates the 

recruitment of PLD1 to the Golgi complex. Furthermore, in N2a cells expressing the PS1 mutant ΔE9, 

overexpression of PLD1 decreased the levels of Aβ, whereas silencing PLD1 and expression of a lipase-

dead PLD1 mutant produced the converse effect. Interestingly, co-precipitation experiments showed 

that PLD1 regulates the assembly of the γ-secretase complex through a direct effect on PS1 (but not 

the other components of the complex: Pen-2, nicastrin and APH1), although this phenomenon appears 

to be independent of the lipase activity of PLD1 (Cai, Netzer et al. 2006). 

 Since PLD1 regulates the traffic of APP and that APP, in turn, may affect the transport of PS1, 

it was hypothesized that PLD1 could regulate the trafficking of PS1 indirectly, through APP. However, 

recently published evidence has suggested that PLD1 positively regulates the delivery of PS1 to the cell 

surface in an APP-independent fashion (Liu, Zhang et al. 2009). Indeed, analysis of PS1 localization in 

mouse embryonic fibroblasts (MEFs) lacking both APP and its related family member APP-like-protein 2 

(APLP2) (APP dKO) showed increased cell surface delivery of PS1. This phenomenon was mimicked by 

the overexpression of catalytically-active PLD1, but it also occurred in APPdKO cells, thus suggesting 

that it is independent of an effect of PLD1 on APP transport (Liu, Zhang et al. 2009).  

 In summary, there appears to be a significant crosstalk between PLD1, APP and PS1 with 

important implications for amyloidogenesis. However, it is unclear whether this crosstalk also occurs in 

vivo, which should be best addressed with genetic models. Importantly, PLD1 and PLD2 are likely to 

play distinct roles in AD pathogenesis, likely reflecting their differential subcellular localization, 

expression levels/profile, and regulation as well as their ability to control different aspects in the biology 

of the key proteins involved in AD. 
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1.6. Aims 

The main goal of this proposal is to understand the role of PLD2 in the pathogenesis of AD. The 

specific aims of this project are: 

1. To characterize the effects of Aβ on the PLD pathway. 

2. To test the effects of PLD2 ablation in an AD mouse model. 

3. To investigate the role of PLD2 in APP processing and Aβ generation. 
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Abstract 

Growing evidence implicates aberrant lipid signaling in Alzheimer‟s disease (AD). While phospholipases 

A2 and C have been recently shown to mediate key actions of amyloid β-peptide (Aβ) through a 

dysregulation of arachidonic acid and phosphatidylinositol-4,5-bisphosphate metabolism, respectively, 

the role of phospholipase D (PLD) has so far remained elusive. PLD produces phosphatidic acid (PA), a 

bioactive lipid involved in multiple aspects of cell physiology, including signaling and membrane 

trafficking processes. Here we show that oligomeric Aβ enhances PLD activity in cultured neurons and 

that this stimulatory effect does not occur upon ablation of PLD2 via gene targeting. Aβ fails to 

suppress long-term potentiation in PLD2-deficient hippocampal slices, suggesting that PLD2 is required 

for the synaptotoxic action of this peptide. In vivo PLD activity, as assessed by detection of 

phosphatidylethanol levels using mass spectrometry (MS) following ethanol injection, is also increased 

in the brain of a transgenic mouse model of AD (SwAPP). Furthermore, Pld2 ablation rescues memory 

deficits and confers synaptic protection in SwAPP mice despite a significant Aβ load. MS-based lipid 

analysis of Pld2 mutant brains in the presence or absence of the SwAPP transgene unmasks striking 

crosstalks between different PA species. This lipid analysis shows an exquisite acyl chain specificity and 

plasticity in the perturbation of PA metabolism, with the notable elevation in SwAPP brains of a pool of 

PA previously linked to degeneration. Collectively, our results point to specific molecular species of PA 

as key modulators of AD pathogenesis and identify PLD2 as a novel potential target for therapeutics. 
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Introduction 

Cerebral accumulation of amyloid beta (Aβ) is believed to mediate many aspects of Alzheimer‟s 

disease (AD)-associated pathogenesis. Aβ is produced by the sequential cleavage of the amyloid 

precursor protein (APP) by β- and γ-secretases. While Aβ40 is the predominant cleavage product, the 

longer peptide Aβ42 is more cytotoxic and aggregate-prone (Small and Gandy, 2006; Haass and 

Selkoe, 2007; Vassar et al., 2009; De Strooper et al., 2010). Although AD brains typically harbor senile 

plaques that consist of insoluble aggregates of Aβ, different assemblies of Aβ, including fibrils as well 

as soluble dimers, trimers and dodecamers, may differentially contribute to AD pathogenesis at various 

stages of this disorder (Lambert et al., 1998; Walsh et al., 2002; Haass and Selkoe, 2007). 

Importantly, elevation of soluble Aβ oligomers strongly correlates with cognitive decline, consistent with 

the synaptotoxic properties exhibited by these peptides in various systems (Haass and Selkoe, 2007). 

For instance, Aβ oligomers disrupt synaptic plasticity, the trafficking of glutamate receptors, dendritic 

spine dynamics and Ca2+ homeostasis (Demuro et al., 2005; Snyder et al., 2005; Hsieh et al., 2006; 

Haass and Selkoe, 2007; Shankar et al., 2007; Green and LaFerla, 2008). Importantly, recent work 

has suggested that Aβ oligomers may exert their effects upon binding to the cellular prion protein on 

the neuronal membranes (Lauren et al., 2009).  

 

 Mounting evidence indicates that Aβ perturbs the metabolism of intracellular signaling lipids and 

that this phenomenon contributes to the pathogenic actions of this peptide (Hartmann et al., 2007). In 

particular, work from our laboratory has shown that Aβ42 oligomers promote the hydrolysis of a major 

regulatory lipid phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] through a stimulation of the 

phospholipase C (PLC) pathway and that preventing PI(4,5)P2 deficiency protects against the synapse-

impairing actions of Aβ (Berman et al., 2008). Similarly, Aβ stimulates cytosolic phospholipase A2 

(cPLA2), thereby enhancing the levels of arachidonic acid, and reduction of the relevant PLA2 isoform 

by genetic means confers protection against the peptide (Sanchez-Mejia et al., 2008). Collectively, 

these studies suggest that phospholipases may be primary mediators of Aβ‟s action.  

 

 Phospholipase D (PLD), another family of phospholipases, has also been implicated in AD 

pathogenesis (Singh et al., 1995; Cai et al., 2006b; Brandenburg et al., 2008; Liu et al., 2009). PLD1 

and PLD2, which are differentially localized in cells, hydrolyze phosphatidylcholine (PC) into choline and 

a bioactive lipid, phosphatidic acid (PA) (Freyberg et al., 2003; Jenkins and Frohman, 2005; Roth, 

2008; Donaldson, 2009). This lipid regulates membrane dynamics and signaling processes through its 
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intrinsic physical properties (i.e., „cone shape‟) and interaction with effector proteins (Jenkins and 

Frohman, 2005; Stace and Ktistakis, 2006; Haucke and Di Paolo, 2007; Roth, 2008; Raghu et al., 

2009a). In the present study, we tested the involvement of PLD2 in AD pathogenesis and more 

specifically, in the synaptotoxic action of Aβ oligomers. We reasoned that PLD2 was likely to mediate 

the previously-reported increase in total PLD activity induced by Aβ, based on the predominant 

localization of this isozyme at the cell surface (Du et al., 2004), a major site of action for Aβ. We show 

that ablating PLD2 through genetic means blocks the synaptotoxic action of Aβ42 oligomers and 

rescues memory deficits in a transgenic model of AD independently of brain Aβ levels.  

  

Materials and Methods 

Cell culture. PC12 cells were maintained in Dulbecco‟s modified Eagle‟s medium with sodium pyruvate 

(Invitrogen) supplemented with 5% fetal bovine serum, 10% horse serum, glutamine (4 mM), penicillin 

(200 units/mL), streptomycin (200 μg/mL); cells were maintained at 37°C in 5% CO2. Twenty-four 

hours before transfection, PC12 cells were plated (at 50% confluence) on coverslips pre-coated with 

polylysine (20g/mL) for 1 hr at 37°C. Transfections of GFP-mouse PLD2 construct (kind gift of 

Michael Frohman, SUNY Stony Brook, New York), which was previously described (Du et al., 2004), 

were obtained using Lipofectamine 2000 (Invitrogen). Primary cultures from cortical neurons were 

generated from newborn wild-type mice. Briefly, cortices were dissected out, trypsinized for 30min, and 

then cortical cells dissociated with a Pasteur pipette and plated on poly-ornithine-coated 10mm dishes 

at a density of 25,000 cells/cm2 in Neurobasal-A medium containing 1mM kynurenic acid to reduce 

enhanced synaptic transmission due to the high densi

typically performed after 15 DIV, with 200nM concentration and with time duration of 4hours for 

primary neuronal cultures and 5, 30 and 60 minutes in PC12 cells. Ionomycin was used with 2μM 

concentration for 30 minutes. 

 

Peptide preparation. A oligomers were prepared as described previously (Dahlgren et al., 2002). 

Synthetic A (1-42) was purchased from American Peptide (Sunnyvale, CA) and stored at -20ºC. The 

vial containing the peptide was allowed to equilibrate to room temperature for at least 30 min before 

resuspension. In a fume hood the peptide was diluted to 1mM in 1,1,1,3,3,3-Hexafluoro-2-propanol 

(HFIP) by pipette mixing and immediately aliquoted in polypropylene microcentrifuge tubes. The 
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solution was vortexed briefly and allowed to evaporate in the fume hood for 2 hours. The resulting 

peptide films were dried in a Speed Vac for 10 minutes at 800xg and stored at -20ºC. Prior to use, the 

peptide film was resuspended to 1mM in dimethyl sulfoxide (DMSO) by pipette mixing followed by bath 

sonication for 10 minutes. The solution was aliquoted in polypropylene microcentrifuge tubes and 

stored at -20ºC. The peptide was used within two weeks of dilution in DMSO. Oligomeric forming 

conditions: the 1mM DMSO solution was diluted to 100 M in cold PBS, vortexed for 30 seconds, and 

incubated overnight at 4ºC (minimum incubation of 12 hours). Immediately before use, the A-PBS 

solution was further diluted in culture media to the required final concentration and vortexed briefly. 

This preparation contains a mixture of monomers, trimers and tetramers as well as traces of dimers 

and high molecular weight oligomers, as shown previously (Berman et al., 2008).  

 

Mouse strains and breeding strategy. The genetic background of the Pld2 mice is mixed (C57BL/6-

129svj). Pld2–/– females were crossed with Tg2576 males (Taconic- mixed background C57BL/6-

SJL/N), which express human APP carrying the double mutation K670N and M671L found in a 

Swedish family with early onset of Alzheimer‟s disease, under the regulation of the hamster prion 

protein promoter (Hsiao et al., 1996). From the F1 hybrid generation we used as breeders Pld2+/–/no tg 

females and Pld2+/–/SwAPP males. For all our animal studies we used littermate mice (or in some 

cases, mice sharing at least one parent) derived from the F2 generation. The survival rate of adult mice 

was >90% for all genotypes within the first 12 months of age (and thus the impact of Pld2 deletion on 

the survival of SwAPP mice was not investigated further). 

 

ELISA analysis. Brains were homogenized in 10 volumes of 50 mM Tris–HCl buffer, pH 7.6, containing 

250 mM sucrose and protease inhibitor cocktail (Sigma, St. Louis, MO). Soluble and total Aβ were 

extracted in 0.4% diethylamine (DEA) and 70% formic acid, respectively, as previously described 

(Schmidt et al., 2005). Levels of full-length Aβ 1–40 and 1–42 were quantified using antibodies 

donated by Centocor according to previously-published ELISA procedures (Schmidt et al., 2005). 

Murine Aβ was measured according to a previously-published procedure (Burns et al., 2003). 

