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Abstract

In this PhD thesis, we apply several mathematical concepts to sciences,

like, Finances, Hydrology, Energy and Psychology. We analyze real data of

different areas and develop techniques of Dynamical Systems, Statistics and

Game Theory to study the data. We, also, build mathematical theoretical

models suitable to investigate the decisions/behavior of an individual by

establishing an analogy to a psychological theory.

In chapter 1, we do an introduction mentioning the main scientific con-

tributions presented in this thesis.

In chapter 2, we exploit ideas of nonlinear dynamics and statistical

physics in a complex non-deterministic dynamical setting using the Ruelle-

Takens embedding. We present some new insights on the quality of the

prediction in the laminar regime and we exhibit the data collapse of the

predicted relative first difference fluctuations to the universal BHP distri-

bution. We observe that the nearest neighbor method of prediction acts as

a filter that does not eliminate the randomness, but exhibits its universal

character.

In chapter 3, we consider the α re-scaled Ip index positive returns r(t)α

and negative returns (−r(t))α that we call, after normalization, the α pos-
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itive fluctuations and α negative fluctuations. We use the Kolmogorov-

Smirnov statistical test, as a method, to find the values of α that optimize

the data collapse of the histogram of the α fluctuations with the truncated

Bramwell-Holdsworth-Pinton (BHP) probability density function (pdf). Us-

ing the optimal α′s we compute the analytical approximations of the pdf of

the normalized positive and negative Ip index returns r(t), with periodicity

p. The main indices Ip that we study are the PSI-20 and the Dow Jones

Industrial Average but we extend our analysis to world wide indices. The

periodicity p varies from daily (d), weekly (w) and monthly (m) returns to

intraday data (60 min, 30 min, 15 min and 5 min). We also compute the

analytical approximations of the pdf of the normalized positive and nega-

tive spot daily prices or daily returns r(t) of distinct energy sources ES and

exchange rates ER. Since the BHP probability density function appears in

several other dissimilar phenomena, our results reveal a universal feature of

the stock market exchange.

In chapter 4, we construct a model, using Game Theory, for the Theory

of Planned Behavior and we propose the Bayesian-Nash Equilibria as one

of many possible mechanisms to transform human intentions into behavior

decisions. We show that saturation can lead to the adoption of a variety of

different behavior decisions, as opposed to no saturation, which leads to the

adoption of a single consistent behavior decision. Furthermore, we use the

new game theoretical model to understand the impact of the leaders and of

their characteristics in the decision-making of other individuals or groups.

We also apply the model to a students success example, describing Nash

equilibria and “herding” effects, identifying a hysteresis in the process.



Resumo

Nesta tese, aplicamos diversos conceitos matemáticos em ciências, como,

Finanças, Hidrologia, Energia e Psicologia. Analisamos dados reais de dife-

rentes áreas e desenvolvemos técnicas de Sistemas Dinâmicos, Estat́ıstica e

Teoria dos Jogos para estudar esses dados. Constrúımos, também, modelos

matemáticos teóricos adequados para analisar decisões ou comportamentos

de indiv́ıduos, estabelecendo uma analogia com uma teoria da Psicologia.

No caṕıtulo 1, efectuamos uma introdução na qual mencionamos as prin-

cipais contribuições cient́ıficas apresentadas nesta tese.

No caṕıtulo 2, exploramos ideias de dinâmica não-linear e f́ısica es-

tat́ıstica, num contexto dinâmico complexo não determińıstico, usando o

método de reconstrução de Ruelle-Takens. Apresentamos novas percepções

sobre a qualidade da previsão no regime laminar e exibimos a sobreposição

do histograma da primeira diferença prevista das flutuações com o da dis-

tribuição universal BHP. Observamos que o método do vizinho mais próximo

da previsão actua como um filtro que não elimina a aleatoriedade, mas ev-

idencia a sua universalidade.

No caṕıtulo 3, consideramos os retornos re-escalados positivos r(t)α e os

retornos re-escalados negativos (−r(t))α, do ı́ndice Ip, que chamamos, após
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a normalização, flutuações α positivas e flutuações α negativas. Usamos o

teste estat́ıstico Kolmogorov-Smirnov, como um método para encontrar os

valores de α que optimizam a sobreposição do histograma das flutuações α

com o da função densidade de probabilidade Bramwell-Holdsworth-Pinton

(BHP) truncada. Usando os valores óptimos de α calculamos uma aproxi-

mação anaĺıtica das funções densidade de probabilidade dos retornos r(t)

positivos e negativos normalizados do ı́ndice IP , com periodicidade p. Os

principais ı́ndices IP que estudamos são o PSI-20 e o Dow Jones, alargando

o nosso estudo a outros ı́ndices mundiais. A periodicidade p varia desde

peŕıodos de 5 minutos até peŕıodos mensais (m). Estudamos, também,

diferentes fontes de energia ES e taxas de câmbio ER. Dado que a função

densidade de probabilidade BHP aparece em vários outros fenómenos di-

ferentes, os nossos resultados revelam um carácter universal do mercado

bolsista.

No caṕıtulo 4, constrúımos um modelo, usando conceitos de Teoria de

Jogos, para a Teoria do Comportamento Planeado e propomos o equilibrio

Bayesian-Nash como um, dos muitos, mecanismos posśıveis de transformar

intenções em decisões comportamentais. Mostramos que a saturação pode

levar à adopção de uma variedade de diferentes decisões comportamentais,

em oposição à não-saturação que conduz à adopção de uma decisão com-

portamental consistente. Além disso, utilizamos este modelo de teoria de

jogos para compreender o impacto dos ĺıderes e das suas caracteŕısticas na

tomada de decisão de outros indiv́ıduos ou grupos. Aplicamos, também, o

modelo a um exemplo de sucesso de estudantes, descrevendo os equilibrios

de Nash e efeitos de ”rebanho”, identificando uma histerese no processo.
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Chapter 1

Introduction

This PhD Thesis is the result of different research projects where several

mathematical concepts of Dynamical Systems, Statistics and Game Theory

are applied to sciences, like, Finances, Hydrology, Energy and Psychology.

The probability density function (pdf) of a global measure in a large

class of highly correlated systems has been suggested to be of the same

functional form. Here, we identify the analytical form of the pdf of one

such measure, the magnetic order parameter in the low temperature phase

(critical) of the 2D XY model using a quadratic (spi-wave) approximation.

We present strong evidence that this pdf describes the fluctuations of global

quantities in other correlated systems.

The application of dynamical systems methods (see [22, 55]) found a

firm ground on the reconstruction theorem of Ruelle-Takens [66] and in the

probabilistic justification due to Sauer, Yorke and Casdagli [64]. We pretend

to develop some new insights between the quality of the prediction, the

embedding dimension [43] and the number of nearest neighbors considered
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for river data and stock market data. In particular, our aim is to study the

collapse of the data to the universal BHP distribution.

We also create mathematical theoretical models, using Game Theory

concepts, suitable to investigate the decisions/behavior of an individual by

establishing an analogy to a psychological theory.

Universality in nonlinear prediction of com-

plex systems

A direct link between the real world and deterministic dynamical systems

theory is given by the analysis of real systems time series in terms of non-

linear dynamics with noise (see [40, 42, 58]). Advances have been made

to exploit ideas of dynamical systems theory in cases where the system is

not necessarily deterministic, but it displays a structure not captured by

classical stochastic methods. Here, the real system time series is the daily

runoff of the river Paiva. The time series of the daily runoff reveals that

the daily runoff is an intermittent dynamical system, this intermittent dy-

namical behavior is characterized by a laminar and an irregular phase. The

laminar phase occurs in the absence of rainfall and the irregular phase oc-

curs under the action of rain (see [41, 47, 60, 61]). Hence, the forcing of

the dynamical system is not of a deterministic type (see [34, 35]). Our goal

is to built a Markov process for the laminar regime that models the runoff

stochastic process and that can be useful to do one step ahead prediction.

To built the Markov process for the laminar regime, we start by introduc-
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ing a modified version of the usual nonlinear prediction methods based in

the Ruelle-Takens embedding (see [39, 61]). After a careful study of the

reconstruction vectors sets taking into account the Ruelle-Takens embed-

ding dimension, we find that a one-dimensional Ruelle-Takens embedding

already gives good prediction results. We also study the improvement of

the prediction results with the increase of the Ruelle-Takens embedding di-

mensions. Since the one-dimensional Ruelle-Takens embedding gives good

predictability results, we built a first order Markov process for the lami-

nar regime. Given the present day runoff value, we find the data collapse

of the histogram of the predicted relative first difference fluctuations, that

determine the transition probabilities of the first order Markov process, to

the universal BHP pdf. Hence, we link the predicted relative first difference

fluctuations in a prediction method for a natural and complex dynamical

system, based in the Ruelle-Takens embedding, with the universal BHP pdf

(see [32, 56]).

Universality in the Stock Market Exchange

Modeling the time series of stock prices is important in economics, finance

and energy market, and it is essential in the management of large stock port-

folios (see [6, 8, 9, 14, 16, 17, 23, 38, 45, 46, 48, 49, 50, 52, 59]). Here, we

analyze specifically the well known Dow Jones Industrial Average (DJIA)

index (see [30]) and compare it to the S&P 100 (see [25]), the NASDAQ

Composite, the S&P 500 index, and the Russell 2000 index, that corre-

spond to the most closely-watched benchmark indices in terms of stock
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market activity. We extend your study to European indices, in particular

the Portuguese PSI20 (see [29, 56]) and world wide indices.

Let Y (t) be the index Ip adjusted close value at day t. We define the Ip

index return on day t by

r(t) =
Y (t)− Y (t− 1)

Y (t− 1)

We define the α re-scaled Ip index positive returns r(t)α, for r(t) > 0, that

we call, after normalization, the α positive fluctuations. We define the α

re-scaled Ip index negative returns (−r(t))α, for r(t) < 0, that we call, after

normalization, the α negative fluctuations.

We analyze, separately, the α positive and α negative fluctuations that

can have different statistical and economic natures (see, for example, [6,

8, 42, 44, 49]). Our aim is to find the values of α that optimize the data

collapse of the histogram of the α positive and α negative fluctuations to

to the Bramwell-Holdsworth-Pinton (truncated BHP) probability density

function (pdf) truncated to the support range of the data (see chapter 2

and Bramwell et al [11]). Our approach is to apply the Kolmogorov-Smirnov

(K-S) statistic test as a method to find the values of α that optimize the

data collapse. Using this data collapse we do a change of variable that allows

us to compute the analytical approximations of the pdf of the normalized

positive and negative Ip index returns

fBHP,Ip,+(x) = A1x
−(1−α+

BHP
)fBHP (B1x

α+

BHP − C1)

fBHP,Ip,−(x) = A2x
−(1−α−

BHP
)fBHP (B2x

α−

BHP − C2)



23

in terms of the BHP pdf fBHP . We exhibit the data collapse of the his-

togram of the positive and negative returns to our proposed theoretical pdf´s

fBHP,Ip,+ and fBHP,Ip,−. We also extend our study to energy sources prices

ES and exchange rates ER, obtaining similar results (see [27, 29, 30, 36]).

Since the BHP probability density function appears in several other dis-

similar phenomena (see, for example, [18, 24, 32, 33, 36, 57]), our results

reveal a universal feature of the stock market exchange. Furthermore, these

results lead to the construction of a new qualitative and quantitative econo-

physics model for the stock market based on the two-dimensional spin model

(2dXY) at criticality (see [31]) and to a new stochastic differential equation

model for the stock exchange market indices (see [53]) that provides a better

understanding of several stock exchange crises (see [54]).

Modeling Human Decisions

The main goal in the study of Planned Behavior or Reasoned Action theory

(see [1, 7]) is to understand and predict how individuals turn intentions into

behaviors. We construct a general model for the Theory of Planned Behav-

ior or Reasoned Action, inspired by the works of J. Cownley and M. Wooders

[15], where specific characteristics of individuals, defined as taste type and

crowding type are considered. The crowding type of an individual deter-

mines his influence on the welfare (utility) function of the other individuals.