 

Western Blot analysis. The DEA fraction of brain extracts from Pld2/SwAPP mutant mice was 

immunoblotted using a rabbit polyclonal antibody to the COOH terminus of PLD (kind gift of Dr. Sung 
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Ho Ryu, Pohang University of Science and Technology), rabbit polyclonal antibody to PLD1 (Cell 

Signaling), mouse monoclonal antibody to APP (6E10, Covance), mouse monoclonal antibody to 

PSD95 (6G6-1C9, Abcam), rabbit polyclonal Synaptophysin (G95, kind gift of Dr. Pietro De Camilli, Yale 

University) and a mouse monoclonal antibody to -tubulin (B-5-1-2, Sigma). Quantification was 

performed using ImageJ software. 

 

PLD activity. Ten day-old neurons were incubated with [3H] palmitic acid (2 µCi/ml) for approximately 5 

days to label cellular phospholipids. Following treatments with vehicle or oAβ42, neurons were 

incubated in the presence of 0.3% butanol for 30 min, which leads to the production and accumulation 

of [3H]phosphatidylbutanol via a PLD-specific transphosphatidylation reaction. Radiolabeled lipids, 

including phosphatidylbutanol, were isolated by solvent extraction and separated by thin layer 

chromatography. The total amount of [3H]phosphatidylbutanol is expressed as a percentage of total [3H]-

labeled lipids (Morris et al., 1997). 

 

Confocal microscopy. Analysis of GFP-PLD2 internalization. Twenty-four hours after transfection with a 

plasmid encoding GFP-PLD2, PC12 cells were incubated with vehicle or 200 nM oA42 for 5, 30 and 

60 minutes. Other treatments included 2 μM ionomycin (Sigma-Aldrich), 2 mM EGTA (company), 250 

nM U-73122 (Calbiochem) and 20 μM AACOCF3 (Calbiochem) for 30 min, as indicated in the figure 

legend. Cells were then washed in phosphate buffer and fixed with 4% paraformaldehyde. Confocal z-

stack images (0.5μm) of PC12 were obtained using Nikon EZ-C1.2.30 confocal microscope and an oil 

immersion objective (100x). Quantification of GFP intensity was calculated using the ImageJ software: 

for each cell in a given image, a line intensity profile across the cell was obtained. The relative decrease 

in plasma membrane localization was calculated as the ratio between the plasma membrane 

fluorescence intensity and the average cytosolic fluorescence intensity, as previously described 

(Berman et al., 2008). 

 

Electrophysiology. Transverse hippocampal slices (400 μm) were cut with a tissue chopper (EMS, PA) 

and maintained in an interface chamber at 29 °C for 90 min prior to recording, as previously reported 

(Puzzo et al., 2005). CA1 field-excitatory post-synaptic potentials (fEPSPs) were recorded by placing 

both the stimulating and the recording electrodes in CA1 stratum radiatum. Basal synaptic 
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transmission (BST) was evaluated either by plotting the stimulus voltages (V) against slopes of fEPSP, 

or by plotting the peak amplitude of the fiber volley against the slope of the fEPSP, to generate input-

output relations. During baseline recordings, responses were evoked at an intensity of approximately 

35% of the maximum evoked response LTP was induced using a θ-burst stimulation (4 pulses at 100 

Hz, with bursts repeated at 5 Hz and each tetanus including 3 ten-burst trains separated by 15 sec). 

oAβ42 was applied for 20 min prior to the θ-burst.  

 

Fear Conditioning. The mice‟s capacity for contextual and cued memory was tested as before (Paylor et 

al., 1994; LeDoux, 2000; Gong et al., 2006), with slight modifications. Briefly, mice were first exposed 

for 2 min to the context before the onset of a tone (a 30 s, 85 dB sound at 2800 Hz) serving as a 

conditioning stimulus (CS). In the last 2 s of the CS, mice received a 2 s, 0.50 mA foot shock 

(unconditioned stimulus, US) through the bars of the floor. Freezing, which is defined as a species-

specific defensive reaction characterized by lack of movement, associated with crouching posture was 

measured right after the end of the CS/US for 30 s using the Freezeview software (MED Associates 

Inc.). The contextual memory test was performed 24h later, by re-exposure of the mice to the same 

context and by measuring the proportion of freezing time during 5 min. To evaluate cued fear learning, 

24h after contextual testing, mice were placed into a novel context for 2 min (pre-CS test), followed by 

an exposure to the CS for 3 min (CS test), during which freezing was measured. No differences were 

found between the six genotypes in this control test (data not shown). For all the fear conditioning 

experiments, the conditioning chamber is located inside a sound-attenuating box (72 cm × 51 cm × 48 

cm). A clear Plexiglas window (2 cm × 12 cm × 20 cm) allows the researcher to digitally record the 

mouse performance with a camera placed on a tripod and connected to Freezeframe software (MED 

Associates Inc.). 

 

Radial Arm Water Maze. The test was performed as before (Trinchese et al., 2008) in a white tank filled 

with milky water, and containing stainless steel walls positioned to produce six arms, radiating from a 

central area. Spatial cues were presented on the walls of the testing room. At the end of one of the 

arms there was a clear 10 cm plexiglass submerged (1.5 cm) platform, which remained in the same 

location for every trial in one day, but was moved randomly each day. On each trial, the mouse started 

the task from a different randomly chosen arm. The mouse could not use long-term memory of the 

location of the platform on previous days, but had to rely on the short-term memory of its location in 
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the same day based on spatial cues. Each trial lasted 1 min and errors are counted each time the 

mouse entered the wrong arm with four paws, or needed more than 20 s to reach the platform. After 

each error, the mouse was gently pulled back to the start arm for that trial. After four consecutive trials, 

it was placed in its home cage for 30 min, and then administered a retention trial. Testing was 

considered complete when wild-type mice reached asymptomatic performance (below one error on 

trials four and five; 10 training days). Scores for each mouse on the last 3 days of testing were 

averaged and used for statistical analysis. All behavioral experiments were done blind to the genotype. 

Visible-platform tests to detect visual, motor or motivational impairments were performed in the same 

pool, but without arms and with the platform marked with a black flag, once the radial arm water-maze 

study was completed. Platform location was varied randomly to eliminate any contribution of external 

spatial cues. Four trials per day were given over 2 days. Each animal was allowed to swim for 1 min 

from a random location. Once the mouse reached the platform (or with help if it did not reach it on its 

own), it was allowed to rest there for 30 s. Failures to reach the platform are scored as 60 s. Data was 

recorded using a ceiling-mounted camera and analyzed with an HVS- 2020 video tracking system. 

 

In vivo PLD activity. Non-trangenic and SwAPP mice were injected intraperitoneally with 3g/kg ethanol. 

Mice were killed 1 hour post-injection. Forebrains were then removed from the mice and levels of 

phosphatidylethanol (PEtOH) produced via a PLD-specific transphosphatidylation reaction were 

measured in lipid extracts via mass spectrometry, as described below. 

  

Mass Spectrometry. Lipid extracts were prepared from mice forebrain using a modified Bligh and Dyer 

method and analyzed by LC-MS. Polar glycerophospholipids and sphingolipids were separated via a 

Luna silica column (3µm, 2mmx150mm; Phenomenex) with a solvent gradient of 100% 

chloroform/methanol/water/ammonia solution (90:9.5:0.5:0.32, by vol.) changing to 100% 

chloroform/methanol/water/ammonia solution (50:48:2:0.32, by vol.) over 40min (Pettitt et al., 

2001). Lipid species were measured using a triple quadrupole instrument ABI 4000 Q-Trap (Applied 

Biosystems, Foster City, CA) operated in multiple reactions monitoring mode (MRM). Both PA and 

PEtOH species were measured using MRM transition pair of parent ion m/z to fatty acyl chain m/z 

using instrument settings as described previously (Chan et al., 2008; Fei et al., 2008). PA levels were 

quantified by referencing to known amounts of spiked internal standard diC17-PA (Avanti Polar Lipids, 
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Alabaster, AL). PEtOH levels were referenced to spiked internal standard diC16-PEtOH (Avanti Polar 

Lipids), which was added in excess of endogenous levels of this species. 

 

Statistics. Statistical analysis was performed using two-tailed equal variance and Student‟s t test, unless 

indicated otherwise. All the experiments were performed in blind to the genotypes. 

 

Results 

Reduction in PLD2 levels blocks Aβ-induced PLD activation 

To begin to address the role of PLD in Aβ pathogenesis and to determine which of the two isoforms 

may be stimulated by Aβ, we tested whether oligomeric Aβ signaling alters the subcellular localization 

of either PLD1 or PLD2. Indeed, previous work from others has indicated that stimulation of these 

enzymes enhances their transport to and from the cell surface (Du et al., 2003; Laulagnier et al., 

2004). Pheochromocytoma cell line PC12 was transfected with constructs encoding either GFP-PLD1 

or GFP-PLD2, whose localization was analyzed after an acute treatment with 200nM Aβ42 oligomers 

(oAβ42). As expected (Du et al., 2004), in the absence of treatment or in the presence of vehicle, the 

fluorescence of GFP-PLD2 was concentrated at the plasma membrane (Fig.1A, B) while the 

fluorescence of GFP-PLD1 was more intracellular (data not shown), likely reflecting the predominant 

localization of this isoform in the Golgi complex as well as in secretory granules and endosomes 

(Jenkins and Frohman, 2005; Roth, 2008; Bader and Vitale, 2009). Incubation of PC12 cells with 

200nM oAβ42 for 5, 30, and 60 minutes did not produce an obvious effect in localization pattern of 

GFP-PLD1 (data not shown). On the other hand, while incubation of PC12 cells with oAβ42 did not 

significantly affect the localization of GFP-PLD2 after 5 min, it triggered a partial internalization of this 

probe after 30 and 60 min (Fig.1A, B). This effect was mimicked by a treatment with 2 μM ionomycin, 

a Ca2+ ionophore and a known PLD2 activator (Kim et al., 1999), and it was blocked by pre-incubation 

with 2mM EGTA, an extracellular Ca2+ chelator, indicating that the oAβ42 effect on PLD2 is Ca2+-

dependent (Fig. 1C). Based on previous work showing an activation of both the PLC and cPLA2 

pathways downstream of Aβ (Kanfer et al., 1998; Kriem et al., 2005; Berman et al., 2008; Sanchez-

Mejia et al., 2008; Oliveira and Di Paolo, 2010), we tested whether Aβ-induced GFP-PLD2 

relocalization was dependent upon PLC or cPLA2 using pharmacological inhibitors (i.e., U-73122 and 

AACOCF3, resp.). While the PLC inhibitor had no effect on the localization of GFP-PLD2, the cPLA2 

inhibitor blocked the relocalization of GFP-PLD2 in response to oAβ42, suggesting that this 

phenomenon is independent or upstream of PLC but likely downstream of cPLA2 (Fig. 1D).  
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To test whether PLD2 mediates cytotoxic actions of Aβ oligomers, we developed a mouse 

genetic model lacking PLD2 (Suppl. Fig. 1A,B). Mutant mice do not exhibit any overt phenotype. 

Western blot analysis using specific antibodies showed that the PLD2 immunoreactivity is absent and 

approximately decreased by 50% in adult brain tissue derived from Pld2–/– and Pld2+/– mice, respectively 

(Fig. 6A). In order to confirm that PLD2 ablation produces a significant decrease in total PLD activity in 

brain tissue, we developed an in vivo PLD activity assay relying on the i.p. injection of adult mice with 

ethanol and measurement of phosphatidylethanol (PEtOH) (i.e., the product of PLD) one hour post-

injection in the adult brain of Pld2+/+ and Pld2–/– mice using liquid chromatography-mass spectrometry 

(LC-MS) (Pettitt et al., 2001; Chan et al., 2008). We found a 40% decrease of PEtOH levels in the brain 

of Pld2–/– mice (Supp. Fig. 1C), thus indicating that PLD2 contributes a significant fraction of total PLD 

activity in the adult brain (with the remainder likely accounted for by PLD1).  

 

 To begin to determine the role of PLD2 in the Aβ signaling pathway, we tested whether the 

oligomeric peptide preparation used in this study (oAβ42) enhances total PLD activity in primary 

cortical neurons. Indeed, previous work from others had shown that treatment of neuronal cell lines 

with micromolar concentrations of Aβ25-35 increases PLD activity (Singh et al., 1995; Kanfer et al., 

1998; Singh et al., 1998; Oliveira and Di Paolo, 2010). Here, total PLD activity was analyzed in 

cultured neurons following metabolic labeling with [3H]-myristic acid in the presence of low 

concentrations of 1-butanol and quantification of PLD‟s transphosphatidylation product, 

phosphatidylbutanol (Fig. 2). In the absence of Aβ oligomer treatment, basal PLD activity was 

significantly decreased by 3011% and 7413% in Pld2+/– and Pld2–/– neurons, respectively. 

Remarkably, oAβ42 application led to a ~2-fold increase in total PLD activity in Pld2+/+ neurons (Fig. 2), 

an effect comparable to that obtained with 2μM ionomycin (i.e., a 9211% increase, n=6, p < 0.001). 

However, oAβ42 failed to increase this activity in Pld2+/– as well as in Pld2–/– neurons (Fig. 2), indicating 

that the PLD2 isoform is involved in the Aβ signaling cascade. 

 

 

Ablation of PLD2 blocks the suppressive effect of Aβ oligomers on LTP. 

If the activation of PLD is necessary for oAβ42-induced synaptic dysfunction, the ablation of Pld2 may 

confer a resistance against the peptide with respect to neurophysiology. To test this, the effect of 

oAβ42 on synaptic transmission was assessed in adult hippocampal slices from Pld2+/+ and Pld2–/– 
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mice, where recordings were performed in the CA1 hippocampal region after stimulation of the 

Schaffer collateral pathway. First, basal neurotransmission (input-output) was investigated and found to 

be normal in Pld2–/– slices in the absence of the peptide (Suppl. Fig. 2). Next, long-term potentiation 

(LTP) was induced by a tetanic stimulation after exposing slices from the two genotypes to 200nM 

oAβ42 or vehicle for 20 minutes. LTP in Pld2+/+ slices was comparable to that obtained in Pld2–/– slices 

in the presence of vehicle (Fig. 3). However, while oAβ42 partially impaired LTP in Pld2+/+ control 

slices, as reported before (Lambert et al., 1998; Vitolo et al., 2002; Haass and Selkoe, 2007), the 

effect of this crude oligomer preparation on LTP was strongly suppressed in Pld2–/– slices (Fig. 3), 

suggesting that the ablation of PLD2 prevents Aβ42 oligomers from exerting their synaptotoxicity. 

 

 

PLD activity is increased in the brain of a transgenic model of AD. 

To understand the in vivo relevance of the PLD pathway in an AD model, we subjected the transgenic 

line Tg2576, which expresses the Swedish APP (SwAPP) mutant (Hsiao et al., 1996) to acute ethanol 

injections, so as to conduct in vivo measurements of PLD activity as described above. We used aged 

mice (i.e., 14 month-old) for these studies, because Aβ levels are known to increase in an age-

dependent fashion in the forebrain of these animals, thus leading to well-established cognitive deficits 

(Hsiao et al., 1996). We found that total PEtOH levels are increased by 2511% (n=6, p < 0.05) in the 

forebrain of SwAPP mice relative to controls, indicating an overall enhancement of PLD activity in 

mutant animals. More specifically, there was a significant increase in a subset of molecular species of 

PEtOH (32:1, 34:2, 34:1 and 34:1) and an overall trend for an increase in the other PEtOH species 

analyzed, with the exception of 38:2 (Fig. 4; see also Suppl. Table 1 for absolute levels of PEtOH 

species). This is to our knowledge the first in vivo evidence in support of a dysfunction of the PLD 

pathway in an AD mouse model. 

 

Reducing PLD2 levels ameliorates the memory deficits of a transgenic model of AD. 

Next, the impact of Pld2 ablation on learning behavior was assessed in the SwAPP mice. To this goal, 

mice of the three Pld2 genotypes (+/+, +/–, –/–) in the transgenic (SwAPP) or non-transgenic (no 

SwAPP) background were subjected to the contextual fear conditioning paradigm, which assesses a 

form of emotional learning that requires normal amygdala and hippocampus function. In this task, an 

innocuous conditioned stimulus (tone) elicits fear response after being associatively paired with an 

aversive unconditioned stimulus (footshock). The fear response is measured by the frequency of 
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freezing behavior, which is defined as a stereotyped motionless crouching posture. For these 

experiments, 5-6 month-old mice were utilized, because our preliminary studies had shown that SwAPP 

mice, in this age category, exhibit learning deficits, which are not associated with a significant neuritic 

plaque burden and thus likely reflect the effects of soluble Aβ assemblies. Mice from all six genotypes 

did not show any major differences in the baseline levels (pre-testing). As expected, the SwAPP mice, 

unlike non-transgenic mice, exhibited little contextual fear response 24h after the pre-test, thus 

denoting an impairment in contextual learning in the presence of a normal copy number for Pld2. 

However, transgenic mice lacking one (SwAPP/Pld2+/–) or two (SwAPP/Pld2–/–) copies of Pld2 

performed better than the SwAPP/Pld2+/+ mice (Fig. 5A), suggesting that genetic ablation of Pld2 is 

protective.  

 

 Next, mice were subjected to a second learning task, the radial arm water maze (RAWM) 

paradigm, which assesses spatial working memory. In this test, mice have to find a hidden platform, at 

the end of one of six arms, remaining in the same location for every trial in one day, but moved to 

another location from day to day. For each trial, mice start the task from a different randomly chosen 

arm. After four consecutive trials mice are returned to the cage and submitted to a fifth trial (retention 

test) 30 min later. While the SwAPP/Pld2+/+ mice showed impaired memory after 10 days of training 

(see also ref. (Trinchese et al., 2008)), mice lacking one (SwAPP/Pld2+/–) or two (SwAPP/Pld2–/–) copies 

of Pld2 perform similarly as animals that do not express SwAPP (Fig. 5B), indicating that, as in the fear 

conditioning test, reduction of PLD2 was protective for the deficits induced by overexpression of the 

transgene and increased Aβ load. The six groups of mice analyzed showed no overall major differences 

in the escape latency in the visible platform task, as well as in the swimming speed (Suppl. Fig. 3) 

indicating that vision, locomotor activity or motivation did not influence the outcome of the RAWM 

testing. 

 

Reducing PLD2 levels maintains synaptic protein levels in a transgenic model of AD. 

Since a reduction or ablation of PLD2 confers protection against the deleterious effects of oAβ42 on 

LTP (Fig. 3) and of SwAPP overexpression on learning and memory (Fig. 5), a likely possibility is that 

lack of PLD2 exerts a synapse-protecting effect. To test this, levels of pre- and post-synaptic proteins 

which are known to be affected by Aβ elevation and SwAPP overexpression [see for instance (Almeida 

et al., 2005)] were investigated. We found that ablation of either one or two copies of PLD2 does not 

affect the forebrain levels of synaptophysin (presynaptic marker) and PSD95 (postsynaptic marker) in 
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the absence of SwAPP transgene. However, while expression of the SwAPP transgene leads to a 

significant decrease in the levels of PSD95 and, to a lesser extent, synaptophysin, PLD2 ablation 

restored the levels of these two synaptic proteins to normal levels, with partial phenotypes observed for 

SwAPP/Pld2+/– mice (Fig. 6). These biochemical data are in agreement with the notion that PLD2 

ablation may confer synaptic protection in the context of the SwAPP background. Because synaptic 

protein levels are not altered by the Pld2 genotype (Fig. 6) and that the electrophysiology analysis 

shows a normal input-output relationship in mutant hippocampi in the absence of SwAPP transgene 

(Suppl. Fig. 2), we speculate that the protective mechanism likely does not involve a gross increase in 

the number of functional synapses in the mutant.  

 

Effect of the APP transgene expression and PLD2 ablation on brain PA metabolism.  

To gain insight into the molecular basis underlying AD pathogenesis as well as the protection conferred 

by PLD2 ablation, we focused our analysis on PA, the product of PLD. A mass spectrometry analysis of 

mutant animals was performed covering different species of PA. Total forebrain lipids were extracted 

from 11-12 month-old Pld2+/+ and Pld2–/– mice in the presence or absence of the SwAPP transgene and 

analyzed using LC-MS. Three classes of potential lipid alterations were investigated: (i) changes 

produced by the ablation of PLD2; (ii) changes occurring in response to the overexpression of SwAPP; 

and (iii) changes reflecting interactions between the SwAPP transgene and the Pld2 genotypes. Results 

are expressed either in the form of molar percentages in a table (Suppl. Table 2) or in the form of bar 

graph relative to control brains (Pld2+/+, no SwAPP) (Fig. 7). 

 

 The data shows that ablation of PLD2 significantly decreases the levels of two molecular 

species of PA based on the different fatty acyl composition (see legend), namely, PA 32:1 (~50 %) and 

38:4 (~40%), while a trend for a decrease (~20%) was observed for two other species, PA 34:1 and 

34:0 (Fig. 4B; Suppl. Table 2). Surprisingly, the PA 32:0 and 38:2 species were upregulated (by 25% 

and ~30%, resp.), suggesting the occurrence of compensatory mechanisms in Pld2 knockout brains. 

Indeed, the total amount of PA (i.e., sum of all species measured) was overall unaffected by the Pld2 

genotype, thus denoting a tremendous plasticity in the metabolism of PA. In agreement with this 

report‟s findings showing increased PLD activity in response to Aβ application in neuronal cultures (Fig. 

2), SwAPP overexpression leads to a selective 35% increase in a low abundance, yet, functionally 

critical (Raghu et al., 2009b) (see below) species of PA, PA 34:2, out of the eleven molecular species of 

PA analyzed. Although PA 34:2 is not affected by the Pld2 genotype in the absence of the transgene, it 
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no longer accumulates in the SwAPP forebrain upon ablation of PLD2, suggesting it may be a bona fide 

product of PLD2 upon SwAPP overexpression.  

 

Reduction in PLD2 levels does not alter APP or Aβ levels in SwAPP mice 

An important question is whether the rescue of the learning performance reflects a reduction in 

amyloidogenesis. Thus a biochemical analysis of the brains from 12 month-old SwAPP/Pld2 mice was 

conducted after the RAWM test. Western blot analysis showed that full-length APP levels are not 

affected by ablation of one or two copies of Pld2 (Fig. 8A,B). Importantly, no significant differences 

were found in the levels of soluble and insoluble human Aβ1-40 and Aβ1-42 (Fig. 8C,D) and total murine 

Aβ1-40 and Aβ1-42 (Suppl. Fig. 4) upon disruption of Pld2 gene, as measured by ELISA. Overall, ablation of 

PLD2 protected from the memory deficits in the SwAPP mice, and this protection was concomitant with 

a high Aβ burden further suggesting that PLD2 acts downstream of Aβ signalling in this AD model. 

 

Discussion 

Previous studies have implicated PLD in AD pathogenesis either as a mediator of APP trafficking, 

presenilin regulation or downstream target of Aβ (Kanfer et al., 1986; Kanfer et al., 1996; Singh et al., 

1997a; Singh et al., 1997b; Kanfer et al., 1998; Singh et al., 1998; Cai et al., 2006a; Cai et al., 

2006b; Jin et al., 2007; Brandenburg et al., 2008; Liu et al., 2009; Oliveira and Di Paolo, 2010). 

Importantly, an increase in total PLD activity was reported in AD brain homogenates, using an in vitro 

enzymatic assay (Kanfer et al., 1996). However, these studies have established neither the 

pathophysiological relevance of the PLD pathway in AD in vivo models nor the precise role of PLD2 in 

AD pathogenesis. For instance, cell culture studies have established a role for PLD1, but not PLD2, in 

the trafficking of both APP and PS1 with important implications for APP metabolism and Aβ secretion 

(Cai et al., 2006a; Cai et al., 2006b; Liu et al., 2009; Oliveira and Di Paolo, 2010). Our study suggests 

that PLD2, unlike PLD1, may be a downstream target of Aβ oligomers.  