The taste type determines the characteristics of an individual specifying

his welfare function taking in account the decisions of the other individu-

als. We start by constructing a model, that we call the platonic idealized
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psychological model, which consists of individuals with no uncertainties in

their taste and crowding types and welfare function. Then we construct the

general model, that we call the cave psychological model, which consists of

individuals whose taste and crowding types follow the shadows of the taste

and crowding types of the platonic idealized psychological model, according

to a given probability distribution. Furthermore, in the cave psychological

model, individuals know only the expected value of their welfare function.

In both models, we present sufficient conditions for an individual or group

to adopt a certain behavior decision according to both the Nash and the

Bayesian-Nash Equilibria, i.e. the best strategic individual decision taking

into account the collective response. We show how saturation, boredom and

frustration can lead to different behavior decisions and how no saturation

can lead to a single consistent behavior decision. Following the works of

J. Driskel, E. Salas and R. Sternberg [20, 21, 65] on leadership, we use the

new game theoretical model to understand the impact of the leaders in the

decision-making of individuals or groups. We study how the characteris-

tics of the leaders have an influence over the others’ decisions (see [3, 5]).

We apply the model to a students success example and we describe Nash

equilibria and “herding” effects, identifying a hysteresis in the process.



Chapter 2

Universality in nonlinear

prediction of complex systems

We exploit ideas of nonlinear dynamics and statistical physics in a complex

non-deterministic dynamical setting using the Ruelle-Takens embedding.

We present some new insights on the quality of the prediction in the lam-

inar regime and we exhibit the data collapse of the predicted relative first

difference fluctuations to the universal BHP distribution. We observe that

the nearest neighbor method of prediction acts as a filter that does not

eliminate the randomness, but exhibits its universal character.
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2.1 Universality of the Bramwell-Hodsworth-

Pinton distribution

The universal nonparametric BHP pdf was discovered by Bramwell, Holds-

worth and Pinton [12]. The universal nonparametric BHP pdf is the pdf

of the fluctuations of the total magnetization, in the strong coupling (low

temperature) regime for a two-dimensional spin model (2dXY), using the

spin wave approximation (see [11]). The magnetization distribution, that

they found, is named, after them, the Bramwell-Holdsworth-Pinton (BHP)

distribution. The BHP probability density function (pdf) is given by

p(µ) =

∫ ∞

−∞

dx

2π

√
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, (2.1)

where the {λk}
L
k=1 are the eigenvalues, as determined in [11], of the ad-

jacency matrix. It follows, from the formula of the BHP pdf, that the

asymptotic values for large deviations, below and above the mean, are ex-

ponential and double exponential, respectively (in this work, we use the

approximation of the BHP pdf obtained by taking L = 10 and N = L2

in equation (2.1)). As one can see, the BHP distribution does not have

any parameter (except the mean that is normalized to 0 and the standard

deviation that is normalized to 1). Furthermore, the BHP distribution

is universal in the sense that appears in several physical phenomena (see

[29, 63]). For instance, the universal nonparametric BHP distribution is a
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good model to explain the fluctuations of order parameters in theoretical

examples such as the Sneppen model (see [12, 19]), auto-ignition fire mod-

els (see [62]), self-organized models, and percolation models (see [12]). The

universal nonparametric BHP distribution is, also, an explanatory model

for fluctuations of several phenomenon such as width power in steady state

systems (see [12]), plasma density and electrostatic turbulent fluxes mea-

sured at the scrape-off layer of the Alcator C-Mod Tokamak (see [51]), the

Wolf’s sunspot numbers (see [26, 33]) and the stock exchange’s indices, daily

returns of stocks and commodities (see [25, 27, 29, 30, 36]). The universal

BHP distribution also appears in river heights and flow (see [10, 19, 24, 32]).

However, the approaches used to study the deseasonalised Danube height

data (see [13]) and the Mississippi runoff fluctuations (see [19]) to find the

universal distribution BHP in these dynamical systems do not give a sim-

ilar result in river Paiva due to its different character (see [37]). In this

chapter, we show the re-appearance of the BHP pdf as an approximation of

the distribution of the predicted relative first difference of the river Paiva

runoff.

2.2 Data and preliminary analysis

The most relevant data for this chapter consist of the time series of mean

daily runoff of the river Paiva, measured at Fragas da Torre in the North

of Portugal. The data is available for download in the Instituto Nacional

da Água webpage1. The sample period runs from 1st of October of 1946 to

1http://www.inag.pt
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30th of September of 2006 for a total of 21900 observations (see chronogram

of Figure 2.1).
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Figure 2.1: Chronogram of the daily mean riverflow of Paiva measured at
Fragas da Torre 1946-99

The riverflow of Paiva is the closest to a natural flow one might expect.

The river Paiva has a small basin of about 700Km2 and it is not a runoff

intermittent river in the sense that at the referred location and in the 60

years of observation the surface stream never disappeared. The river Paiva

is a mountain river with a rocky bed reacting very fast to rainfall. The river

Paiva basin does not have regulators such as dams or glaciers. The water

of river Paiva is used for public supply in the metropolitan area of Porto.

2.3 Nonlinear prediction

Following Ruelle-Takens [66], we consider the m-dimensional embedding set

Rm = {Xt = (Xt−m+1, · · · , Xt), t = [m, · · · , 21900]} of the runoff data. Our
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goal is to predict the runoff value Xt+1 during the laminar regime (absence

of rain phase). Hence, we filter appropriately the reconstruction vectors

Xt ∈ Rm by considering only those Xt that satisfy the following δ-relative

non-increasing rule Xt+i−1 ≥ Xt+i(1 + δ), for all 1 ≤ i ≤ m. We call

the reconstruction vectors satisfying the δ-relative non-increasing rule by

laminar reconstruction vectors and we denote by LRm the set

LRm = {Xij : Xij+i−1 ≥ Xt+i(1 + δ), 1 ≤ i ≤ m}

of all laminar reconstruction vectors. We define the regime reconstruction

vectors set D[x0, x1] by

D[x0, x1] = {Xt = (Xt−m+1, · · · , Xt) ∈ LRm : x0 ≤ Xt ≤ x1}

We define the real relative first difference b(t) of the runoff Xt, at time t, by

b(t) =
∇Xt

Xt

,

where ∇Xt = Xt+1 − Xt. We define the real relative first difference mean

bµ[x0, x1], in the regime D[x0, x1], by

bµ[x0, x1] =
1

#D[x0, x1]

∑

Xt∈D[x0,x1]

b(t).

Similarly, we define the relative first difference standard deviation bσ[x0, x1],
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in the regime D[x0, x1], by

bσ[x0, x1] =

√

1

#{D[x0, x1]}

∑

Xt∈D[x0,x1]

b2(t)− (bµ[x0, x1])2.

We denote by ‖Xt‖ the maximum norm of the vectorXt = (Xt−m+1, · · · , Xt).

We define the relative distance rd(Xi,Xj) of two reconstruction vectors Xi

and Xj by

rd(Xi, Xj) =
‖Xi −Xj‖

‖Xi‖
.

We define the neighboring set Nm(x) of x by

Nm(x) = {Xr = (Xr−m+1, · · · , Xr) ∈ LRm : Xr ≤ x}.

In Figure 2.2, we show the curve of the cardinal #N1(x) and #N2(x) of

the neighboring sets N1(x) and N2(x) with embedding dimensions 1 and 2,

respectively.

10
−1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5
x 10

4

ln(X
t
) (Logarithm of the runoff)

T
ot

al
 n

um
be

r 
of

 n
ei

gh
bo

rs

 

 

#N
1
(x)

#N
2
(x)

Figure 2.2: Plot of #N1(x) and #N2(x)
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For every runoff value Xt, we order the vectors

A1,m(Xt), · · · , A#Nm(x)−1,m(Xt)

in Nm(Xt) by their distance to Xt, i.e. ‖Xt − Aj,m‖ ≤ ‖Xt − Aj+1,m‖. We

define the reconstruction vectors set RVi,m(t) of the runoff value Xt by

RVi,m(t) = {Aj,m(Xt) ∈ Nm(Xt) : j ≤ #Nm(Xt)Pi}

as the collection of the first #Nm(Xt)Pi ordered vectors in Nm(Xt). In table

2.1, we exhibit the values of Pi, for i ∈ {1, · · · , 9}, that we use in this work.

Table 2.1: Percentages Pi of the total number of neighbors

i 1 2 3 4 5 6 7 8 9

Pi 0.125 0.25 0.5 1.0 2.0 3.0 4.0 5.0 7.5

We define the predicted relative first difference ai,m(t) of the runoff at

time t by

ai,m(t) =
1

#{RVi,m(t)}

∑

Xr∈RVi,m(t)

∇Xr

Xr

.

We define the predicted relative first difference mean aµi,m[x0, x1], in the

regime Dm[x0, x1], by

aµi,m[x0, x1] =
1

#{ai,m(t) : t ∈ Dm[x0, x1]}

∑

Xt∈Dm[x0,x1]

ai,m(t) (2.2)

We define the predicted relative first difference standard deviation aσi,m[x0, x1],
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in the regime Dm[x0, x1], by

aσi,m[x0, x1] =

√

1

#{Dm[x0, x1]}

∑

Xt∈Dm[x0,x1]

a2i,m(t)− (aµi,m[x0, x1])2. (2.3)

We define the predicted relative first difference fluctuations afi,m(t), in the

regime Dm[x0, x1], by

afi,m(t) =
ai,m(t)− aµi,m[x0, x1]

aσi,m[x0, x1]
(2.4)

In Figures 2.3, 2.4 and 2.5, we observe the data collapse of the histogram

of the predicted relative first difference fluctuations to the BHP pdf, for the

regimes D[0, 3], D[3, 9] and D[9, 30].
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Figure 2.3: Histogram of the fluctuations af1,1(t) with the BHP pdf on top,
for the regime D[0, 3]

The error ci,m(t) is the difference between the real relative first difference
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Figure 2.4: Histogram of the fluctuations af2,1(t) with the BHP pdf on top,
for the regime D[3, 9]
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Figure 2.5: Histogram of the fluctuations af1,1(t) with the BHP pdf on top,
for the regime D[9, 30]

b(t) and the predicted relative first difference ai,m(t), i.e.

ci,m(t) = ai,m(t)− b(t).
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We define the error mean cµi,m[x0, x1], in the regime Dm[x0, x1], by

cµi,m[x0, x1] =
1

#{ci,m(t) : t ∈ Dm[x0, x1]}

∑

Xt∈Dm[x0,x1]

ci,m(t) (2.5)

We define the error standard deviation cσi,m[x0, x1], in the regime Dm[x0, x1],

by

cσi,m[x0, x1] =

√

1

#{Dm[x0, x1]}

∑

Xt∈Dm[x0,x1]

c2i,m(t)− (cµi,m[x0, x1])2. (2.6)

In Figure 2.6 and 2.7, we present the error mean cµi,m[a, b] and the error

standard deviation cσi,m[a, b] for the regimes [a, b] ∈ {[0, 3], [3, 9], [9, 30]}. We

observe that the values of the error mean cµi,m[a, b] considered are close to 0.