 

Although the synaptotoxic actions of Aβ oligomers are beginning to be understood, the 

underlying molecular mechanisms are still unclear. This study provides experimental and genetic 

evidence demonstrating that PLD, and PLD2 in particular, is pathophysiologically relevant in the context 

of mouse models of AD and in the synaptotoxic actions of Aβ42 oligomers. Specifically, PLD2 ablation 
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confers protection against the synapse-impairing actions of Aβ42 in an ex vivo model of synaptic 

plasticity (Fig. 3) and against the cognitive deficits and synapse impairment induced by overexpression 

of SwAPP (Fig. 5 and 6). This protective effect occurs despite high Aβ levels (Fig. 8), as observed 

previously in various other AD mouse models (Roberson et al., 2007; Sanchez-Mejia et al., 2008; 

Dziewczapolski et al., 2009; Gimbel et al., 2010). Thus, our data is consistent with scenarios whereby 

PLD2 and its enzymatic product (i) mediate key signaling cascades downstream of Aβ; (ii) regulate the 

(cell surface) availability of putative Aβ receptors at synapses; or (iii) alter the capacity of Aβ to bind to 

its putative receptors. Because a pool of PLD isozymes is associated with lipid rafts and that Aβ has a 

high affinity for these lipid microdomains (Yanagisawa, 2007; Ariga et al., 2008; Hebbar et al., 2008), 

a tantalizing hypothesis is that PLD2 ablation may disrupt the raft-dependent signalling of Aβ. 

Importantly, ablation of one or two copies of PLD2 not only reduces basal PLD activity, but it also 

blocks oAβ42-induced increase in this activity. Therefore, the protective effect may reflect either 

changes in PLD activity or a combination of both. Finally, although our data suggest that neurons 

expressing reduced amounts of PLD2 may play a central role in this protective effect, a contribution of 

other cell types, such as glial cells, cannot be ruled out. 

  

 Importantly, our results expand on previous studies showing that impairment of signaling lipids 

plays a key role in AD pathogenesis in animal models. Specifically, Aβ oligomers have been shown to 

dysregulate the PLC and PLA2 pathways with major implications for the signaling downstream of 

PI(4,5)P2 and arachidonic acid in the brain (Singh et al., 1995; Berman et al., 2008; Sanchez-Mejia et 

al., 2008). This study provides further support to the hypothesis that phospholipase signaling may be 

globally altered in AD and that Aβ-induced Ca2+-dyshomeostasis through glutamate receptors or other 

mechanisms may be underlying these changes. Indeed, we find that oligomeric Aβ affects the 

localization of PLD2 in a manner dependent upon extracellular Ca2+, thus suggesting a role for Ca2+ 

entry in the activation of three phospholipase families, PLC, PLA2 and PLD2. Here, we show that 

pharmacological inhibition of PLC does not prevent Aβ-induced PLD2 relocalization, suggesting that 

PLD2 either lies upstream or acts independently of PLC in the Aβ signalling pathway (Fig. 1D). 

Moreover, we show that PLD2 relocalization induced by oAβ42 is blocked by inhibition of cPLA2 (Fig. 

1D), in agreement with other studies showing that PLD2 activation occurs downstream of Ca2+ entry 

and cPLA2 stimulation in a lymphocytic leukemia cell line (Kim et al., 1999). More careful molecular 
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genetic/genetic approaches should provide a definitive answer concerning the crosstalk between these 

enzymes and their precise role in this cytotoxic signaling pathway. 

 

 To understand the impact on PLD activity and PA metabolism of Pld2 ablation, SwAPP 

overexpression as well as the interaction between these two genetic manipulations, we have employed 

LC-MS. The in vivo PLD activity assay relies on the measurement of PEtOH, which is the product of 

PLD catalysis in the presence of ethanol. In contrast to PA, PEtOH is a specific product of PLD and is 

very stable, due to its poor consumption by lipases (Gustavsson, 1995). Importantly, changes in 

specific molecular species of PEtOH can be correlated with those in the corresponding species of PA, 

thus providing clues on the contribution of PLD to the synthesis of specific pools of PA. Results from 

our analysis suggest that a dysregulation of PLD function and PA metabolism may be associated with 

AD pathogenesis and that specific pools of PA may be affected. Indeed, while brains from SwAPP mice 

showed an overall increase in PEtOH levels and thus total PLD activity (Fig. 4A), a more detailed 

analysis of PEtOH species showed that only a subset of species, such as PEtOH 32:1, 34:2, 34:1 and 

34:1, were increased in mutant brain (Fig. 4B; Suppl. Table 1). A direct comparison of these PEtOH 

species with the corresponding molecular species of PA (Fig. 7) revealed a remarkable and specific 

increase in both PEtOH 34:2 and PA 34:2 in the brain of SwAPP mice, and since the latter increase 

was rescued by PLD2 ablation, we speculate that this PA species may be a bona fide product of a 

hyperactivated PLD2 in the SwAPP brain. Interestingly, PA 34:2 is the only molecular species of PA that 

was found to accumulate in Drosophila melanogaster photoreceptors upon overexpression of PLD out 

of seventeen species of PA measured (Raghu et al., 2009b). Consistent with a pathogenic role of this 

lipid, overexpression of the fly ortholog of PLD in the photoreceptors results in the degeneration of 

photoreceptors. Collectively, these data suggest that increased PLD levels/activity and the resulting 

accumulation of PA 34:2 may be detrimental to cell physiology, at least in some cell types. In contrast 

to PEtOH 34:2, other molecular species of PEtOH (i.e., 36:2, 36:1, 36:0, 38:3, 38:2 and 38:1) were 

not affected by SwAPP overexpression (Fig. 4B) and the corresponding PA species were equally 

insensitive to the presence of the transgene (Fig. 7). Altogether, this combined in vivo analysis of 

PEtOH and PA species has allowed for the implication of specific PLD products in AD. However, future 

studies will be required to determine whether these lipid products are simple AD biomarkers or key 

contributors to AD pathogenesis.   
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 In addition, our LC-MS analysis uncovered interesting changes as well as some plasticity in the 

metabolism of PA as a result of PLD2 manipulation. For instance, of the two molecular species that 

were significantly decreased in the Pld2–/– forebrains (in the absence of SwAPP transgene), PA 32:1 and 

38:4, only the former is believed to be a direct product of PLD (Hodgkin et al., 1998; Pettitt et al., 

2001). Indeed, the primary source of PA 38:4 is thought to originate from DAG kinase in the PLC 

pathway (Hodgkin et al., 1998). However, ethanol injections led to the production of PEtOH 38:4 in 

mouse brain (Fig. 4B; Suppl. Table 1), suggesting that the corresponding molecular species of PC can 

be a bona fide substrate for PLD in vivo. On the other hand, hints that compensatory changes in the 

metabolism of PA can occur as a result of PLD2 ablation are suggested by the fact that knocking out 

PLD2 causes a modest, but significant increase in brain PA 32:0, a phenomenon exacerbated by 

SwAPP overexpression (Fig. 7; Suppl. Table 2). Considering the complexity of PA metabolism, adaptive 

changes can indeed be expected, perhaps allowing PLD2-deficient cells, tissues and organisms to cope 

with the deficiency of specific pools of PA that are normally produced by PLD2. Such compensatory 

mechanisms in the metabolism of PA may not be as efficient when PLD is either overexpressed (Raghu 

et al., 2009b; Raghu et al., 2009a) or hyperactivated upon stress conditions, such as during Aβ 

elevation (this study). We speculate that PLD2 ablation, which results in a 40% decrease in brain-

associated total PLD activity (Suppl. Fig. 1C), may confer protection during Aβ elevation by correcting 

some of the aberrant features of PA metabolism occurring in this condition. 

 

 Finally, our study expands on previous work showing that blocking the action of Aβ may be 

beneficial for the treatment of AD [see e.g. ref.(Gong et al., 2006; Trinchese et al., 2008)]. Collectively, 

results presented in this study identify PLD2 as a new player in AD pathogenesis and, together with the 

lack of obvious detrimental phenotypes in Pld2–/– mice, suggest that PLD2 inhibitors may be valuable 

therapeutic agents.  
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LEGENDS TO FIGURES 

Figure 1. PLD2 lies in the Aβ signaling pathway. A, PC12 cells were transfected with a plasmid 

expressing GFP-PLD2. Representative examples show internalization of GFP-PLD2 after treatments with 

200 nM oAβ42. Pictures show the fluorescence of GFP-PLD2. B, oAβ42 (200nM) was applied to PC12 

cells in cultures for 5, 30 and 60 minutes and relocalization of GFP-PLD2 was quantified as PM/cytosol 

ratio (0min: n=31; 5min: n=29; 30min: n=32; 60min: n=30). C, Effect of 30 min treatments with 

ionomycin (2μM) and EGTA (2 mM) on the localization of GFP-PLD2 in the presence or absence 200 

nM oAβ42. The number of cells analyzed was as follows: vehicle (n = 37), oAβ42 (n = 33), ionomycin 

(n = 26), EGTA (n = 33), EGTA + oAβ42 (n = 38). D, Effect of 30 min treatments with pharmacological 

inhibitors of PLC (U73122, 250 nM) and PLA2 (AACOCF3, 20 M) on the localization of GFP-PLD2 in 

the presence or absence of 200 nM oAβ42. The number of cells analyzed was as follows: vehicle (n = 

97), oAβ42 (n = 81), U73122 (n = 41), U73122 + oAβ42 (n = 42), AACOCF3 (n = 50), AACOCF3 + 

oAβ42 (n = 45). For B-D, values denote means  SEM. *, p < 0.05; ***, p < 0.001).  

 

Figure 2. Ablation of PLD2 reduces basal PLD activity and abolishes the stimulatory effect of Aβ 

oligomers on PLD activity in cultured neurons. Primary cortical cultures were labeled with [3H]myristic 

acid at day 12, treatments were performed at day 15, lipids were subsequently extracted and the ratio 

[3H]PhosphatidylButanol counts/total counts was used as a measure of PLD activity. Four-hour 

treatments with vehicle or oAβ42 200nM were performed prior to PLD activity measurement in Pld2+/+ 

(n=19 and 12 for vehicle and oAβ42 treatment, resp.), Pld2+/– (n=7), and Pld2–/– (n=5 and 7, resp.). 

Values denote means  SEM. ns - non significant. * p < 0.05; ** p < 0.01; *** p < 0.001. 

 

Figure 3. LTP is unaffected by oAβ42 in Pld2–/– hippocampal slices. There was no difference in LTP 

between Pld2+/+ slices and Pld2–/– slices in the presence of vehicle (F1,17 = 0.01, p=0.9473). Although 

Pld2+/+ slices showed a reduction of LTP following bath application of 200 nM oAβ42 (F1,16 = 5.19, 

p=0.0367, relative to vehicle), LTP was not reduced by the peptide in Pld2–/– slices (F1,14 = 0.01, 

p=0.9185, relative to vehicle). fEPSP, CA1 field-excitatory postsynaptic potential. The bar represents 

the time of bath application of oAβ42. The three arrows represent the θ-burst stimulation used to 

induce potentiation. Animals were approximately 3 month-old. Values denote means  SEM (n=8-9). 
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Note: the vehicle traces for both Pld2 genotypes (i.e., black filled triangles and circles) are largely 

overlapping.  

 

Figure 4. PLD activity is enhanced in the forebrain of aged SwAPP mice. Mice, with and without 

SwAPP transgene, were injected with 3g/kg ethanol and their forebrain lipids were extracted and 

subjected to LC-MS analysis. The production and accumulation of PEtOH was used as a reporter of in 

vivo PLD activity. Relative individual PEtOH species measured in mutant mice compared to control 

mice. The nomenclature for phospholipids fatty acid composition are denoted as total chain 

length:number of unsaturated bonds. Values denote mean  SEM (n=6).  ** p < 0.01; *** p < 0.001. 