The values of the error standard deviation cσi,m[a, b] decrease, approximately,

to half, when we increase the embedding dimension from 1 to 2. After that

the changes are small except for the regime D[9, 30]. In the regime D[9, 30]

the lack of close neighbors starts to be visible for the values observed for m

equal to 4 and 5.
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Figure 2.6: Error mean cµ1,m[a, b] for m ∈ {1, · · · , 5} and [a, b] ∈
{[0, 3], [3, 9], [9, 30]}
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Figure 2.7: Error standard deviation cσ1,m[a, b] for m ∈ {1, · · · , 5} and
[a, b] ∈ {[0, 3], [3, 9], [9, 30]}
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2.4 Conclusion

A dynamical analysis of the river Paiva data was performed using the Ruelle-

Takens method of dynamical reconstruction. The river Paiva is an intermit-

tent complex dynamical system. We studied the dependence of the nearest

neighbors predictor of the relative first difference on the embedding dimen-

sion and on the relative average distance of the nearest neighbors with re-

spect to the runoff value. The prediction results revealed that it is essential

to know the current runoff to predict future values that lead us to recon-

struct an approximation of the one-dimensional stochastics dynamics of the

runoff. We noticed improvements in prediction when the former runoffs are

used. The mean of the error between the real and predicted values, com-

puted for different regimes and embedding dimensions, gives the correction

of the runoff predictor. The standard deviation of the error between the

real and the predicted values gives an insight for the best predictor. We

observe the data collapse of the histograms of the predicted relative first

difference fluctuations to the universal BHP pdf.



Chapter 3

Universality in the Stock

Market Exchange

In this chapter, we consider the α re-scaled Ip index positive returns r(t)α

and negative returns (−r(t))α that we call, after normalization, the α pos-

itive fluctuations and α negative fluctuations. We use the Kolmogorov-

Smirnov statistical test, as a method, to find the values of α that optimize

the data collapse of the histogram of the α fluctuations with the truncated

Bramwell-Holdsworth-Pinton (BHP) probability density function. Using

the optimal α′s we compute the analytical approximations of the pdf of

the normalized positive and negative Ip index returns r(t), with periodicity

p. The main indices Ip that we study are the PSI-20 and the Dow Jones

Industrial Average but we extend our analysis to world wide indices. The

periodicity p varies from daily (d), weekly (w) and monthly (m) returns to

intraday data (60 min, 30 min, 15 min and 5 min). We also compute the

analytical approximations of the pdf of the normalized positive and neg-



38 Universality in the Stock Market Exchange

ative spot daily prices or daily returns r(t) of distinct energy sources ES

and of the pdf of the normalized positive and negative spot daily prices or

daily returns r(t) of distinct exchange rates ER. Since the BHP probability

density function appears in several other dissimilar phenomena, our results

reveal a universal feature of the stock market exchange.

3.1 Dow Jones Industrial Average

The Dow Jones Industrial Average, also referred to as the Industrial Average

or the Dow Jones, is one of several stock market indices created by Wall

Street Journal editor and Dow Jones & Company co-founder Charles Dow.

It is an index that shows how 30 large, publicly-owned companies based

in the United States have traded during a standard trading session in the

stock market. In our analysis we investigate the time series of the DJIA

index from October of 1928 to October of 2009, considering, respectively,

daily, weekly and monthly returns as well as intraday values (see [30]).

3.1.1 DJIA index daily returns

Positive DJIA index daily returns

Let T+ be the set of all days t with positive returns, i.e.

T+ = {t : r(t) > 0}.

Let n+ = 10605 be the cardinal of the set T+. The α re-scaled DJIA daily

index positive returns are the returns r(t)α with t ∈ T+. Since the total
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number of observed days is n = 20404, we obtain that n+/n = 0.52. The

mean µ+
α of the α re-scaled DJIA daily index positive returns is given by

µ+
α =

1

n+

∑

t∈T+

r(t)α (3.1)

The standard deviation σ+
α of the α re-scaled DJIA daily index positive

returns is given by

σ+
α =

√

1

n+

∑

t∈T+

r(t)2α − (µ+
α )

2 (3.2)

We define the α positive fluctuations by

r+α (t) =
r(t)α − µ+

α

σ+
α

(3.3)

for every t ∈ T+. Hence, the α positive fluctuations are the normalized α

re-scaled DJIA daily index positive returns.

Let L+
α be the smallest α positive fluctuation, i.e.

L+
α = min

t∈T+
{r+α (t)}.

Let R+
α be the largest α positive fluctuation, i.e.

R+
α = max

t∈T+
{r+α (t)}.

We denote by Fα,+ the probability distribution of the α positive fluctuations.
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Let the truncated BHP probability distribution FBHP,α,+ be given by

FBHP,α,+(x) =
FBHP (x)

FBHP (R+
α )− FBHP (L+

α )

where FBHP is the BHP probability distribution (see definition in Chapter

2). We apply the K-S statistic test to the null hypothesis claiming that the

probability distributions Fα,+ and FBHP,α,+ are equal. The Kolmogorov-

Smirnov P value P+
α is plotted in Figure 3.1. Hence, we observe that

α+
BHP = 0.45... is the point where the P value P+

α+

BHP

= 0.055... attains

its maximum. We note that

µ+

α+

BHP

= 0.098..., σ+

α+

BHP

= 0.046..., L+

α+

BHP

= −1.964... and R+

α+

BHP

= 7.266...

It is well-known that the Kolmogorov-Smirnov P value P+
α decreases

with the distance

Dα,+ = ‖Fα,+ − FBHP,α,+‖

between Fα,+ and FBHP,α,+. In Figure 3.2, we plot

Dα+

BHP
,+(x) =

∣

∣

∣
Fα+

BHP
,+(x)− FBHP,α+

BHP
,+(x)

∣

∣

∣

and we observe that Dα+,+(x) attains its maximum value 0.0130 for the

α+
BHP positive fluctuations above the mean of the probability distribution.

In Figures 3.3 and 3.4, we show the data collapse of the histogram fα+

BHP
,+

of the α+
BHP positive fluctuations to the truncated BHP pdf fBHP,α+

BHP
,+.
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Figure 3.1: The Kolmogorov-Smirnov P value P+
α for values of α in the

range [0.3, 0.6], in DJIA.
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Figure 3.3: The histogram of the α+
BHP positive fluctuations with the trun-

cated BHP pdf fBHP,0.45,+ on top, in the semi-log scale, in DJIA
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Theorem 3.1.1 (DJIA pdf daily index positive returns pdf fDJIAd,+) As-

sume that the probability distribution of the α+
BHP positive fluctuations r+

α+

BHP

(t)

is approximated by FBHP,α+

BHP
,+, the pdf of the DJIA daily index positive re-

turns r(t) is approximated by

fBHP,DJIA,+(x) =
α+
BHPx

α+

BHP
−1fBHP

((

xα+

BHP − µ+

α+

BHP

)

/σ+

α+

BHP

)

σ+

α+

BHP

(

FBHP

(

R+

α+

BHP

)

− FBHP

(

L+

α+

BHP

)) .

Hence, we get

fBHP,DJIA,+(x) = 4.60x−0.55fBHP (21.86x
0.45 − 2.14).

In Figures 3.5 and 3.6, we show the data collapse of the histogram of

the positive returns to our proposed theoretical pdf fBHP,DJIA,+.
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Figure 3.5: The histogram of the fluctuations of the positive returns with
the pdf fBHP,DJIA,+ on top, in the semi-log scale, in DJIA

Proof.
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Let X be a positive random variable. Let µα and σα be, respectively,

the mean and standard deviation of the random variable Xα, with α > 0.

Let fY : [L,R] → R
+ be the smooth pdf of the normalized random variable

Y = (Xα − µα)/σα. We note that

P (X ≤ x) = P

(

Xα − µα

σα

≤
xα − µα

σα

)

= P

(

Y ≤
xα − µα

σα

)

.

Hence,

FX(x) = FY

(

xα − µα

σα

)

.

Therefore,
dFX(x)

dx
=

αxα−1fY ((xα − µα) /σα)

σα

.
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Negative DJIA index daily returns

Let T− be the set of all days t with negative returns, i.e.

T− = {t : r(t) < 0}.

Let n− = 9713 be the cardinal of the set T−. Since the total number of

observed days is n = 20404, we obtain that n−/n = 0.48. The α re-scaled

DJIA daily index negative returns are the returns (−r(t))α with t ∈ T−.

We note that −r(t) is positive. The mean µ−
α of the α re-scaled DJIA daily

index negative returns is given by

µ−
α =

1

n−

∑

t∈T−

(−r(t))α (3.4)

The standard deviation σ−
α of the α re-scaled DJIA daily index negative

returns is given by

σ−
α =

√

1

n−

∑

t∈T−

(−r(t))2α − (µ−
α )

2 (3.5)

We define the α negative fluctuations by

r−α (t) =
(−r(t))α − µ−

α

σ−
α

(3.6)

for every t ∈ T−. Hence, the α negative fluctuations are the normalized α

re-scaled DJIA daily index negative returns.
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Let L−
α be the smallest α negative fluctuation, i.e.

L−
α = min

t∈T−

{r−α (t)}.

Let R−
α be the largest α negative fluctuation, i.e.

R−
α = max

t∈T−

{r−α (t)}.

We denote by Fα,− the probability distribution of the α negative fluctuations.

Let the truncated BHP probability distribution FBHP,α,− be given by

FBHP,α,−(x) =
FBHP (x)

FBHP (R−
α )− FBHP (L−

α )

where FBHP is the BHP probability distribution (see definition in Chapter

2). We apply the K-S statistic test to the null hypothesis claiming that the

probability distributions Fα,− and FBHP,α,− are equal. The Kolmogorov-

Smirnov P value P−
α is plotted in Figure 3.7. Hence, we observe that that

α−
BHP = 0.46... is the point where the P value P−

α−BHP
= 0.147... attains its

maximum. We note that

µ−

α−

BHP

= 0.093..., σ−

α−

BHP

= 0.047..., L−

α−

BHP

= −1.894... and R−

α−

BHP

= 8.797...

It is well-known that the Kolmogorov-Smirnov P value P−
α decreases with

the distance

Dα,− = ‖Fα,− − FBHP,α,−‖
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Figure 3.7: The Kolmogorov-Smirnov P value P−
α for values of α in the

range [0.3, 0.6], in DJIA.

between Fα,− and FBHP,α,−. In Figure 3.8, we plot

Dα−

BHP
,−(x) =

∣

∣

∣
Fα−

BHP
,−(x)− FBHP,α−

BHP
,−(x)

∣

∣

∣

and we observe that Dα−

BHP
,−(x) attains its maximum value 0.0116 for the

α−
BHP negative fluctuations above the mean of the probability distribution.

In Figure 3.9 and Figure 3.10, we show the data collapse of the his-

togram fα−

BHP
,− of the α−

BHP negative fluctuations to the truncated BHP

pdf fBHP,α−

BHP
,−.

Theorem 3.1.2 (DJIA daily index negative returns pdf fDJIA,−) Assume

that the probability distribution of the α−
BHP negative fluctuations r−

α−

BHP

(t) is

approximated by FBHP,α−

BHP
,−, the pdf of the DJIA daily index (symmetric)
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Figure 3.9: The histogram of the α+
BHP negative fluctuations with the trun-

cated BHP pdf fBHP,0.46,− on top, in the semi-log scale, in DJIA.
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Figure 3.10: The histogram of the α+
BHP negative fluctuations with the trun-

cated BHP pdf fBHP,0.46,− on top, in DJIA.

negative returns −r(t), with T ∈ T−, is approximated by

fBHP,DJIA,−(x) =
α−
BHPx

α−

BHP
1fBHP

((

xα−

BHP − µ−

α−

BHP

)

/σ−

α−

BHP

)

σ−

α−

BHP

(

FBHP

(

R−

α−

BHP

)

− FBHP

(

L−

α−

BHP

)) .

Hence, we get

fBHP,DJIA,−(x) = 4.95x−0.54fBHP (21.37x
0.46 − 1.99).

The proof of Theorem 3.1.2 follows similarly to the proof of Theorem 3.1.1.