Absolute amounts of the various molecular species of PEtOH are presented in Supplementary Table 1. 

 

Figure 5. PLD2 ablation improves learning and memory in SwAPP mice. A, SwAPP mice (Tg2576) 

were crossed with Pld2 knockout mice and the resulting offspring [Pld2+/+/no tg (n=14); Pld2+/–/no tg 

(n=14); Pld2–/–/no tg (n=11); Pld2+/+/SwAPP (n=10); Pld2+/–/SwAPP (n=12); Pld2–/–/SwAPP (n=11)] 

were subjected to training for contextual fear memory which was assessed 24h after the foot shock, 

using 5-6 month old animals. *, p < 0.05 in Student‟s one-tail t-test. B, Twelve month-old mice were 

subjected to Radial Arm Water Maze (RAWM) testing. Errors were scored in the last 3 days of testing. 

The n value was 8 for all the genotypes, except for Pld2-/-/SwAPP (n=7) and Pld2+/+/SwAPP (n=6). **, p 

< 0.01. Values denote means  SEM.  

 

Figure 6. PLD2 ablation confers synaptic protection in the forebrain of SwAPP mice. After RAWM 

testing, forebrains from 12 month-old Pld2/SwAPP mice were processed for biochemical analysis. A, 

Protein levels were evaluated by Western blot analysis of PLD2, PLD1, PSD95, synaptophysin and 

tubulin (representative blots are shown). B, Quantification of PSD95 levels by densitometric analysis. C, 

Quantification of synaptophysin levels by densitometric analysis. Values denote means  SEM. n=4. * p 

< 0.05.  

 

Figure 7. Effect of SwAPP overexpression and Pld2 genotypes on PA levels. After RAWM testing, 

forebrains from 12 month-old Pld2/SwAPP mice were processed for lipid biochemical analysis. 

Forebrain lipids were extracted from Pld2+/+ and Pld2–/– mice with and without SwAPP transgene and 



49 

 

subjected to LC-MS analysis. Relative amounts of PA species measured in mutant mice compared to 

control mice (Pld2+/+, no SwAPP). Values denote mean  SEM (n=6-8). * p < 0.05; ** p < 0.01; *** p < 

0.001. The nomenclature for phospholipids fatty acid composition are denoted as total chain 

length:number of unsaturated bonds. Absolute amounts of the various molecular species of PA are 

presented in Supplementary Table 2. 

 

 

Figure 8. Effect of SwAPP overexpression and Pld2 genotypes on APP processing. A-D, After RAWM 

testing, forebrains from 12 month-old Pld2/SwAPP mice were processed for biochemical analysis. A, 

Protein levels were evaluated by Western blot analysis of APP and tubulin (representative blots are 

shown). B, Quantification of full-length human APP levels by densitometric analysis. Values denote 

means  SEM (n = 6). C,D, ELISA analysis of the levels of soluble Aβ40 and Aβ42 (C); insoluble Aβ40 

and Aβ42 (D). Values denote means  SEM. Pld2+/+/SwAPP (n=6); Pld2+/–/SwAPP (n=8); Pld2–/–

/SwAPP (n=7).  

 

LEGENDS TO SUPPLEMENTARY FIGURES 

Supplementary Table 1. PEtOH levels in forebrain extracts from non-transgenic and SwAPP mice 

(14 month old). The relative abundance of individual lipid species is expressed as mean value ± SEM 

(n = 6). PEtOH 32:0 was not quantified as it was used as a lipid standard for the MS analysis. The 

statistical differences in relevant sample groups were analyzed using Student‟s t-test and the p values 

of these analyses are given. 

 

Supplementary Table 2. PA levels in forebrain extracts from Pld2+/+ and Pld2-/- mice with and without 

SwAPP transgene. The relative abundance of individual lipid species are expressed as mean value ± 

SEM (n = 6-8). The statistical differences in relevant sample groups were analyzed using Student‟s t-

test and the p values of these analyses are given. 

 

Supplementary Figure 1. Generation of Pld2 knockout mice. A, Gene targeting strategy - an FRT-

NEO-FRT-loxP cassette was inserted downstream of exon 15 from the Pld2 gene at the SspI site and 

the second loxP sequence was subcloned upstream of exon 13 at the MfeI site. Exon 14 contains the 

sequence encoding the first “HKD” motif of PLD2, which is essential for the catalytic activity of PLD2. 
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Pld2Flox Neo/+ mice were bred with a “deleter” strain of mice expressing Cre recombinase (Rosa26) to 

eliminate exons 13-15 and produce Pld2+/– mice. Pld2+/– mice were then intercrossed to create Pld2+/+ 

and Pld2–/– mice. The genetic background of the animals is mixed (C57Bl6, 129SVJ). B, Southern blot 

analysis of genomic DNA that was extracted from the tail of mice derived from Pld2+/– mouse 

intercrosses (right panel). DNA was digested with PstI and hybridized with a [32P] labeled-probe located 

to the 5' region (outside the targeting vector) of the targeted genomic region. The autoradiogram shows 

the wild type (+/+), knockout (–/–) and heterozygous (+/–) genotypes. The sizes of the wild-type and 

mutant alleles are indicated (4.2 kb and 11.2 kb, respectively). C, Total PLD activity was assessed 

through the measurement of total PEtOH by LC-MS analysis in the brain of adult mice one hour post-

injection with 3g/Kg of EtOH. Values denote means  SEM (n = 8-9). ***, p < 0.001.  

 

Supplementary Figure 2. Basal synaptic transmission in Pld2+/+ and Pld2–/– hippocampal slices. CA1 

field-excitatory post-synaptic potentials (fEPSPs) were recorded by placing both the stimulating and the 

recording electrodes in CA1 stratum radiatum. Summary graph of field input/output relationships for 

Pld2+/+ (white squares) and Pld2–/– slices (black squares). Values denote means  SEM (n = 8-9).  

 

Supplementary Figure 3. Visible platform task in Pld2/SwAPP mice following RAWM testing in the 

same pool with no arms. A, Summary graph of the time needed to find the visible platform. B, 

Summary graph of the swimming speed during the task. Values denote means  SEM (n = 6-8).  

 

Supplementary Figure 4. Murine Aβ levels in the forebrain of 9 month-old Pld2+/+ and Pld2–/– mice. 

ELISA analysis of the levels of murine Aβ40 and Aβ42. Values denote means  SEM (n=7). 
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Abstract 

There is accumulating evidence that aberrant lipid signaling is implicated in Alzheimer’s 

disease (AD). Phospholipase D (PLD) is a key lipid modifying enzyme that produces 

phosphatidic acid (PA), a bioactive lipid involved in multiple aspects of cell physiology, 

including signaling and membrane trafficking processes. There are two main PLD 

isozymes, PLD1 and PLD2, that in spite of catalyzing the same reaction differ in their 

structure and cellular localization. While PLD1 was shown to be involved in the 

trafficking and processing of amyloid precursor protein (APP), PLD2 was recently 

demonstrated to modulate the downstream effects of amyloid beta (Aβ). Moreover, Pld2 

ablation in a transgenic mouse model of AD (SwAPP), was shown to rescue memory 

deficits and confer synaptic protection in SwAPP mice despite a significant Aβ load. 

Initial mass spectrometry (MS)-based lipid analysis of Pld2 mutant brains in the presence 

or absence of the SwAPP transgene unmasked striking crosstalks between different PA 

species. Here, we expand the MS-lipid analysis to a wide lipidomics study including other 

lipid classes than PA, such as phosphatidylcholine (PC), diacylglycerol (DAG), 

phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylethanolamine (PE), 

phosphatidylglycerol (PG), sphingomyelin (SM), ceramides (Cer), glucosyl-ceramide (Glu-

Cer), GM3 (a specific ganglioside class), cholesterol and cholesterol-ester. We found that 

overexpression of the SwAPP transgene leads to significant increase in the ganglioside, 

GM3. Remarkably, Pld2 ablation rescues GM3 levels to normals in the SwAPP 

background. This lipidomic analysis uncovered interesting lipid signaling crosstalks that 

are modulated by PLD2 in the context of AD models. 
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Introduction 

The accumulation of amyloid beta (Aβ) in the brain is one of the major hallmarks of Alzheimer‟s 

disease (AD) pathogenesis. Aβ is produced by the sequential cleavage of the amyloid precursor protein 

(APP) by β- and γ-secretases. There are two major forms of Aβ, Aβ40, the predominant cleavage 

product, and Aβ42, which is more cytotoxic and is more aggregate-prone (Small and Gandy 2006; 

Haass and Selkoe 2007; Vassar, Kovacs et al. 2009; De Strooper, Vassar et al. 2010). In the past few 

years the understanding of AD has advanced remarkably due to the development of animals models of 

the disease (Ashe and Zahs 2010). One of the major models used is the Tg2576 mouse line, which 

expresses human APP carrying the double mutation K670N and M671L found in a Swedish family with 

early onset of Alzheimer‟s disease (SwAPP), under the regulation of the hamster prion protein promoter 

(Hsiao, Chapman et al. 1996). This mouse model presents with age dependent accumulation of Aβ 

that correlates with memory behavioral deficits (Hsiao, Chapman et al. 1996). 

 

It has been shown that signaling lipids regulate various processes involved in physiologic brain 

functions. Mounting evidence has implicated the dysregulation of lipid-based signaling pathways in a 

growing number of neurodegenerative disorders. Concerning AD, the majority of these studies have 

addressed the role of cholesterol (Puglielli, Tanzi et al. 2003). However, other classes of lipids, such as 

phospholipids, have also been implicated in the modulation of key pathological processes associated 

with AD (Landman, Jeong et al. 2006; Berman, Dall'Armi et al. 2008; Sanchez-Mejia, Newman et al. 

2008; Tiago Gil Oliveira 2010). Given this amount of evidence demonstrating the importance of 

phospholipids and AD, lipid modifying enzymes, such as phospholipase D (PLD) are strong candidates 

to be involved in the pathogenesis of AD (Oliveira and Di Paolo 2010). 

PLD-mediated hydrolysis of phosphatidylcholine (PC) produces phosphatidic acid (PA), a 

bioactive lipid involved in multiple aspects of cell physiology, including signaling and membrane 

trafficking processes. There are two main PLD isozymes, PLD1 and PLD2, which, differ in their 

structure and cellular localization, although they catalyze the same reaction. This lipid regulates 

membrane dynamics and signaling processes through its intrinsic physical properties (i.e., „cone 

shape‟) and interaction with effector proteins (Jenkins and Frohman 2005; Stace and Ktistakis 2006; 

Haucke and Di Paolo 2007; Roth 2008; Raghu, Manifava et al. 2009). Localization studies suggest that 

PLD1 is predominantly localized in the Golgi complex as well as in secretory granules and endosomes 

(Jenkins and Frohman 2005; Roth 2008; Bader and Vitale 2009), while PLD2 is more concentrated at 

the plasma membrane (Du, Huang et al. 2004). The differential localization of the two PLD isozymes 
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has an impact on the way they modulate AD-related processes. While PLD1 was shown to regulate the 

trafficking and processing of amyloid precursor protein (APP) (Cai, Netzer et al. 2006; Cai, Zhong et al. 

2006; Liu, Zhang et al. 2009), our recent study has shown that PLD2 modulates the downstream 

effects of Aβ (Tiago Gil Oliveira 2010). Moreover, the same report showed that Pld2 ablation in SwAPP 

mice rescues memory deficits and confer synaptic protection, despite a significant Aβ load (Tiago Gil 

Oliveira 2010). 

 Although genomic and proteomic studies are nowadays commonly used in biomedical 

research, the field of lipidomics is now gaining increased attention, which was in part allowed by 

technological advances in liquid chromatography and electrospray ionization mass spectrometry (Wenk 

2005; Piomelli, Astarita et al. 2007). Lipidomic studies allow the characterization of a vast array of lipid 

species from a given sample and can be used in the identification of potential lipid metabolic pathways, 

which are dysregulated in a certain disease, such as neurodegenerative disorders (Wenk 2005). In the 

case of AD, this approach is starting to be employed to identify new possible drug targets, using brain 

samples from human and mouse models (Sanchez-Mejia, Newman et al. 2008; Han 2010). Lipidomics 

can also be used to suggest potential mechanistic links between specific lipid alterations (e.g., 

decreased production of PLD-derived PA) and the lipidome. Initial mass spectrometry (MS)-based lipid 

analysis of Pld2 mutant brains in the presence or absence of the SwAPP transgene unmasked striking 

crosstalks between different PA species. Here, we expanded our MS-based lipid analysis to a more 

comprehensive lipidomic study that includes lipid classes other than PA. These include PC, 

diacylglycerol (DAG), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylethanolamine (PE), 

phosphatidylglycerol (PG), sphingomyelin (SM), ceramides (Cer), glucosyl-ceramide (Glu-Cer), GM3 (a 

specific ganglioside class), cholesterol and cholesterol-ester. Potential implications of alterations in the 

physiology of these lipid classes in the context of AD models are summarized in table 1. For instance, 

we found that overexpression of the SwAPP transgene leads to significant increase in the ganglioside, 

GM3 and in the total levels of PI. Remarkably, Pld2 ablation rescues GM3 and PI levels to normal in the 

SwAPP background. This lipidomic analysis uncovered interesting lipid signaling crosstalks that are 

modulated by PLD2 in the context of AD models. 

 

Materials and Methods 

Mouse strains and breeding strategy. The genetic background of the Pld2 mice is mixed (C57BL/6-

129svj). Pld2–/– females were crossed with Tg2576 males (Taconic- mixed background C57BL/6-
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SJL/N), which express human APP carrying the double mutation K670N and M671L found in a 

Swedish family with early onset of Alzheimer‟s disease, under the regulation of the hamster prion 

protein promoter (Hsiao, Chapman et al. 1996). From the F1 hybrid generation we used as breeders 

Pld2+/–/no tg females and Pld2+/–/SwAPP males. For all our animal studies we used littermate mice (or 

in some cases, mice sharing at least one parent) derived from the F2 generation. The survival rate of 

adult mice was >90% for all genotypes within the first 12 months of age (and thus the impact of Pld2 

deletion on the survival of SwAPP mice was not investigated further). 

 

Lipidomics analysis. Lipid extracts were prepared from mice forebrain using a modified Bligh and Dyer 

method and analyzed by LC-MS. Polar glycerophospholipids and sphingolipids were separated via a 

Luna silica column (3µm, 2mmx150mm; Phenomenex) with a solvent gradient of 100% 

chloroform/methanol/water/ammonia solution (90:9.5:0.5:0.32, by vol.) changing to 100% 

chloroform/methanol/water/ammonia solution (50:48:2:0.32, by vol.) over 40min (Pettitt, McDermott 

et al. 2001). Non-polar neutral lipids were separated via a ZORBAX Eclipse XDB-C18 column (5 µm, 

4.6mmx150mm, Agilent) with isocratic elution using chloroform:methanol:2% 0.1M Ammonium 

Acetate (100:100:4, by vol.) (Chan, Uchil et al. 2008). Lipid classes were quantified using a triple 

quadrupole instrument ABI 4000 Q-Trap (Applied Biosystems, Foster City, CA) operated in multiple 

reactions monitoring mode (MRM) using previously reported MRM transition pairs and instrument 

settings (Chan, Uchil et al. 2008). The signal levels of most glycerophospholipids and sphingolipids 

were converted to relative abundance levels by normalization to spiked internal standards. Neutral 

lipids were converted to relative abundance levels by normalization to total signal measured. 

 

Statistics. Statistical analysis was performed using two-tailed equal variance and Student‟s t test, unless 

indicated otherwise. All the experiments were performed in blind to the genotypes. 

 

Results 

To gain insight into the molecular basis underlying AD pathogenesis as well as the protection conferred 

by PLD2 ablation, a lipidomics analysis of mutant animals covering approximately 140 lipids was 

conducted. Total forebrain lipids were extracted from 12 month-old Pld2+/+ and Pld2–/– mice in the 

presence or absence of the SwAPP transgene and analyzed using liquid chromatography-mass 
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spectrometry (LC-MS) (Chan, Uchil et al. 2008). Three classes of potential lipid alterations were 

investigated: (i) changes produced by the ablation of PLD2, with a strong emphasis on candidate PLD 

reaction products (i.e., PA, which were already published in (Tiago Gil Oliveira 2010)); (ii) changes 

occurring in response to the overexpression of SwAPP; and (iii) changes reflecting interactions between 

the SwAPP transgene and the Pld2 genotypes. Total levels of each lipid class were analysed (Fig. 1). 

Also, results are expressed either in the form of molar percentages in a table (Table 2) or in the form 

of lipid heat maps whereby relative increases and decreases relative to control brains (Pld2+/+, no 

SwAPP) are indicated in red and green colors of varying intensity, respectively (Fig. 2). 

 

 The data shows that ablation of PLD2 significantly decreases the levels of two molecular 

species of PA based on the different fatty acyl composition (see legend), namely, PA 32:1 (~50 %) and 

38:4 (~40%), while a trend for a decrease (~20%) was observed for two other species, PA 34:1 and 

34:0 (Fig. 2; Table 2). Surprisingly, the PA 32:0 and 38:2 species were upregulated (by 25% and 

~30%, resp.), suggesting the occurrence of compensatory mechanisms in knockout brains. Indeed, the 

total amount of PA (i.e., all species measured) was overall unaffected by the Pld2 genotype, thus 

denoting a tremendous plasticity in the metabolism of PA. While no changes were found in the total 

levels of DAG, PI, SM, GM3, Cer, Glu-Cer, cholesterol and cholesterol ester, the lack of PLD2 caused an 

increase in the total levels of PS and a decrease in PC, PE and PG (Fig.1). The analysis of the lipid 

classes by species shows that almost all the PS species were significantly increased and almost all PE 

species were decreased upon PLD2 ablation, denoting a widespread effect in these lipid classes. 

Interestingly, since certain species can be hydrolyzed by PLD, total PC levels are decreased, with 

significant decreases in PC 32:1, 32:0, 34:3, 34:1 and 34:0. 

Additionally, expression of the SwAPP transgene had no significant effect in the total levels of PA, PC, 

DAG, PS, PE, SM, Glu-Cer, Cer and cholesterol. On the other hand, it was observed an increase in the 

total levels of PI, GM3 and cholesterol-esters. For both PI and GM3 the changes were observed in a 

widespread range of its lipid species, also denoting a widespread effect over these two lipid classes 

(Fig. 1; Fig. 2; Table 2). 

When combined, SwAPP expression and PLD2 ablation, quite remarkably, lead to a normalization of 

both PI and GM3 total levels (Fig. 1). 
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Discussion 

AD is a disorder whose pathophysiology has been shown to be associated with altered lipid 

metabolism. Here, we use LC-MS lipidomics to study the potential molecular basis of how PLD2 

ablation confers protection in SwAPP mice. Besides the alterations in PA that were previously published 

and discussed in (Tiago Gil Oliveira 2010), here we covered other lipid groups, such as PC, DAG, PS, 

PI, PE, PG, SM, Cer, Glu-Cer, GM3, cholesterol and cholesterol-ester. 

We found alterations in various lipid species induced by either PLD2 ablation or SwAPP 

overexpression, which are here reported and we believe these results will be important information for 

both the PLD and AD fields. However, we were particularly interested in the molecular alterations that 

could support the phenotypic observation that PLD2 ablation is protective in the SwAPP mouse model 

(Tiago Gil Oliveira 2010). Indeed, taken into account the total levels of the lipid classes, there was a 

significant increase in the levels in cholesterol-ester, PI and GM3, from which both PI and GM3 were 

rescued to normal levels in mice that both overexpressed SwAPP and were genetic ablated for PLD2. 

The lack of rescue of cholesterol-esters to normal levels, led us to speculate that the increase in 

cholesterol-esters upon SwAPP expression is not related with the memory deficits the mice present, but 

rather with another event does not change in both SwAPP/Pld2+/+ and SwAPP/Pld2-/-, such as the 

increased levels of Aβ, which are not affected by PLD2 ablation (Tiago Gil Oliveira 2010). 

 

PI is important for membrane trafficking and for the biosynthesis of other phosphoinositides (Di 

Paolo and De Camilli 2006). Since it is a precursor of phosphoinositide synthesis, the dysregulation of 

its levels might be a consequence of the dysregulation of the phosphoinoside network. In fact, the link 

between phosphoinositides and AD has been addressed in the literature. In post-mortem lipid analysis 

of brain tissue from AD-affected individuals it was reported that anterior temporal cortex of brains from 

patients with AD had significantly lower levels of PI and trends for lower levels of PI phosphate (PIP) 

and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] (Stokes and Hawthorne 1987). Also, using 31P 

Nuclear Magnetic Resonance to study AD brain preparations, a significant reduction in PI levels was 

observed (Pettegrew, Panchalingam et al. 2001). Even though these results are somewhat 

contradictory to what we observe, they support that there is an instability in the phosphoinositide 

metabolism. This has increased relevance in light of recent work that showed the importance of other 

phosphoinositides in the pathogenesis of AD, with a reported decrease in PI(4,5)P2, which is dependent 

on the activation of PLC (Berman, Dall'Armi et al. 2008) and a reported increase in PI3-kinase activity 
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downstream of Aβ (Chiang, Wang et al. 2010). Finally, a mass spectrometry based lipidomic analysis 

in AD patients and AD mice (J20 mice that also produce high levels of Aβ) identified increased levels of 

the downstream products of the enzyme phospholipase A2 (PLA2), and that the ablation of PLA2-GIVA 

rescued synaptic and neurobehavioral dysfunction in the J20 mice (Sanchez-Mejia, Newman et al. 

2008), in a similar way as observed for PLD2 (Tiago Gil Oliveira 2010). This further shows that 

rebalancing impaired lipid signaling pathways is a valid strategy to target in the context of AD. Here, 

this lipidomic analysis, due to technical reasons, did not cover the specific analysis of other classes of 

phosphoinositides, but this result is encouraging for future studies addressing the role of the different 

players in the phosphoinositide network in the context of AD. 

Finally, the ganglioside GM3 was found to be overall increased in the SwAPP mice with a 

renormalization of its levels with PLD2 ablation. Due to technical reasons (i.e., different extraction 

conditions are required for the analysis of all the other species), other gangliosides were not measured. 

This finding was of particular interest, given the previously reported implication of gangliosides in the 

binding and aggregation of Aβ (Yanagisawa 2007; Ariga, McDonald et al. 2008)as well as in lysosomal 

storage disorders, such as Niemann-Pick Type C (NPC) (Walkley and Suzuki 2004). Additionally, 

expression of the SwAPP transgene produced a significant increase ( 2-fold) in the levels of GM3, 

consistent with a previous study (Barrier, Ingrand et al. 2007) and expanding on the notion that NPC 

may share pathogenic mechanisms in common with AD (Nixon 2004). Further emphasizing some 

analogies between lipid storage disorders and AD, levels of cholesterol esters (but not cholesterol) were 

significantly increased in the SwAPP brains ( 2-fold), consistent with current therapeutic efforts aiming 

at decreasing the activity of acyl-coenzyme A: cholesterol acyltransferase to reduce amyloidogenesis in 

AD patients (Puglielli, Tanzi et al. 2003). A prominent interaction between the SwAPP transgene and 

the Pld2 genotype was in connection with ganglioside GM3, which accumulates in SwAPP forebrain. 

When combined, SwAPP expression and PLD2 ablation lead to a normalization of GM3 levels, 

suggesting that this phenomenon may be key to the pathogenicity associated with the AD model and its 

rescue in the Pld2 null background. While future studies will address the relevance of such a 

hypothesis, our data suggest that it may not be directly connected to the metabolism of cholesterol 

esters, which accumulate in the SwAPP brains, yet, are not profoundly affected by the Pld2 genotype. 