In Figures 3.11 and 3.12, we show the data collapse of the histogram of the

negative returns to our proposed theoretical pdf fBHP,DJIA,−.
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Figure 3.11: The histogram of the negative returns with the pdf fBHP,DJIA,−

on top, in the semi-log scale, in DJIA.
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3.1.2 DJIA index daily returns through the decades

We divide the time series of our analysis in 8 distinct time series that corre-

spond to 8 different decades and study each decade using the methodology

described previously. The results are presented in Tables 3.1, 3.2 and in

Figure 3.13, where we can observe that the values of α+
BHP vary between

0.45 and 0.65 and the values of α−
BHP vary between 0.36 and 0.59. Both

P+

α+

BHP

and P−

α−

BHP

are higher that 0.01.

Table 3.1: DJIA trough the decades-1
α+
BHP α−

BHP P+

α+

BHP

P−

α−

BHP

D+

α+

BHP

D−

α−

BHP

1930-1939 0.45 0.45 0.84 0.31 0.017 0.028
1940-1949 0.49 0.36 0.32 0.54 0.027 0.023
1950-1959 0.65 0.48 0.03 0.75 0.039 0.020
1960-1969 0.55 0.50 0.43 0.12 0.024 0.034
1970-1979 0.48 0.59 0.29 0.03 0.028 0.041
1980-1989 0.49 0.53 0.11 0.72 0.033 0.020
1990-1999 0.52 0.52 0.16 0.22 0.031 0.031
2000-2009 0.48 0.51 0.93 0.20 0.015 0.031

Table 3.2: DJIA trough the decades-2
µ+

α+

BHP

µ−

α−

BHP

σ+

α+

BHP

σ−

α−

BHP

1930-1939 0.13 0.13 0.06 0.06
1940-1949 0.07 0.13 0.03 0.05
1950-1959 0.03 0.07 0.02 0.03
1960-1969 0.05 0.06 0.02 0.03
1970-1979 0.08 0.05 0.04 0.03
1980-1989 0.08 0.07 0.04 0.04
1990-1999 0.07 0.06 0.03 0.03
2000-2009 0.09 0.08 0.05 0.04
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0,45 0,49 0,65 0,55 0,48 0,49 0,52 0,48

-BHP 0,45 0,36 0,48 0,5 0,59 0,53 0,52 0,51

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

Figure 3.13: Values of α+
BHP and α−

BHP for each decade, in DJIA.



3.1 Dow Jones Industrial Average 53

3.1.3 DJIA index weekly and monthly returns

We consider the same time series between 1928 and 2009 but with differ-

ent periodicity, respectively, weekly and monthly returns. Using the same

methodology, we obtain the results presented in Tables 3.3, 3.4 and in Figure

3.14.

Table 3.3: DJIA weekly and monthly returns-1
α+
BHP α−

BHP P+

α+

BHP

P−

α−

BHP

D+

α+

BHP

D−

α−

BHP

weekly 0.56 0.47 0.55 0.59 0.016 0.018
monthly 0.37 0.65 0.94 0.90 0.026 0.024

Table 3.4: DJIA weekly and monthly returns-2
µ+

α+

BHP

µ−

α−

BHP

σ+

α+

BHP

σ−

α−

BHP

weekly 0.09 0.14 0.05 0.07
monthly 0.27 0.10 0.11 0.06

Hence, considering weekly returns, we get

fBHP,DJIAw,+(x) = 6.15x−0.44fBHP (20.34x
0.56 − 1.85)

fBHP,DJIAw,−(x) = 3.44x−0.53fBHP (15.37x
0.47 − 2.10)

Considering monthly returns, we get

fBHP,DJIAm,+(x) = 1.36x−0.63fBHP (8.80x
0.37 − 2.40)

fBHP,DJIAm,−(x) = 6.21x−0.35fBHP (17.22x
0.65 − 1.80).
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Figure 3.14: Values of α+
BHP and α−

BHP for weekly and monthly returns, in
DJIA.

3.1.4 DJIA intraday returns

We analyze four time series of intraday closure values of DJIA in periods of

60 minutes, 30 minutes, 15 minutes and 5 minutes. We compare the same

number of observations (7000) in all series, studying in fDJIA60m
292 days,

in fDJIA30m
146 days, in fDJIA15m

73 days and in fDJIA5m
24 days.

The values of the parameters are presented in Tables 3.5, 3.6 and in

Figure 3.15, where we can observe that P+

α+

BHP

and P−

α−

BHP

are higher that

0.01 and α+
BHP and α−

BHP vary between 0.36 and 0.45.



3.1 Dow Jones Industrial Average 55

Table 3.5: DJIA intraday returns-1
α+
BHP α−

BHP P+

α+

BHP

P−

α−

BHP

D+

α+

BHP

D−

α−

BHP

60 min 0.37 0.36 0.18 0.02 0.018 0.026
30 min 0.37 0.40 0.34 0.32 0.016 0.016
15 min 0.44 0.41 0.49 0.58 0.014 0.013
5 min 0.41 0.45 0.24 0.16 0.019 0.021

Table 3.6: DJIA intraday returns-2
µ+

α+

BHP

µ−

α−

BHP

σ+

α+

BHP

σ−

α−

BHP

60 min 0.10 0.10 0.05 0.05
30 min 0.10 0.08 0.04 0.04
15 min 0.05 0.06 0.03 0.03
5 min 0.04 0.03 0.02 0.02
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0,37 0,37

0,45

0,41
0,4

0,36

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

5 min 15 min 30 min 60 min

BHP -BHP

Figure 3.15: Values of α+
BHP and α−

BHP for intraday returns, in DJIA.
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Considering 60 min returns, we get

fBHP,DJIA60min,+(x) = 3.83x−0.63fBHP (21.22x
0.37 − 2.05)

fBHP,DJIA60min,−(x) = 3.43x−0.64fBHP (19.64x
0.36 − 2.06).

Considering 30 min returns, we get

fBHP,DJIA30min,+(x) = 3.78x−0.63fBHP (22.57x
0.37 − 2.21)

fBHP,DJIA30min,−(x) = 4.83x−0.60fBHP (24.64x
0.40 − 2.04).

Considering 15 min returns, we get

fBHP,DJIA15min,+(x) = 8.50x−0.56fBHP (38.95x
0.44 − 2.02)

fBHP,DJIA15min,−(x) = 6.45x−0.59fBHP (32.96x
0.41 − 2.10).

Considering 5 min returns, we get

fBHP,DJIA5min,+(x) = 9.79x−0.59fBHP (53.98x
0.41 − 2.26)

fBHP,DJIA5min,−(x) = 14.62x−0.55fBHP (64.32x
0.45 − 1.98).
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3.2 Dow Jones and other North American

Indices

After making a particular study of the DJIA index, we extend our study

to other North American relevant indices and analyze if the values of the

α+
BHP and α−

BHP are similar.

We consider four time series, the S&P 100 index from January of 1987

to September of 2008 (see [25]), the Nasdaq index from February of 1971 to

January of 2010, the Russell 2000 index from September of 1987 to January

of 2010 and the S&P 500 index from January of 1950 to January of 2010.

Considering daily returns, we obtain the results presented in Figures

3.16, 3.17, 3.18, 3.19 and 3.20.
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Figure 3.16: Values of α+BHP and α−
BHP for each index daily returns
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For weekly returns, we obtain the results presented in Figures 3.21, 3.22,

3.23, 3.24 and 3.25.
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Figure 3.21: Values of α+
BHP and α−

BHP for each index weekly returns
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Considering monthly returns, we obtain the results presented in Figures

3.26, 3.27, 3.28, 3.29 and 3.30.
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Figure 3.26: Values of α+
BHP and α−

BHP for each index monthly returns

In all the periodicities, especially in daily returns, we observe that the values

of α+
BHP and α−

BHP are similar in the four indices, and close to 0.50.
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3.3 European Indices

We use the same methodology to study European indices, in particular the

Portuguese index, PSI-20 (see [29, 56]).

3.3.1 PSI-20

The PSI-20 (an acronym of Portuguese Stock Index) is a benchmark stock

market index of companies that trade on Euronext Lisbon, the main stock

exchange of Portugal. The index tracks the prices of the twenty listings

with the largest market capitalization and share turnover in the PSI Geral,

the general stock market of the Lisbon exchange. It is one of the main na-

tional indices of the pan-European stock exchange group Euronext alongside

Brussels (BEL20), Paris (CAC 40) and Amsterdam (AEX).

For the positive PSI-20 index daily returns, the Kolmogorov-Smirnov P

value P+
α is plotted in Figure 3.31. We observe that α+

BHP = 0.48... is the

point where the P value P+

α+

BHP

= 0.95... attains its maximum. In Figure

3.32, we plot

Dα+

BHP
,+(x) =

∣

∣

∣
Fα+

BHP
,+(x)− FBHP,α+

BHP
,+(x)

∣

∣

∣

and we observe that Dα+

BHP
,+(x) attains its maximum value 0.0151 for the

α+ positive fluctuations below the mean of the probability distribution. In

Figures 3.33 and 3.34, we show the data collapse of the histogram fα+

BHP
,+

of the α+
BHP positive fluctuations to the truncated BHP pdf fBHP,α+

BHP
,+.

The pdf of the PSI-20 daily index positive returns r(t) is approximated
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BHP positive fluctuations with the trun-

cated BHP pdf fBHP,0.48,+ on top, in the semi-log scale, in PSI-20.
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Figure 3.34: The histogram of the α+
BHP positive fluctuations with the trun-

cated BHP pdf fBHP,0.48,+ on top, in PSI-20.
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by

fBHP,PSI20,+(x) =
α+
BHPx

α+

BHP
−1fBHP

((

xα+

BHP − µ+

α+

BHP

)

/σ+

α+

BHP

)

σ+

α+

BHP

(

FBHP

(

R+

α+

BHP

)

− FBHP

(

L+

α+

BHP

)) .

Hence, we get

fBHP,PSI20,+(x) = 5.71x−0.52fBHP (24.3x
0.48 − 2.04).

For negative PSI-20 index daily returns, the Kolmogorov-Smirnov P value

P−
α is plotted in Figure 3.35. Hence, we observe that α−

BHP = 0.46... is the

point where the P value P−

α−

BHP

= 0.77... attains its maximum. In Figure

3.36, we plot

Dα−

BHP
,−(x) =

∣

∣

∣
Fα−

BHP
,−(x)− FBHP,α−

BHP
,−(x)

∣

∣

∣

and we observe that Dα−

BHP
,−(x) attains its maximum value 0.0202 for the

α−
BHP negative fluctuations below the mean of the probability distribution.

In Figures 3.37 and 3.38, we show the data collapse of the histogram fα−

BHP
,−

of the α−
BHP negative fluctuations to the truncated BHP pdf fBHP,α−

BHP
,−.

The pdf of the PSI−20 daily index (symmetric) negative returns −r(t),

with T ∈ T−, is approximated by

fBHP,PSI20,−(x) =
α−
BHPx

α−

BHP
1fBHP

((

xα−

BHP − µ−

α−

BHP

)

/σ−

α−

BHP

)

σ−

α−

BHP

(

FBHP

(

R−

α−

BHP

)

− FBHP

(

L−

α−

BHP

)) .
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Figure 3.35: The Kolmogorov-Smirnov P value P−
α for values of α in the
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Figure 3.37: The histogram of the α−
BHP negative fluctuations with the trun-

cated BHP pdf fBHP,0.46,− on top, in the semi-log scale, in PSI-20.
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Figure 3.38: The histogram of the α−
BHP negative fluctuations with the trun-

cated BHP pdf fBHP,0.46,− on top, in PSI-20.