 Previous studies have shown that impairment of signaling lipids plays a key role in AD 

pathogenesis in animal models. Specifically, Aβ oligomers have been shown to dysregulate the PLC 

and PLA2 pathways with major implications for the signaling downstream of PI(4,5)P2 and arachidonic 
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acid in the brain (Berman, Dall'Armi et al. 2008; Sanchez-Mejia, Newman et al. 2008). This study 

provides further support for the hypothesis that PLD2 signaling is altered in AD.  

 While a variety of previous studies have implicated the PLD pathway in AD pathogenesis either 

as a mediator of APP trafficking, presenilin regulation or downstream target of Aβ (Singh, McCartney et 

al. 1995; Cai, Netzer et al. 2006; Cai, Zhong et al. 2006; Brandenburg, Konrad et al. 2008; Tiago Gil 

Oliveira 2010), this study expands on the notion that PLD2, is pathophysiologically relevant in the 

context of mouse models of AD. Thus, our data is consistent with scenarios whereby PLD2 and its 

enzymatic product (i) mediate key signaling cascades downstream of Aβ; (ii) regulate the (cell surface) 

availability of putative Aβ receptors at synapses; or (iii) alter the capacity of Aβ to bind to its putative 

receptors. Results from the lipidomics analysis suggest that a dysregulation of ganglioside levels, likely 

stemming from an alteration of PLD2 function and thus PA metabolism, may be central to the 

pathogenicity associated with SwAPP overexpression and that inactivating PLD2 may counteract this 

mechanism. The recent identification of PLD2, and, to a lesser extent, PLD1, as positive regulators of 

cell surface levels of ganglioside GM1 and lipid raft-based signaling in antigen-stimulated mast cells 

(Lisboa, Peng et al. 2009) suggests that the interaction of Aβ with these lipid microdomains may be 

altered in PLD2-deficient neurons, with potentially important implications for Aβ oligomerization and 

signalling. Consistent with this idea, PLD isozymes have been reported to be raft-associated through 

palmitoylation of cysteine residues in their PH domain (Jenkins and Frohman 2005) .  

 Collectively, results presented in this study highlight PLD2 as an important player in AD 

pathogenesis. Moreover, this comprehensive brain lipidomics analysis of a widely used transgenic 

model of AD, may prove helpful as a clinical or diagnostic tool, particularly if some of the reported 

changes in lipid composition are also detected in blood cells or CSF. 
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Figure 1. Effect of SwAPP overexpression and Pld2 genotypes on forebrain lipid profile. Forebrain 

lipids were extracted from Pld2+/+ and Pld2–/–mice with and without SwAPP transgene and subjected to 

LC-MS analysis. Total levels of different lipid classes. These include phosphatidic acid (PA), 

phosphatydilcholine (PC), diacylglycerol (DAG), phosphatidylserine (PS), phosphatidylinositol (PI), 



77 

 

phosphatidylethanolamine (PE), phosphatidylglycerol (PG), sphingomyelin (SM), ceramides (Cer), 

glucosyl-ceramide (Glu-Cer), GM3 (a specific ganglioside class), cholesterol (Chol) and cholesterol-ester 

(Chol-Est). Y-axis is represented in % of relative levels to Pld2+/+/no tg. n=6-8. Values denote means  

SEM. ns - non significant. * p < 0.05; ** p < 0.01; *** p < 0.001. 
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Figure 2. Effect of SwAPP overexpression and Pld2 genotypes on forebrain lipid profile. Forebrain 

lipids were extracted from Pld2+/+ and Pld2–/–mice with and without SwAPP transgene and subjected to 

LC-MS analysis. Heat map of all lipids measured via LC-MS. The color bars, which are different for 

columns 1-2 and 3, represent the ratio of specific lipid species of mutant mice compared to that of 

control mice (Pld2+/+, no SwAPP). The absolute levels of each lipid species are presented in Table 2. 

Phosphatidic Acid, PA; Phosphatidylcholine, PC; Diacylglycerol, DAG; Phosphatidylserine, PS; 

Phosphatidylinositol, PI; Phosphatidylethanolamine, PE (a – diacyl linkage; p – 1‟-alkenyl-2-acyl 
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linkage); Phosphatidylglycerol, PG; Sphingomyelin, SM; Ceramide, Cer; Glucosylceramide, GluCer; 

Ganglioside, GM3. The nomenclature for phospholipids fatty acid composition are denoted as total 

chain length:number of unsaturated bonds while sphingolipids are denoted as sphingoid base 

residue/fatty acid residue. 

 

 

 

 

Table 1. Potential molecular and biochemical pathways affected in Alzheimer disease models. 
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Table 2. Lipid composition of forebrain extracted from WT and Pld2 KO mice with and without SwAPP 

transgene. The relative abundance of individual lipid species are expressed as mean value ± S.E.M (n = 
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6-8). The statistical differences in relevant sample groups were analyzed using Student‟s t-test and the 

p values of these analyses are given. 
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Discussion, conclusions and future perspectives 

 

 Besides being a major brain constituent, lipids are also involved in multiple aspects of brain 

physiology and cell signaling. Dysregulation of these lipid signaling pathways has been associated with 

a growing number of neurodegenerative disorders, including Alzheimer‟s disease (AD). In AD, most of 

the attention has been focused on cholesterol (Puglielli, Tanzi et al. 2003), however, growing evidence 

suggests that other classes of lipids, such as phospholipids, either mediate or modulate key 

pathological processes associated with AD (Landman, Jeong et al. 2006; Berman, Dall'Armi et al. 

2008; Sanchez-Mejia, Newman et al. 2008).  

 Mounting evidence indicates that amyloid beta (Aβ) perturbs the metabolism of intracellular 

signaling lipids and that this phenomenon contributes to the pathogenic actions of this peptide 

(Hartmann, Kuchenbecker et al. 2007; Oliveira and Di Paolo 2010; Oster and Pillot 2010; Sanchez-

Mejia and Mucke 2010). In particular, it was previously shown that Aβ leads to an activation of both 

phospholipase A2 (PLA2) (Sanchez-Mejia, Newman et al. 2008), phospholipase C (PLC) (Berman, 

Dall'Armi et al. 2008) and phospholipase D (PLD) (Singh, Sorrentino et al. 1998; Brandenburg, Konrad 

et al. 2008; Oliveira and Di Paolo 2010), although in the latter case the Aβ preparations used in the 

experimental setting were of questionable pathophysiological significance. It has been shown that both 

PLA2 (specifically the GIVA isoform) and PLC are activated by calcium. Also, a wealth of studies has 

implicated calcium dysregulation in AD pathogenesis (Querfurth and LaFerla 2010). Since PLD, and 

more specifically PLD2, is also activated by calcium (Kim, Lee et al. 1999), we hypothesized that it 

could be also involved in AD pathogenesis. In particular, a study from our laboratory indicated that Aβ 

treatment leads to a trend for an increase in phosphatidic acid (PA) levels in cultured neurons 

(Berman, Dall'Armi et al. 2008). Moreover, we reasoned that PLD2 was a strong candidate to mediate 

signaling processes at the plasma membrane in response to Aβ, due to the predominant localization of 

this isozyme at the cell surface (Du, Huang et al. 2004), as opposed to PLD1, which has a more 

intracellular localization. Because PA can be produced by PLD and based on the other studies linking 

phospholipase dysregulation to AD, we tested the involvement of PLD2 in AD pathogenesis and more 

specifically, in the synaptotoxic action of Aβ oligomers. In the sections below, we highlight how we 

addressed the three aims of our thesis proposal and discuss the new avenues our study has opened.  
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Aim 1. To characterize the effects of Aβ on the PLD pathway. 

 

 We tackled this issue by conducting our studies in cell culture models. To begin to address the 

role of PLD in Aβ pathogenesis and to determine which of the two isoforms is(are) stimulated by Aβ, 

we tested whether oligomeric Aβ signaling alters the subcellular localization of either PLD1 or PLD2. 

While no obvious phenotype was observed in GFP-PLD1 transfected cells, GFP-PLD2 was relocalized 

from the plasma membrane to the cytoplasm in a Ca2+ and cPLA2 dependent way. These results also 

highlight the crosstalk between different phospholipases, a question of critical relevance that will be 

explored in future studies. Moreover, this relocalization assay can now be used for automated drug 

screening assessing PLD2 localization. The identification of small molecules that affect PLD2 

localization in response to Aβ42 may be beneficial for the treatment of AD (based on our studies), 

although these molecules would have to be validated in animal studies and assessed whether they 

effectively target PLD2 activity. Also, using primary cortical neurons we observed that while Aβ42 

oligomers lead to an increase in total PLD activity, genetic ablation of one or two copies of Pld2 blocks 

this increase in activity. The residual PLD activity in PLD2 KO (knock-out) cultures is likely dependent 

on PLD1, whose significance has yet to be determined. Studies with Pld1 KO mice, recently developed 

in our lab (Dall‟Armi and Di Paolo, unpublished observations) and by others (Elvers, Stegner et al. 

2010), will clarify this question. 

 

Aim 2. To test the effects of PLD2 ablation in an AD mouse model. 

 

 First, in order to understand the role of PLD2 activation in response to Aβ, we used an ex vivo 

preparation of the hippocampus to study long-term potentiation (LTP). This protocol was previously 

used in many studies showing that LTP is impaired by Aβ oligomers in CA1 after stimulation of the 

Schaeffer collaterals (Lambert, Barlow et al. 1998; Vitolo, Sant'Angelo et al. 2002; Haass and Selkoe 

2007). This approach is used as an electrophysiological read-out of Aβ toxicity. We observe that while 

the Pld2 wild type (WT) slices have impaired LTP after Aβ treatment, Pld2 KO slices are resistant to the 

deleterious effects of Aβ. This result not only provides further evidence for a functional relationship 

between PLD2 and the Aβ signaling pathway, but it also suggests that the synaptotoxic actions of this 

peptide require PLD2. 

 This prompted us to address the role of Pld2 ablation in an AD mouse model with the prediction 

(based on the LTP result) that it may be protective. We used the Tg2576 mouse line, which 
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overexpresses the Swedish amyloid precursor protein (SwAPP) transgene and presents with an age-

dependent increase in the levels of Aβ. A key finding was that brains from the SwAPP mice are 

associated with increased in vivo PLD activity, suggesting that PLD (and likely PLD2) are bona fide 

targets of Aβ in a more pathophysiologically-relevant setting. When crossed with the PLD2 KO mice 

(which exhibit an approximately 50% decrease in total PLD activity), Pld2 ablation had a protective 

effect in our behavioral analysis of fear contextual memory at 6 months and spatial working memory at 

12 months.  

 Previously, we observed that the treatment with oligomeric Aβ led to a trend for increased levels 

of PA in primary neuronal cultures (Berman, Dall'Armi et al. 2008). In our mass spectrometry analysis 

of the SwAPP aged mice, the total levels of PA were not changed (Fig. 1 chapter 2.2). However, the 

analysis by specific species of PA, showed that only one species was significantly increased in the 

SwAPP mice, PA 34:2 (the nomenclature for phospholipids fatty acid composition are denoted as total 

chain length:number of unsaturated bonds), which was previously associated with a neurodegeneration 

phenotype (Raghu, Coessens et al. 2009). Importantly, Pld2 ablation in the SwAPP background 

rescued the levels of PA 34:2 back to normal levels, supporting the idea that this PLD2-derived product 

may be a key factor involved in the toxic effects of Aβ. Our combined mass spectrometry analysis of PA 

and phosphatydilethanol (PEtOH) allows us to get a better understanding of PLD-derived PA. In the in 

vivo PLD activity assay in the SwAPP mice, four PEtOH species were increased, PEtOH 32:1, 34:2, 

34:1 and 34:0 (32:0 was not analysed, due to technical reasons - it was chosen as an internal 

standard in the PEtOH analysis) (Fig. 3 – chapter 2.1). Curiously, the homologous PA species were 

shown to be somewhat affected by PLD2 ablation in our lipidomic study. Besides PA 34:2 (whose 

alterations were discussed in detail in chapter 2.1), PA 32:1, 34:1 and 34:0, had all the same trend for 

decreased levels upon PLD2 ablation, either in the presence or absence of the SwAPP transgene (Fig. 

7 – chapter 2.1). While these referred species appear to be more plastic and sensitive to modulation, 

other species, such as PEtOH 36:2, 36:1 and 36:0, were not affected by SwAPP overexpression and its 

PA homologs were also not affected either by PLD2 ablation, SwAPP overexpression or both, supporting 

that these species are probably more stable. Finally, PA 38:4, was significantly decreased upon PLD2 

ablation, independently of SwAPP expression (a result confirmed by the lack of differences in the 

PEtOH 38:4 upon SwAPP expression). Since, PA 38:4 is believed to be PI(4,5)P2 derived, this analysis 

suggests that PLD2 might affect PI(4,5)P2 metabolism in a Aβ independent way. This has increased 

interest since PI(4,5)P2 levels were shown to be decreased in response to oligomeric Aβ applications in 

primary cortical neurons (Berman, Dall'Armi et al. 2008).  
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 The work from Raghu et al was based on the overexpression of the PLD homolog in drosophila, 

showing that overexpression of PLD had a toxic effect in neurons (Raghu, Coessens et al. 2009). 

Moreover, a recent work from Gorbatyuk et al showed that specifically overexpression of PLD2, caused 

severe neurodegeneration in rats (Gorbatyuk, Li et al. 2010). This toxic effect of PLD overexpression, 

somehow resembles the increased PLD activity observed in SwAPP mice. To our knowledge the 

ablation of PLD2 has not been shown to have deleterious effects. In fact, in our study it has proven 

beneficial. This body of work seems to support a deleterious effect for PLD overexpression/increased 

activity and a protective effect for PLD2 ablation, in the context of neuronal functioning. 

 Overall, the concomitant mass spectrometry analysis of PEtOH and PA levels provides 

complementary information that deepens the understanding of PLD metabolism. Due to PLD‟s high 

affinity for primary alcohols, the analysis of PEtOH levels captures the flow of potential PA pool that 

sinks as PEtOH (which is less efficiently metabolized). The mass spectrometry analysis magnifies the 

specificity of this analysis by the quantification of each PEtOH species. On the other hand, the regular 

mass spectrometry method, in the absence of ethanol treatment, captures PA levels from many 

potential sources, PLD being only one of them, thus providing a snapshot of PA metabolism. We 

believe that our analytical method represents an important conceptual advance and should be highly 

valued in future studies in the PLD field (Figure 1). 

 

 

 

 

Figure 1. A. PLD-derived PA flow, which in the presence of ethanol, sinks as PEtOH. B. “Snapshot” of 

PA levels. PA – phosphatidic acid; PC – phosphatydilcholine; PLD – phospholipase D; EtOH – ethanol; 

PEtOH – phosphatydilethanol. 
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Aim 3. To investigate the role of PLD2 in APP processing and Aβ generation. 

 

 The rationale for this aim, was that there was a reported role of PLD1 in APP trafficking and 

processing (Cai, Netzer et al. 2006; Cai, Zhong et al. 2006; Liu, Zhang et al. 2009; Oliveira and Di 

Paolo 2010). Additionally, our behavioral results showed a protective effect of Pld2 ablation in an AD 

mouse model. Thus, although our data supported a role for PLD2 downstream of Aβ signalling, 

another possibility was that PLD2 could also affect APP trafficking/processing and Aβ generation. We 

addressed this aim using biochemical analysis. First, no differences were found in murine Aβ 

(Supplementary Fig.4 - chapter 2.1) and APP levels (data not shown) in Pld2 KO adult animals. We 

then evaluated APP processing in mice that expressed the SwAPP human transgene. Human Aβ and 

APP levels were found to have no differences upon Pld2 ablation (Fig.8 - chapter 2.1). Although these 

results showed no role for PLD2 in APP processing and Aβ generation, the distribution or aggregation 

of Aβ in the brain may be affected by the lack of PLD2. As the lipidomic analysis uncovered, 

SwAPP/Pld2+/+ mice had increased levels of GM3 compared with SwAPP/Pld2-/-, and since gangliosides 

were found to interact with Aβ (Ariga, McDonald et al. 2008), this could be a possible mechanism for 

change in Aβ distribution and Aβ aggregation (discussed below). Logical experiments would be to 

assess Aβ distribution by immunohistochemical analysis and Aβ aggregation by measuring the levels 

of Aβ using conformation specific antibodies.  

 

 

Future directions 

 Overall, the main conclusion from this work is the identification of PLD2 as a new player in AD 

pathogenesis. Specifically, we show that the genetic ablation of PLD2 has a protective effect in the 

context of Aβ synaptotoxic signaling and in a AD mouse model. 

 

In search for a mechanism 

 One of the main questions that arises from this work is: “what is the exact mechanism through 

which PLD2 modulate Aβ effects?” Potentially, PLD2 may affect the various steps of Aβ oligomer 

pathogenic signaling, namely, its aggregation, interaction with membranes/receptors and Aβ 

intracellular downstream pathways. At the aggregation level as was already discussed (chapter 2.2) it 

can be potentially affected by the alterations observed in the ganglioside metabolism. Moreover, 

gangliosides, as a constituent of cellular membranes might also alter the interaction of Aβ oligomers 
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with membranes (Ariga, McDonald et al. 2008). Due to technical reasons, our lipidomic analysis only 

covered one ganglioside class, GM3. Importantly, our study reproduced the results from another group, 

which also observed an increase in GM3 levels in AD mouse models (Barrier, Ingrand et al. 2007). In 

fact, it has been shown that GM2 activator, a protein which activates β-hexosaminidase (the enzyme 

that catalyzes the reaction GM2GM3), also interacts with PLD2 leading to increased PLD activity 

levels. It would be interesting to study the relationship of GM2 activator with Aβ signaling (Sarkar, Miwa 

et al. 2001). Moreover, a full ganglioside profile analysis will be of major importance in order to study 

both the impact of increased levels of Aβ and Pld2 ablation on all different classes of gangliosides. 

Also, and in light of the ganglioside differences observed in our lipidomic analysis, it would be important 

to assess the extracellular versus intracellular location of Aβ (since our ELISA assays do not take into 

account that distinction), and within the intracellular pool, whether it is differentially distributed through 

the different cellular organelles. Since these results were observed in the context of a familial AD 

model, it would be interesting to study instead of SwAPP, mice expressing human WT APP, which 

would be more relevant for sporadic AD. Finally, similar studies should be performed with Pld1 KO 

mice, which will probably be more fruitful in a APP processing point of view, due to the results 

observed by Cai et al showing decreased amyloidogenesis upon PLD1 overexpression in cell culture 

experimental models (Cai, Netzer et al. 2006; Cai, Zhong et al. 2006). If future experiments show no 

effects of PLD2 in APP processing, it will further highlight the differences between PLD1 and PLD2, 

curiously having different implications for the same disease. 

 One interesting finding we observed is that the SwAPP/Pld2-/- mice have preserved memory even 

in the presence of high levels of Aβ. Indeed, this situation was previously observed upon the ablation of 

other genes that encode for other proteins, such as, alpha7 nicotinic acetylcholine receptor (α7nAchR) 

(Wang, Lee et al. 2000), the prion protein (PrP) (Lauren, Gimbel et al. 2009; Gimbel, Nygaard et al. 

2010), GIVA-PLA2 (Sanchez-Mejia, Newman et al. 2008) and tau (Roberson, Scearce-Levie et al. 2007; 

Ittner, Ke et al. 2010). One tentative thought is that all these players might be somehow inter-related in 

the modulation of Aβ effects. Interestingly, both α7nAchR and PrP are putative proteinaceous Aβ 

receptors. Since PLD2 has been proposed to modulate endocytic events (Roth 2008), one possibility is 

that PLD2 affects the surface availability of these Aβ receptors or the capability of Aβ to bind them. In 

fact, PLD has been shown to modulate the surface availability of a PrP related fragment (Brandenburg, 

Koch et al. 2007). Concerning GIVA-PLA2, we show in this thesis that it lies upstream of PLD2 in the 

Aβ signaling pathway, confirming previous results in leukocytes (Kim, Lee et al. 1999). This opens new 

lines of research, specifically in trying to understand how the different phospholipases regulate each 
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other. It would be interesting to study PLD metabolism upon PLA2 modulation and also the effects of 

PLD2 modulation in PLA2 metabolic pathways. The PLA2-Aβ-dependent pathway has been addressed 

and namely, PKC, p38, and MEK/ERK pathways were shown to be involved, and importantly, the anti-

inflammatory inhibitors of cyclooxygenase-2 were shown to protect from Aβ toxic effects (Kriem, 

Sponne et al. 2005). Also, Mucke‟s group has shown that GIVA-PLA2 ablation protected from Aβ 

neurotoxicity, an effect that was shown to be mediated by AMPAR internalization (Sanchez-Mejia, 

Newman et al. 2008). As for the putative Aβ receptors and in light of the crosstalk between PLA2 and 

PLD2, PLD2 might also potentially mediate AMPAR internalization with potential impact in protecting 

from Aβ excitotoxic effects. Finally, the ablation of tau was shown to be protective in two different 

amyloidogenesis mouse models (Roberson, Scearce-Levie et al. 2007; Ittner, Ke et al. 2010). Tau 

ablation was shown to protect from excitotoxicity to which the AD mice were shown to be more 

susceptible. The molecular mechanism was further dissected and it was shown that tau binds Fyn and 

this interaction leads to stabilization of the NMDAR/PSD95 complex. In the absence of tau, the 

NMDAR/PSD95 interaction was less stable leading to excitability protection in the amyloidogenesis 

mouse models. It was further shown that a tau independent manipulation of the NMDAR/PSD95 

interaction also led to a protective effect (Roberson, Scearce-Levie et al. 2007; Ittner, Ke et al. 2010). It 

is thus logical to speculate that PLD2 might modulate any of these molecular players: tau, Fyn, NMDAR 

or PSD95, or its molecular interactions. If this is the case, one important experiment to perform is to 

assess if Pld2 KO mice are less susceptible to drug-induced excitotoxicity (as tau KO mice are). This 

would support a more basic role for PLD2 with an impact at the circuit/systems level and potential to 

be studied in the context of multiple neurological diseases. 

 

In conclusion, in addition to fulfilling the initial aims proposed for this thesis, the body of work produced 

raised many more questions that are of the most interest to be addressed in the future. These are 

highlighted below: 

 

1. An obvious future direction to pursue is to initiate drug trials with PLD2 specific inhibitors. Initial 

studies should be started with AD animal models and if the results are encouraging, 

experimentation should be expanded to clinical trials in humans. 

 

2. The exact mechanisms through which PLD2 acts and Aβ leads to PLD activation are still elusive. 

The exhaustive characterization of these mechanisms will be key for the understanding of AD 
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pathophysiology and for a potential role of PLD2 in other neurodegenerative diseases. 

 

3. The crosstalk of PLD2 with other signaling pathways (such as the PLC and PLA2 pathways) 

should also be addressed in more detail. 

 

4. Our lipidomic analysis has produced a vast amount of data that can potentially lead to many 

more lines of research. An immediate one is the study of the potential role of gangliosides in 

AD.  

 

5. Another important question is the study of the effect of Pld1 ablation and the study of the impact 

of ablating both isoforms, Pld double KO. The characterization of the effects of pharmacologic 

agents that inhibit either PLD1, PLD2 or both will complement the genetic studies. 

 

 

6. Finally, this work has provided major technical advances in the field of PLD, specifically in 

understanding PLD in vivo activity using mass spectrometry. Previous studies that have been 

performed using primary alcohols to inhibit PLD should be readdressed with the new 

genetic/pharmacological tools.  
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