72 Universality in the Stock Market Exchange

Hence, we get

fBHP,PSI20,−(x) = 4.80x−0.54fBHP (21.0x
0.46 − 2.0)

3.3.2 Other European Indices

We analyze the time series of the following European indices: from France,

the (FCHI)- CAC 40 index between March of 1990 and September of 2009;

from Germany, the (GDAXI)- DAX index between November of 1990 and

September of 2009; from Italy, the (MIBTEL)- MIBTEL index between

January of 2000 and May of 2009; from Netherlands, the (AEX)- AEX

General index between October of 1992 and September of 2009; from Nor-

way, the (OSEAX)- OSE All Share index between February of 2001 and

September of 2009; from Spain, the (SMSI)-Madrid General index between

June of 2006 and September of 2009; from Sweden, the (OMXSPI)- Stock-

holm General index between January of 2001 and September of 2009; from

Switzerland, the (SSMI)- Swiss Market index between November of 1990

and September of 2009; and from UK, the (FTSE)- FTSE 100 index be-

tween April of 1984 and September of 2009. The results obtained for these

indices are presented in Tables 3.7, 3.8 and in Figure 3.39.

In all the indices, we observe that the values of α+
BHP and α−

BHP are

similar and vary between 0.40 and 0.57 and that P+

α+

BHP

and P−

α−

BHP

are

higher that 0.01, which can indicate universality in European indices.
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Table 3.7: European Indices-1
α+
BHP α−

BHP P+

α+

BHP

P−

α−

BHP

D+

α+

BHP

D−

α−

BHP

FCHI 0.56 0.53 0.07 0.08 0.026 0.026
DAX 0.50 0.48 0.19 0.24 0.021 0.022

MIBTEL 0.47 0.43 0.83 0.15 0.018 0.034
AEX 0.46 0.43 0.59 0.31 0.016 0.021

OSEAX 0.57 0.47 0.79 0.94 0.019 0.017
SMCI 0.40 0.44 0.90 0.95 0.027 0.026

OMXSPI 0.52 0.50 0.44 0.15 0.026 0.035
SSMI 0.53 0.53 0.22 0.62 0.021 0.016
FTSE 0.55 0.55 0.19 0.14 0.019 0.021

Table 3.8: European Indices-2
µ+

α+

BHP

µ−

α−

BHP

σ+

α+

BHP

σ−

α−

BHP

FCHI 0.07 0.08 0.04 0.04
DAX 0.09 0.10 0.05 0.05

MIBTEL 0.09 0.12 0.05 0.06
AEX 0.10 0.12 0.05 0.06

OSEAX 0.07 0.11 0.04 0.05
SMCI 0.15 0.13 0.06 0.06

OMXSPI 0.08 0.10 0.04 0.05
SSMI 0.07 0.07 0.04 0.04
FTSE 0.06 0.06 0.03 0.03
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Figure 3.39: Values of α+
BHP and α−

BHP in European indices.
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3.4 World Wide Indices

We analyze the time series of the following World wide Indices: from Ar-

gentina, the (MERV) index between October of 1996 and September of

2009; from Brazil, the (BVSP)- Bovespa index between April of 1993 and

September of 2009; from Mexico, the (MXX)- IPC index between Novem-

ber of 1991 and September of 2009; from Japan, the (N225)- Nikkei 225

index between January of 1984 and September of 2009; and from Hong-

Kong, the (HSI)- Hang Seng index between January of 2000 and October

of 2010. The results obtained for these indices are presented in Tables 3.9,

3.10 and in Figure 3.40.

Table 3.9: World Wide Indices-1
α+
BHP α−

BHP P+

α+

BHP

P−

α−

BHP

D+

α+

BHP

D−

α−

BHP

MERV 0.48 0.46 0.92 0.50 0.016 0.025
BVSP 0.51 0.50 0.29 0.15 0.021 0.027
MXX 0.54 0.53 0.68 0.19 0.015 0.023
N225 0.47 0.45 0.45 0.07 0.015 0.023
HSI 0.48 0.42 0.51 0.12 0.023 0.035

Table 3.10: World Wide Indices-2
µ+

α+

BHP

µ−

α−

BHP

σ+

α+

BHP

σ−

α−

BHP

MERV 0.12 0.13 0.06 0.06
BVSP 0.12 0.12 0.06 0.06
MXX 0.08 0.08 0.04 0.04
N225 0.10 0.11 0.05 0.05
HSI 0.10 0.14 0.05 0.06

In all the indices, we observe that α+
BHP and α−

BHP are similar and vary

between 0.42 and 0.54 and that P+

α+

BHP

and P−

α−

BHP

are higher that 0.01.
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Figure 3.40: Values of α+
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BHP in World wide indices.
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3.5 Energy Sources

We consider, in our analysis, several energy sources daily data series that

correspond to periods of time between 6-14 years. We study energy sources

data of two distinct groups: Non-renewable Sources and Renewable Sources

(see [28]). In the first group, we consider oil and petroleum products, namely

crude oil (from January 1986 to January of 2010), heating oil (from June

1986 to January of 2010), gasoline (from June 1986 to January of 2010)

and propane (from May 1992 to January of 2010). In the second group,

we analyze biofuels such as ethanol (from March 2005 to October of 2009)

and biodiesel (from December of 2006 to October of 2009). We also study a

product from which renewable energy is produced, respectively corn (from

February 1998 to October of 2009)

The results obtained for the different energy sources are presented in

Tables 3.11, 3.12, 3.13, 3.14 and in Figures 3.41 and 3.42, respectively.

Table 3.11: Non-renewable Energy Sources Prices-1
α+
BHP α−

BHP P+

α+

BHP

P−

α−

BHP

D+

α+

BHP

D−

α−

BHP

Crude Oil 0.52 0.51 0.26 0.43 0.018 0.016
Heating Oil 0.52 0.57 0.16 0.70 0.021 0.013
Propane 0.32 0.30 0.64 0.70 0.017 0.017
Gasoline 0.55 0.55 0.13 0.02 0.021 0.029

In the non-renewable energy sources prices, we observe that α+
BHP and

α−
BHP vary between 0.30 and 0.57.

In the renewable energy sources prices, we observe that α+
BHP and α−

BHP

vary between 0.20 and 0.50.

The results indicate universality in energy sources prices.
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Table 3.12: Non-renewable Energy Sources Prices-2
µ+

α−

BHP

µ−

α−

BHP

σ+

α+

BHP

σ−

α−

BHP

Crude Oil 0.11 0.12 0.06 0.06
Heating Oil 0.11 0.09 0.06 0.05
Propane 0.25 0.28 0.08 0.08
Gasoline 0.11 0.11 0.05 0.05
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Figure 3.41: Values of α+
BHP and α−

BHP in non-renewable energy sources
prices.

Table 3.13: Renewable Energy Sources and Products-1
α+
BHP α−

BHP P+

α+

BHP

P−

α+

BHP

D+

α+

BHP

D−

α−

BHP

Ethanol 0.20 0.26 0.02 0.46 0.070 0.034
Biodiesel 0.30 0.50 0.46 0.94 0.064 0.035
Corn 0.41 0.41 0.56 0.25 0.021 0.027
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Table 3.14: Renewable Energy Sources and Products-2
µ+

α+

BHP

µ−

α−

BHP

σ+

α+

BHP

σ−

α−

BHP

Ethanol 0.51 0.40 0.14 0.12
Biodiesel 0.56 0.35 0.16 0.14
Corn 0.16 0.17 0.07 0.07

0,2

0,3

0,41

0,26

0,5

0,41

0

0,1

0,2

0,3

0,4

0,5

0,6

Ethanol Biodiesel Corn

BHP -BHP

Figure 3.42: Values of α+
BHP and α−

BHP in renewable energy sources prices.
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3.6 Exchange Rates

In finance, the exchange rates (also known as the foreign-exchange rate,

forex rate or FX rate) between two currencies specify how much one cur-

rency is worth in terms of the other. It is the value of a foreign nation’s

currency in terms of the home nation’s currency. The foreign exchange mar-

ket is one of the largest markets in the world. We study the daily returns of

the following exchange rates: EURCHF Euro vs. Swiss franc (from March

1979 to January 2010) and EURJPY Euro vs. Japanese yen (from March

1979 to January 2010).

The results obtained for the different exchange rates that we analyzed

are presented in Tables 3.15, 3.16 and in Figure 3.43.

Table 3.15: Exchange Rates-1
α+
BHP α−

BHP P+

α+

BHP

P−

α+

BHP

D+

α+

BHP

D−

α−

BHP

EUR-CHF 0.38 0.42 0.05 0.02 0.021 0.024
EUR-JPY 0.58 0.52 0.03 0.01 0.023 0.028

Table 3.16: Exchange Rates-2
µ+

α+

BHP

µ−

α−

BHP

σ+

α+

BHP

σ−

α−

BHP

EUR-CHF 0.10 0.08 0.04 0.04
EUR-JPY 0.04 0.06 0.02 0.03

In the studied exchange rates, we observe that α+
BHP and α−

BHP vary between

0.38 and 0.58 and P+

α+

BHP

and P−

α−

BHP

are higher that 0.01, which can indicate

universality in these data series.
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Figure 3.43: Values of α+
BHP and α−

BHP in exchange rates.
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3.7 Conclusion

We used the Kolmogorov-Smirnov statistical test to compare the histogram

of the α positive fluctuations and α negative fluctuations with the trun-

cated Bramwell-Holdsworth-Pinton (BHP) probability density function. We

found that the parameters α+
BHP and α−

BHP for the positive and negative

fluctuations, respectively, vary mostly around 0.50. The fact that α+
BHP

is different from α−
BHP can be due to leverage effects. We presented the

data collapse of the corresponding fluctuations histograms to the BHP pdf.

Furthermore, we computed the analytical approximations of the pdf of the

normalized Ip index positive and negative returns in terms of the BHP pdf.

We showed the data collapse of the histogram of the positive and negative

returns to our proposed theoretical pdfs fBHP,Ip,+ and fBHP,Ip,−. We also

computed the analytical approximations of the pdf of the normalized pos-

itive and negative spot daily prices or daily returns r(t) of distinct energy

sources ES and exchange rates ER.

Since the BHP probability density function appears in several other dis-

similar phenomena (see, for example, [18, 24, 32, 33, 36, 57]), our results

reveal a universal feature of the stock market exchange. Furthermore, these

results lead to the construction of a new qualitative and quantitative econo-

physics model for the stock market based on the two-dimensional spin model

(2dXY) at criticality (see [31]) and to a new stochastic differential equation

model for the stock exchange market indices (see [53]) that provides a better

understanding of several stock exchange crises (see [54]).



Chapter 4

Modeling Human Decisions

In this chapter, we construct a model, using Game Theory, for the Theory

of Planned Behavior and we propose the Bayesian-Nash Equilibria as one

of many possible mechanisms to transform human intentions into behavior

decisions. We show that saturation, boredom and frustration can lead to

the adoption of a variety of different behavior decisions, as opposed to no

saturation, which leads to the adoption of a single consistent behavior de-

cision. Furthermore, we use the new game theoretical model to understand

the impact of the leaders in the decision-making of individuals or groups and

we study how the characteristics of the leaders have an influence over the

others’ decisions. We also apply the model to a students success example,

describing Nash equilibria and “herding” effects, identifying a hysteresis in

the process.
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4.1 Theory of Planned Behavior or Reasoned

Action

The Theory of Planned Behavior or Reasoned Action is summarized in Fig-

ure 4.1 (see [1]), where we observe that external variables are divided in three

categories: intrapersonal associated to individual actions; interpersonal as-

sociated to the interaction of the individual with others; and sociocultural

associated to social values. These external variables influence, especially,

the intermediate variables which are also subdivided in three major groups:

social norms, attitude, and self-efficacy. The social norms can be the opin-

ions, conceptions and judgments that others have about a certain behavior;

attitudes are personal opinions in favor or against a specific behavior; and

self-efficacy is the extent of ability to control a certain behavior. These

external and intermediate variables lead to a consequent intention to adopt

a certain behavior.

4.2 Platonic Idealized Psychological World

In the platonic idealized psychological model, inspired in Plato‘s world of

thoughts or of the intelligible reality, the individuals have no uncertainties

in their taste and crowding types and welfare function. We consider that

the individuals are pure in the sense that the external and intermediate

variables of the model are known, to all individuals.

In this model, the individuals will choose a certain behavior/group g ∈

G. Those choices will be done, taking in account their characteristics and
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Figure 4.1: Theory of Planned Behavior

personal preferences (taste type) and the other individuals observable char-

acteristics (crowding club vector). The goal is to present a decision mecha-

nism for the individuals, taking in account their and the others types.

Let us consider a finite number S of individuals. For each individual

s ∈ S, we distinguish two types of characteristics: taste type T : S → T

and crowding type C : S → C. We associate to each individual s ∈ S one

taste type T (s) = t ∈ T that describes the individual’s inner characteristics,

which are not always observable by the other individuals. We also associate

to each individual s ∈ S one crowding type C(s) = c ∈ C that describes the

individual’s characteristics observed by the others and that can influence the

welfare of the others. In accordance with the Theory of Planned Behavior

or Reasoned Action, we associate the intrapersonal external variables and

the attitude and self efficacy intermediate variables with the taste type, and
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the interpersonal and sociocultural external variables and the social norms

intermediate variable with the crowding type.

The individuals, with their own characteristics, can define a strategy

G : S → G, i.e. each individual s ∈ S chooses a behavior/group G(s). Each

strategy G corresponds to an intention in the Theory of Planned Behavior

(see [5]). Given a behavior/group strategy G : S → G, the crowding vector

m(G) ∈ (NC)G is the vector whose components mg
c = mg

c(G) determine the

number of individuals that choose behavior/group g with crowding type

c ∈ C, i.e.

mg
c = # {s ∈ S : G (s) = g ∧ C (s) = c} .

We denote by st,c the individual s with taste type t and crowding type c.

We measure the level of welfare, or personal satisfaction, that an individual

st,c acquires by choosing a behavior/group g ∈ G with crowding vector

m = m(G), using a utility function ut,c : G× (NC)G → R given by

ut,c(g,m) = V g
t,c +

∑

c′∈C

Ag,c′

t,c m
g
c′

where V g
t,c measures the satisfaction level that each individual st,c has in

choosing a behavior/group g ∈ G, and Ag,c′

t,c evaluates the satisfaction that

each individual st,c has with the presence of an individual with crowding

type c′ that chooses the same behavior/group g.

The strategy G∗ : S → G is a (pure) Nash Equilibrium behavior/group,

if given the choice options of all individuals, no individual feels motivated

to change his behavior/group choice, i.e. his utility does not increase by

changing his behavior/group decision (see A.A.Pinto [57]).
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The platonic idealized psychological model gives rise to a dictionary

between Game Theory and Theory of Planned Behavior that is summarized

in Figure 4.2 (see Almeida [4, 5]).

Figure 4.2: Theory of Planned Behavior / Platonic idealized psychological
world

We denote by S(t,c) the group of all individuals st,c with the same taste

type t ∈ T and the same crowding type c ∈ C. Let n(t, c) correspond to

the number of individuals in S(t,c).

Remark 1 An interesting way to interpret S(t,c) is to consider that n(t, c)

is the number of times that a single individual st,c has to take an action. In

this case, Ag,c
t,c > 0 can be interpreted as the individual positive reward by

repeating the same behavior/group choice g ∈ G, i.e. the individual st,c does

not feel a saturation effect by repeating the same choice. On the other hand,

Ag,c
t,c < 0 can be interpreted as the individual negative reward by repeating the



88 Modeling Human Decisions

same behavior/group choice g ∈ G, i.e. the individual st,c feels a saturation,

boredom or frustration effect by repeating the same choice.

4.2.1 Individuals that like to repeat the same behav-

ior (no-saturation)

In this section, we consider the hypothesis that Ag,c
t,c > 0. We exploit situ-

ations where no-saturation can lead to the adoption of a single consistent

behavior decision.

Lemma 4.2.1 Let G∗ be a Nash Equilibrium. Let Ag,c
t,c > 0, for every g ∈ G,

t ∈ T and c ∈ C. For every taste type t ∈ T and every crowding type

c ∈ C, all the individuals st,c ∈ S(t,c), with the same taste type and the same

crowding type, choose the same behavior/group G∗(st,c) = G∗(S(t,c)).

Remark 2 If Lemma 4.2.1 holds, considering that n(t, c) represents the

number of times that a same individual st,c has to take an action, one con-

cludes that the individual st,c does not have a negative reward by repeating

the same behavior/group choice and so has a single consistent behavior de-

cision.

Proof. Let us suppose that for a group strategy G : S → G individuals

with same taste type t and same crowding type c choose more than one

behavior/group. Let us denote by g the behavior/group choice where these

individuals st,c attain the highest welfare (does not need to be unique). Then

any individual st,c that chooses another behavior/group g′ by changing his

choice to the behavior/group g will increase his welfare because Ag,c
t,c > 0.

Hence G : S → G is not a Nash Equibrium behavior/group.
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4.2.2 Individuals that choose what they prefer

In this section, we exploit situations where individuals choose the behav-

ior/group that they prefer, independently of the influence of the others.

We define the worst neighbors WNg(t, c) of the individual st,c in choosing

the behavior/group g by

WNg(t, c) = V g
t,c +

∑

c′∈C,A
g,c′

t,c <0

Ag,c′

t,c

∑

t′∈T

n(t′, c′),

where V g
t,c represents the valuation of the individual st,c in choosing the

behavior/group g, and
∑

c′∈C,A
g,c′

t,c <0
Ag,c′

t,c

∑

t′∈T n(t′, c′) represents the worst

neighbors that the individual st,c can have for the same choice of behav-

ior/group g.

We define the best neighbors BNg(t, c) of the individual st,c in choosing

the behavior/group g by

BNg(t, c) = V g
t,c +

∑

c′∈C,A
g,c′

t,c >0

Ag,c′

t,c

∑

t′∈T

n(t′, c′),

where V g
t,c represents the valuation of the individual st,c in choosing the

behavior/group g and
∑

c′∈C,A
g,c′

t,c >0
Ag,c′

t,c

∑

t′∈T n(t′, c′) represents the best

neighbors that the individual st,c can have for the same choice of behav-

ior/group g.

Let gW = argmax{g∈G} WNg(t, c) andBN(t, c) = max{g∈G:g 6=gW } BNg(t, c).

Lemma 4.2.2 If WNgW (t, c) > BN(t, c) then G∗(St,c) = gW , for every

Nash Equilibrium G∗.
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We note that there is a value V0 such that Lemma 4.2.2 holds, for all V gW
t,c >

V0.

Remark 3 If Lemma 4.2.2 holds, considering that n(t, c) represents the

number of times that a same individual st,c has to take an action, one con-

cludes that the individual st,c chooses the same behavior/group gW , indepen-

dently of the Nash Equilibrium behavior/group considered.

Proof. Let us suppose, by contradiction, that G∗ is a Nash equilibrium,

such that, at least one individual st,c chooses the behavior/group g ∈ G \

{gw}. By construction of the best neighbors BN(t, c), the utility function

is bounded above by

ut,c(g,m) ≤ BNg(t, c) ≤ BN(t, c).

If the individual changes his behavior/group choice to gW , then by con-

struction of the worst neighbors WNgW (t, c), the utility function is bounded

below by

ut,c(gW ,m) ≥ WNgW (t, c).

Since WNgW (t, c) > BN(t, c), we get

ut,c(gW ,m) > ut,c(g,m),

which is a contradiction.
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4.2.3 Boredom and Frustration

In this section, we consider the hypothesis that Ag,c
t,c < 0. We exploit the

situations where boredom and frustration can lead to the adoption of a

variety of different behavior decisions.

We define the worst lonely neighbors WNLg(t, c) of the individual st,c

in choosing the behavior/group g by

WNLg(t, c) = V g
t,c + Ag,c

t,c +
∑

c′∈C,c′ 6=c,A
g,c′

t,c <0

Ag,c′

t,c

∑

t′∈T

n(t′, c′).

Let g1 = argmax{g∈G} WNLg(t, c) and g2 = argmax{g∈G:g 6=g1} WNLg(t, c).

We define the best lonely neighbors BNL(t, c) of the individual st,c by

BNL(t, c) = max
{g∈G:g1 6=gw 6=g2}

BNg(t, c)

Lemma 4.2.3 Let G∗ be a Nash Equilibrium, Ag1,c
t,c < 0 and Ag2,c

t,c < 0. If

BNL(t, c) < WNLg2(t, c)

and

Agi,c
t,c n(t, c) + BNgi(t, c) < WNLgj(t, c),

for every i, j ∈ {1, 2} with i 6= j, then G∗(St,c)∩g1 6= ∅ and G∗(St,c)∩g2 6= ∅.

Remark 4 If Lemma 4.2.3 holds, considering that n(t, c) represents the

number of times that a same individual st,c has to take an action, one
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concludes that the individual st,c splits his decision, at least, between the

behavior/groups g1 and g2, independently of the pure Nash Equilibrium be-

havior/group considered.

Proof. Let us suppose, by contradiction that G∗ is a Nash Equilibrium,

such that either

a) G∗(St,c) ∩ g1 = ∅ ∧ G∗(St,c) ∩ g2 = ∅; or

b) G∗(St,c) ∩ g1 6= ∅ ∧ G∗(St,c) ∩ g2 = ∅; or

c) G∗(St,c) ∩ g1 = ∅ ∧ G∗(St,c) ∩ g2 6= ∅

In case a), let st,c be an individual that chooses a behavior/group g ∈

G \ {g1, g2}. By construction of the best lonely neighbors BNL(t, c), the

utility function is bounded above by

ut,c(g,m) ≤ BNg(t, c) ≤ BNL(t, c).

If the individual st,c changes his behavior/group choice to g2 (or g1) then, by

construction the worst lonely neighbors WNLg2(t, c), the utility function is

bounded below by

ut,c(g2,m) ≥ WNLg2(t, c).

Since BNL(t, c) < WNLg2(t, c) we get

ut,c(g2,m) > ut,c(g,m),
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which is a contradiction.

In case b), either i) all the individuals choose the behavior group g1

or ii) there is at least one individual st,c that chooses a behavior/group

g ∈ G \ {g1, g2}. Case bii) does not occur and the proof follows similarly to

the proof of case a). In case bi), by construction of Ag1,c
t,c n(t, c) and of the

best neighbors BNg1(t, c), the utility function is bounded above by

ut,c(g1,m) ≤ Ag1,c
t,c n(t, c) + BNg1(t, c).

If this individual changes his behavior/group choice to g2, then by con-

struction of the worst lonely neighbors WNLg2(t, c), the utility function is

bounded below by

ut,c(g2,m) ≥ WNLg2(t, c).

Since

Ag1,c
t,c n(t, c) + BNg1(t, c) < WNLg2(t, c),

we get

ut,c(g2,m) > ut,c(g1,m),

which is a contradiction.

The proof of case c) follows similarly to the proof of case a).
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4.3 Cave Psychological Model

Our cave psychological world is inspired in Plato´s concrete world, where all

things are shadows of the intelligible reality in Plato´s world of thoughts.

This world consists of individuals whose taste and crowding types follow

the shadows of the idealized taste and crowding types according to a given

probability distribution. Furthermore, the individuals know their welfare

function just in expected value.

Let n be equal to the cardinality #S of S. Let us denote the individuals

in S by s1, ..., sn. We represent by E the set of all external variables e and

we represent by I the set of all intermediate variables i. The values of

the external and intermediate variables determine the taste type t and the

crowding type c of the individuals sl, by a map tl× cl : E ×I → T ×C given

by

(e, i) → (tl(e, i), cl(e, i)).

Let Vl : G×E×I → R be a map, where Vl(g, tl(el, il), cl(el, il)) measures

the satisfaction level that the individual sl, with external and intermediate

variables (el, il), has in choosing the behavior/group g. Let fl : (G × E ×

I)n → R be a map, where

fl(g1, ..., gn, tl(el, il); c1(e1, i1), ..., cn(en, in))

measures the satisfaction level that the individual sl has taking in account

the crowding types ck of the other individuals sk and their behavior/group

choices gk.
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The welfare ul : (G × E × I)n → R of the individual sl is given by the

utility function

ul(g1, ..., gn, e1, ..., en, i1, ..., in) =

Vl(gl, tl(el, il), cl(el, il)) + fl(g1, ..., gn, tl(el, il); c1(e1, i1), ..., cn(en, in)).

The shadow is the joint probability distribution P , of all the individuals

in S, with support contained in (E ×I)n, and Pl is the marginal probability

distribution, of the individual sl, with support contained in El × Il. Let

E(V, l, g) = EPl
[Vl(g, tl(el, il), cl(el, il))]

and

E(f, l, g1, ..., gn) = EP [fl(g1, ...gn, tl(el, il); c1(e1, i1), ..., cn(en, in))] .

The expected utility E(ul) of an individual sl ∈ S is given by

E(ul) = E(Vl, l, g) + E(f, l, g1, ..., gn)

In this way, when the individuals pass from the intention to the behav-

ior/group decision, the indetermination of their types is solved arbitrarily,

for incidental reasons or reasons that the individuals are not able to pre-

dict except in probability. Another possible construction is presented in [3]

where the individuals know their own taste and crowding types, but ignore

the external and intermediate variables of the other individuals, except in
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probability.

The strategy G∗ : S → G is a (pure) Bayesian-Nash Equilibrium, if

given the choice options of all individuals, no individual feels motivated to

change his behavior/group choice, i.e. his expected utility does not increase

by changing his behavior/group decision (see Pinto [57]).

The cave idealized psychological model gives rise to a dictionary between

Game Theory and Theory of Planned Behavior that is summarized in Figure

4.3.

Figure 4.3: Theory of Planned Behavior / Cave Psychological Model
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4.3.1 Individuals that like to repeat the same behav-

ior (no-saturation)

In this section, we exploit situations where no-saturation can lead to the

adoption of a single consistent behavior decision.

A class F ⊂ S is cohesive, if for every sl, sk ∈ F we have

EP [uk(g1, ...ĝk, ..., gn, e1, ..., en, i1, ..., in)] > EP [ul(g1, ..., gn, e1, ..., en, i1, ..., in)],

for every (g1, ..., gn) ∈ Gn and ĝk = gl.

Lemma 4.3.1 Let G∗ be a Bayesian-Nash Equilibrium. All the individuals

of a cohesive class F choose the same behavior/group G∗(F ) = G∗(sk), for

all sk ∈ F .

The proof of Lemma 4.3.1 follows similarly to the proof of Lemma 4.2.1.

When all the marginal probabilities Pl are Dirac masses and P is the

corresponding product measure, Lemma 4.2.1 is a sub-case of Lemma 4.3.1.

Remark 5 An interesting way to interpret the class F is to consider that

consists of a single individual sF ∈ S that has to take #F behavior/group

decisions. If Lemma 4.3.1 holds, the individual sF does not have a negative

reward by repeating the same behavior/group choice and so has a single

consistent behavior decision.
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4.3.2 Individuals that choose what they prefer

In this section, we exploit situations where individuals choose the behav-

ior/group that they prefer, independently of the influence of the others.

Let f+
l : G× (E × I)n → R be given by

f+
l (g; e1, ..., en, i1, ..., in) =

max{(g1,...,gn)∈Gn:gl=g} {0, fl(g1, ..., gn, tl(el, il); c1(e1, i1), ..., cn(en, in))} .

Let f−
l : G× (E × I)n → R be given by

f−
l (g; e1, ..., en, i1, ..., in) =

min{(g1,...,gn)∈Gn:gl=g} {0, fl(g1, ..., gn, tl(el, il); c1(e1, i1), ..., cn(en, in))} .

We define the shadow worst neighbors SWNg(l) of the individual sl that

chooses the behavior/group g by

SWNg(l) = E(V, l, g) + EP

[

f−
l (g; e1, ..., en, i1, ..., in)

]

We define the shadow best neighbors SBNg(l) of the individual sl that

chooses the behavior/group g by

SBNg(l) = E(V, l, g) + EP

[

f+
l (g; e1, ..., en, i1, ..., in)

]

Let gW (l) = argmax{g∈G} SWNg(l) and SBN(l) = max{g∈G:g 6=gW (l)} SBNg(l).
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Lemma 4.3.2 If SWNgW (l)(l) > SBN(l), then G∗(sl) = gW for every

Bayesian-Nash Equilibrium G∗.

The proof follows similarly to the proof of Lemma 4.2.2.

The class F ⊂ S is gW cohesive, if, for every sl ∈ F , gW (l) = gW and

SWNgW (l) > SBN(l).

Corollary 4.3.1 If a class F is gW cohesive then G∗(F ) = gW , for every

Bayesian-Nash Equilibrium G∗.

When all the marginal probabilities Pl are Dirac masses and P is the cor-

responding product measure, Lemma 4.2.2 is a sub-case of Corollary 4.3.1.

Remark 6 If Corollary 4.3.1 holds, considering that #F represents the

number of times that a individual sF has to take an action, one concludes

that the individual sF chooses the same behavior/group gW , independently

of the Nash Equilibrium behavior/group considered.

4.3.3 Boredom and Frustration

In this section, we exploit the situations where boredom and frustration can

lead to the adoption of a variety of different behavior decisions.

Let F ⊂ S and sl ∈ F . Let h−
l : G× (E × I)n → R be given by

h−
l (g; e1, ..., en, i1, ..., in) =

min{(g1,...,gn)∈Gn:gl=g∧gk 6=g,∀sk∈F\{sl}} {0, fl(g1, ..., gn, tl(el, il); c1(e1, i1), ..., cn(en, in))} .
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We define the worst family lonely neighbors WNFg(l) of the individual

sl in choosing the behavior/group g by

WNFg(l) = E(V, l, g) + EP

[

h−
l (g; e1, ..., en, i1, ..., in)

]

.

Let g1(l) = argmax{g∈G} WNFg(l) and g2(l) = argmax{g∈G:g 6=g1(l)}WNFg(l).

Let h+
l : G× (E × I)n → R be given by

h+
l (g; e1, ..., en, i1, ..., in) =

max{(g1,...,gn)∈Gn:gk=g,∀sk∈F} {0, fl(g1, ..., gn, tl(el, il); c1(e1, i1), ..., cn(en, in))} .

We define the best family lonely neighbors BNFg(l) of the individual sl

in choosing the behavior/group g by

BNFg(l) = E(V, l, g) + EP

[

h+
l (g; e1, ..., en, i1, ..., in)

]

.

Let SBN(l) = max{g∈G:g1(l) 6=g 6=g2(l)} SBNg(l).

The class F is (g1, g2) split, if, for every sl ∈ F , g1(l) = g1, g2(l) = g2,

SBN(l) < WNFg2(l) and BNFgi(l) < WNFgj(l), for every i, j ∈ {1, 2}

with i 6= j.

Lemma 4.3.3 Let F be a (g1, g2) split class. For every Bayesian-Nash

Equilibrium G∗, G∗(F ) ∩ g1 6= ∅ and G∗(F ) ∩ g2 6= ∅.
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The proof of Lemma 4.3.3 follows similarly to the proof of Lemma 4.2.3.

When all the marginal probabilities Pl are Dirac masses and P is the

corresponding product measure, Lemma 4.2.3 is a sub-case of Lemma 4.3.3

Remark 7 If Lemma 4.3.3 holds, considering that #F represents the num-

ber of times that the individual sF has to take an action, one concludes that

the individual sF splits his decision, at least, between the behavior/groups

g1 and g2, independently of the pure Nash Equilibrium behavior/group con-

sidered.

4.4 Leadership in a Game Theoretical Model

A leader is an individual who can influence others to choose a certain group/

behavior. We consider that the leader makes his group/behavior choice be-

fore the others, and therefore the others already know the leader’s decision

before taking their behavior/group decision. We study how the choice of

the leader stl,cl can influence the followers stf ,cf to choose the same behav-

ior/group g as the leader, see [2, 3].

The leaders and the followers are characterized by the parameters (α,R, V, L)

and we distinguish the following types:

• Altruist and individualist leaders. The leader stl,cl values V > 0 the

behavior/group g and can donate a part (1 − R)V to the followers.

The parameter R determines the fraction (1 − R)V of the good V

donated from the leader to the followers. After the donation, the new
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valuation of the leader stl,cl for the group g is V g

tl,cl
= RV . The altruist

leader is the one who distributes a valuation to the followers of the

behavior/group g, i.e. R < 1 and the individualist leader is the one

who gives a devaluation or debt to the followers of the behavior/group

g, i.e. R > 1.

• Consumption or wealth creation by the followers. We define α as the

parameter of the consumption or wealth creation on the valuation of

the good distributed by the leader to the followers. Therefore, the

new valuation of the followers stf ,cf to choose the behavior/group g is

given by

V g

tf ,cf
= V̄ g

tf ,cf
+

α(1−R)

n(tf , cf )
V,

where V̄ g

tf ,cf
corresponds to the previous valuation of the followers to

choose behavior/group g. There is wealth creation by the followers

when R < 1 and α > 1 or when R > 1 and 0 < α < 1. There is wealth

consumption by the followers when R < 1 and 0 < α < 1 or when

R > 1 and α > 1.

• Influent and persuasive leaders. The influence or persuasiveness of the

leaders stl,cl on the followers (tf , cf ) is measured by the parameter L.

We consider that

Ag,cl

tf ,cf
= L

corresponds to the satisfaction that the followers have by choosing

the same behavior/group as the leader. Alternatively, we consider

that Ag,cl

tf ,cf
= 0 and that the followers have a new valuation V g′

tf ,cf
=
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V g′

tf ,cf
−L when they choose the behavior/group g′ ∈ G\{g} under the

influence of the leader. If L < 0, the followers do not like to choose

the same behavior/group as the leader, but if L > 0, the followers like

to choose the same behavior/group as the leader.

We define the leader worst neighbors LWNg(t
f , cf ) of the individual

stf ,cf in choosing the behavior/group g by:

LWNg(t
f , cf ) =



























Ag,cf

tf ,cf
+

∑

c′∈C,A
g,c′

tf ,cf
<0

Ag,c′

tf ,cf

∑

t′∈T

n(t′, c′) if Ag,cf

tf ,cf
≥ 0

∑

c′∈C,A
g,c′

tf ,cf
<0

Ag,c′

tf ,cf

∑

t′∈T

n(t′, c′) if Ag,cf

tf ,cf
< 0

We define the leader best neighbors LBNg(t
f , cf ) of the individual stf ,cf

by:

LBNg(t
f , cf ) =



























∑

c′∈C,A
g,c′

tf ,cf
>0

Ag,c′

tf ,cf

∑

t′∈T

n(t′, c′) if Ag,cf

tf ,cf
≥ 0

Ag,cf

tf ,cf
+

∑

c′∈C,A
g,c′

tf ,cf
>0

Ag,c′

tf ,cf

∑

t′∈T

n(t′, c′) if Ag,cf

tf ,cf
< 0

Let

gW = argmax
{g∈G}

LWNg(t
f , cf )

and
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LBN(tf , cf ) = max
{g∈G:g 6=gW }

LBNg(t
f , cf )

Lemma 4.4.1 Let the leader stl,cl choose the behavior/group g ∈ G. If

α(1−R)

n(tf , cf )
V + L > LBN(tf , cf )− LWNgW (tf , cf )

then G∗(stf ,cf ) = gW , for every Nash equilibrium G∗.

Inequality above gives a sufficient condition, in the value of the donation

(1− R)V , in the influence and persuasion L of the leader and, also, in the

creation or consumption of wealth α by the followers, implying that the

followers choose the same behavior/group as the leader.

Proof. Let us suppose, by contradiction, that G∗ is a Nash equilibrium,

such that, at least one follower stf ,cf chooses the behavior/group g ∈ G \

{gw}. By construction of the leader best neighbors LBN(tf , cf ), the utility

function is bounded above by

utf ,cf (g,m) ≤ LBN(tf , cf )

If the follower changes his behavior/group choice to gW , then by construc-

tion of the leaders worst neighbors LWNgw(t
f , cf ), the utility function is

bounded below by

utf ,cf (gw,m) ≥
α(1−R)

n(tf , cf )
V + L+ LWNgw(t

f , cf ).
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Since α(1−R)
n(tf ,cf )

V + L > LBN(tf , cf )− LWNgW (tf , cf ), we get

utf ,cf (gW ,m) > utf ,cf (g,m),

which is a contradiction.

4.5 Game Theory in an Educational Context

In this example each student chooses a behavior/group. We consider two

different behavior/groups g ∈ {A,F} = G that correspond to results that

the students can have in the end of the academic year: A means that he

will approve and F means that he will fail, with some probability.

The students have preferences, over different behavior/group and over

the crowding profile of the other students in the same behavior/group, that

are described by the taste type. We consider a student community with

four taste types, t ∈ {tSW , tSN , tUW , tUN} = T , that can be defined by

considering two possibilities of different learning skills and previously sci-

entific knowledge obtained by the students, namely tSW , tSN , that corre-

spond to students with skills for success (S) and tUW , tUN correspond to

students without skills for success, that tend to be unsuccessful (U). The

taste types can also be defined by considering two possibilities of different

socializing behaviors, for instance, tSW , tUW (working-W), correspond to the

students that like to be with students that work/study more than average

and tSN , tUN (non-working-N), corresponds to the students that like to be

with students that work/study less than average.
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We consider that the choice of a behavior/group depends not only on the

characteristics of each student and their behavior/group valuation but also

on the characteristics of the other students that have chosen the same be-

havior/group. We refer these observable characteristics by crowding types.

In this example we consider four illustrative crowding types related with

the study frequency, namely c ∈ {CV , CF , CO, CR} = C. If a student has

a crowding type CV it means he studies very frequently, if a student has a

crowding type CF it means he studies frequently, if he has a CO crowding

type, he studies occasionally and with crowding type CR he rarely studies.

Overall, we can now consider four possibilities of different socializing

behaviors that we pass to describe: T = {tSW,CV
, tSN,CO

, tUW,CF
, tUN,CR

}.

Given the behavior/group g ∈ G, let us consider the crowding club

vector:

mg = {mg
CV ,m

g
CF ,m

g
CO,m

g
CR}

where mg
CV represents the number of students with crowding type CV that

choose the behavior/group g, mg
CF represents the number of students with

crowding type CF that choose the behavior/group g, mg
CO represents the

number of students with crowding type CO that choose the behavior/group

g, mg
CR represents the number of students with crowding type CR that

choose the behavior/group g.

Let us now introduce the payoff of the four taste types in the model.

Students of type tSW,CV
are students with skills for success that study more

than average. They also prefer to be with students that study very fre-
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quently.

utSW,CV
(g,mg) = V g

tSW
+mg

CV , V g
tSW

=







VtSW
if g = A

0 if g = F

Students of type tSN,CO
are students with skills for success that study less

than average. Furthermore, they prefer the company of students that study

occasionally or rarely.

utSN,CO
(g,mg) = V g

tSN
+mg

CO +mg
CR , V g

tSN
=







VtSN
if g = A

0 if g = F

Students of type tUW,CF
are students without skills for success that study

more than average. Furthermore, they prefer the company of students that

study frequently or very frequently.

utUW,CF
(g,mg) = V g

tUW
+mg

CF + (1 + α)mg
CV , α > 0,

V g
tUW

=







VtUW
if g = F

0 if g = A

Students of type tUN,CR
prefer to be with a group of students without skills

that study less than average. Furthermore, they prefer the company of

students that rarely study.

utUN,CR
(g,mg) = V g

tUN
+mg

CR , V g
tUN

=







VtUN
if g = F

0 if g = A

We can represent the utility function by

ut,c(g,m
g) = V g

t,c +
∑

c′∈C

Ag,c′

t,c m
g.
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The information concerning the satisfaction function is summarized in two

following tables: (A) a table of the behavior/group power V g
t,c in the wel-

fare/payoff of each student taste type t and (B) a table of the crowding type

influence Ag,c′

t,c in the welfare/ payoff of each student taste type t. For this

example the tables are described below:

A) The table of the behavior/group valuation in Figure 4.4 that shows

the welfare/profit of a student depending on his taste type:

Figure 4.4: Table of the behavior/group valuation

B) The table of the crowding type influence, in Figure 4.5 that shows

the positive or negative proportional effect of each crowding type for each

student depending on his taste type:
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Figure 4.5: Table of the crowding type influence



110 Modeling Human Decisions

The distribution of all students is characterized in the table of Figure 4.6,

where for each pair (t,c) we consider the corresponding number of students

n(t,c) :

Figure 4.6: Table of the distribution of all students

Given the utility function we can now determine the Nash equilibria. Study-

ing all the cases we obtain four different equilibria, as we pass to describe.

We will assume from now on that:

H1 : n(tUN) ≤ VUN

and

H2 : n(tSW ) ≤ VSW

and consider that S(t,c) represents the students s ∈ S with taste type t ∈ T

and crowding type c ∈ C.

Lemma 7: Under hypothesis H1 and H2, for every Nash Equilib-
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rium G∗, G∗(s) = F , for every s ∈ S(tUN ,cR) and G∗(s) = A, for every

s ∈ S(tSW ,cV ).

Hence, from the Nash Equilibrium point of view, we have some students

with permanent choice of behavior/group, and we assume that the students

with taste type tUN and crowding type cR always choose behavior/group

F and students with taste type tSW and crowding type cV always choose

behavior/group A, under H1 and H2.

Lemma 8 (Students of types tUW and tSN prefer what they like) : If

n(tUN) < VtSN
+ n(tSN) and (1 + α)n(tSW ) < VtUW

+ n(tUW ) then there

is a Nash Equilibrium G∗ such that G∗(s) = A for every s ∈ S(tSN ,cO) and

G∗(s) = F for every s ∈ S(tUW ,cF ).

In this case (Figure 4.7) the determinating factor for students of type

tUW is the valuation of the behavior/group and not the members of the

behavior/group. For students of type tSN the determinating factor is also

the valuation of the behavior/group and not the members of the behav-

ior/group. Then the students of type tUW choosing behavior/group F and

the students of type tSN choosing behavior/group A form a Nash Equilib-

rium.

Lemma 9 (Students of type tSN prefer who they like): If n(tUN) +

n(tSN) > VtSN
and (1 + α)n(tSW ) ≤ VtUW

+ n(tUW ) then there is a Nash

Equilibrium G∗ such that G∗(s) = F for every s ∈ S(tSN ,cO) and G∗(s) = F
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Figure 4.7: Students of types tUW and tSN prefer what they like

for every s ∈ S(tUW ,cF ).

In this case (Figure 4.8) the determinating factor for students of type

tUW is the valuation of the behavior/group and not the members of the

behavior/group, but for students of type tSN the determinating factor are

the members of the behavior/group and not the valuation of the behav-

ior/group. Then the students of type tUW choosing behavior/group F and

the students of type tSN choosing behavior/group F form a Nash Equilib-

rium.

Lemma 10 (Students of type tUW prefer who they like): If n(tUN) <

VtSN
+ n(tSN) and (1 + α)n(tSW ) + n(tUW ) ≤ VtUW

then there is a Nash

Equilibrium G∗ such that G∗(s) = A for every s ∈ S(tSN ,cO) and G∗(s) = A

for every s ∈ S(tUW ,cF ).

In this case (Figure 4.9) the determinating factor for students of type
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Figure 4.8: Students of type tSN prefer who they like

tUW are the members of the behavior/group and not the valuation of the

behavior/group, but for students of type tSN the determinating factor is

the valuation of the behavior/group and not the members of the behav-

ior/group. Then the students of type tUW choosing behavior/group A and

the students of type tSN choosing behavior/group A form a Nash Equilib-

rium.

Figure 4.9: Students of type tUW prefer who they like
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Lemma 11 (Students of types tUW and tSN prefer who they like) If

n(tUN) + n(tSN) > VtSN
and (1 + α)n(tSW ) + n(tUW ) ≤ VtUW

then there

is a Nash Equilibrium G∗ such that G∗(s) = F for every s ∈ S(tSN ,cO) and

G∗(s) = A for every s ∈ S(tUW ,cF ).

In this case (Figure 4.10) the determinating factor for students of type

tUW are the members of the behavior/group and not the valuation of the

behavior/group, and the same happens for students of type tSN . Then the

students of type tUW choosing behavior/group A and the students of type

tSN choosing behavior/group F form a Nash Equilibrium.

Figure 4.10: Students of types tUW and tSN prefer who they like

Hence, we can have an “herding” effect in students of types tUW and

tSN as we pass to explain:

• Herding Effect in students of type tUW

Herding from F to A : Suppose that (1 + α)n(tSW ) ≤ n(tUW ) + V (tUW )
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Figure 4.11: Herding Effect in students of type tUW

and that tUW ⊂ F , a small increase in n(tSW ) and n(tUW ) or decrease in

valuation V (tUW ) can alter the above inequality to > leading tUW to change

as a herd his choice from behavior/group F to behavior/group A.

Herding from A to F : Suppose that (1 +α)n(tSW ) + n(tUW ) > V (tUW )

and that tUW ⊂ A, a small decrease in n(tSW ) and n(tUW ) or increase in

valuation V (tUW ) can alter de above inequality to < (less than) leading tUW

to change as a herd his choice from A behavior/group to behavior/group F.

• Herding Effect in students of type tSN

Figure 4.12: Herding Effect in students of type tSN

Herding from F to A : Suppose that n(tUN)+n(tSN) > V (tSN) and that

tSN ⊂ F , a small decrease in n(tSN) and n(tUN) or increase in valuation

V (tSN) can alter the above inequality to < leading tSN to change as a herd

his choice from behavior/group F to behavior/group A.
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Herding from A to F : Suppose that n(tUN) < n(tSN)+V (tSN) and that

tSN ⊂ A, a small increase in n(tSN) and n(tUN) or decrease in valuation

V (tSN) can alter the above inequality to > leading tSN to change as a herd

his choice from behavior/group A to behavior/group F.

4.6 Conclusion

We constructed two game models for the theory of Planned Behavior or

Reasoned Action. The first model, the platonic idealized psychological

model, consists of individuals with no uncertainties in their taste and crowd-

ing types and welfare function. The second model, the cave psychological

model, consists of individuals whose taste and crowding types follow the

shadows of the taste and crowding types of the platonic idealized psycho-

logical model, according to a given probability distribution. Furthermore,

the individuals know only the expected value of their welfare function. In

both models, we presented sufficient conditions for an individual or group

to adopt a certain behavior decision according to both the Nash and the

Bayesian-Nash Equilibria. We demonstrated how saturation, boredom and

frustration can lead to the adoption of a variety of different behavior deci-

sions and how no saturation can lead to the adoption of a single consistent

behavior decision. We studied how the characteristics of the leaders have

influence over other individual’s decisions. We presented a students suc-

cess model, described Nash equilibria and “herding” effects, identifying a

hysteresis in the process.
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[29] Gonçalves, R., Ferreira, H. and Pinto, A. A., Universality in PSI20

fluctuations. in: Dynamics, Games and Science I. Eds: M. Peixoto, A.

A. Pinto and D. A. Rand. Proceedings in Mathematics series, Springer-

Verlag (accepted in 2010).
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