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1. Introduction

As an exquisitely social species humans are experts in cooperating with others when trying to
achieve the goals of a common task (Sebanz, Bekkering, & Knoblich, 2006). In our everyday social
interactions we continuously monitor the actions of our partners, interpret them in terms of their
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outcomes and adapt our own motor behavior accordingly. Imagine for instance the joint action task of
preparing a dinner table. The way a co-actor grasps a certain object (e.g., a coffee cup) or the context in
which the motor act is executed (e.g., the cup may be empty or full) transmits to the observer impor-
tant information about the co-actor’s intention. Depending on the grip type, for instance, she/he may
want to place the cup on the table or, alternatively, may have the intention to hand it over. Knowing
what the other is going to do should facilitate motor programmes in the observer that serve the
achievement of shared goals. Fluent and efficient coordination of actions among co-actors in a familiar
task requires that the preparation of an adequate complementary action is a rather automatic and
unconscious process. Since in sufficiently complex situations several possible complementary behav-
iors may exist this process necessarily includes a decision-making operation.

The long-term goal of our research group is to build robots that are able to interact with users in
the same way as humans interact with each other in common tasks. Our research strategy to achieve
this challenging objective is to develop and test control architectures that are strongly inspired by
neuro-cognitive mechanisms underlying human joint action. We believe that implementing a hu-
man-like interaction model in an autonomous robot will greatly increase the user’s acceptance to
work with an artificial agent since the co-actors will become more predictable for each other (for a
survey of challenges for socially interactive robots see Fong, Nourbakhsh, and Dautenhahn (2003)).
Such an interdisciplinary approach constitutes not only a promising line of research towards hu-
man-centered robots but also offers unique possibilities for researchers from neuroscience and cogni-
tive science. Synthesizing cooperative behavior in an artificial but naturally inspired cognitive system
allows them in principle to test their theories and hypothesis about the mechanisms supporting social
interactions (Dominey & Warneken, in press).

The focus of this paper is on flexible action planning and decision formation in cooperative human-
robot interactions that take into account the inferred goal of the co-actor and other task constraints.
An impressive range of experimental evidence accumulated over the last two decades supports the
notion that a close perception-action linkage provides a basic mechanism for real-time social interac-
tions (Newman-Norlund, Noordzij, Meulenbroek, & Bekkering, 2007; Wilson & Knoblich, 2005). A key
idea is that action observation leads to an automatic activation of motor representations that are asso-
ciated with the execution of the observed action. It has been suggested that this resonance of motor
structures supports an action understanding capacity (Blakemore & Decety, 2001; Fogassi et al., 2005;
Rizzolatti, Fogassi, & Gallese, 2001). By internally simulating action consequences using his own motor
repertoire the observer may predict the consequences of others’ actions. Direct physiological evidence
for such a perception-action matching system came with the discovery of the mirror neurons first de-
scribed in premotor cortex of macaque monkey (for a review see Rizzolatti and Craighero (2004)). Mir-
ror neurons are a particular class of visuomotor neurons that are active both during the observation of
goal-directed actions such as reaching, grasping, holding or placing an object and during the execution
of the same class of actions. Although action understanding is the dominant hypothesis about the
functional role of the motor resonance mechanism it has been suggested that it may also contribute
to motor planning and action preparation. Typically it is assumed that a direct activation of the cor-
responding motor program explains the evidence found in many behavioral experiments for a ten-
dency of an automatic imitation of observed actions (e.g., Brass, Bekkering, & Prinz, 2001, for a
review see Wilson & Knoblich, 2005). Such a tendency is of course not beneficial for cooperative joint
action which normally requires the facilitation of a complementary motor behavior. Recent findings in
neuroimaging and behavioral studies provide evidence however that goal and context representations
may link an observed action to a different but functionally related motor response (Newman-Norlund,
van Schie, van Zuijlen, & Bekkering, 2007; van Schie, van Waterschoot, & Bekkering, 2008). These stud-
ies clearly demonstrate that the mapping between action observation and action execution is much
more flexible than previously thought.

Here we present a dynamic model that implements such a flexible perception-action linkage as a
means to achieve an efficient coordination of actions and decisions between co-actors in a joint action
task. We report results of our ongoing evaluation of the model as part of the control architecture of a
humanoid robot that assembles together with a human user a toy object from its components (Bicho,
Louro, Hipolito, & Erlhagen, 2008, 2009).
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The model is based on the theoretical framework of Dynamic Neural Fields (DNFs) that has been
originally proposed to explain the firing patterns of neural populations in the cortex (Amari, 1977;
Wilson & Cowan, 1973; see also Grossberg (1973) for a related approach). The architecture of this
model family reflects the hypothesis that strong recurrent interactions in local pools of neurons form
a basic mechanism of cortical information processing. DNFs have been first introduced into the motor
domain as neuro-inspired models of sensorimotor decisions in simple reaching and saccadic eye
movement tasks (Erlhagen & Schéner, 2002; Schoner, Kopecz, & Erlhagen, 1997; Wilmzig, Schneider,
& Schoner, 2006). In these applications, the dynamic fields represent parameters of the movement
such as for instance extent and direction. The neural activation patterns encoding these parameters
evolve continuously in time under the influence of inputs representing sensory evidence and prior
task knowledge but are mainly shaped by the interplay of local-excitatory and long-range inhibitory
interactions within the population. Due to the recurrent interactions, the patterns may become
self-stabilized in the absence of any external input. Such stable states of the field dynamics reflect
decisions between multiple movement alternatives since a competition process mediated by lateral
inhibition leads to a suppression of activation in neural pools that are less supported by input from
external sources.

Here we apply the basic concepts of DNF-models to address the problem of selecting a specific
action among a set of possible complementary behaviors. The competing neural populations in the
model thus encode entire object-directed motor acts like reaching, grasping, placing or combinations
of these motor primitives. The hight level of abstraction of the neural representations fits well to the
fundamental properties of most mirror neurons that encode the goal of an action (e.g., the effector
interacts with the object in an efficient way) independent of the fine details of the movement
kinematics (Rizzolatti & Craighero, 2004). Of particular interest is a class of mirror neurons that re-
veals a broad matching between action observation and execution (e.g., involving different effector
and/or postures), which could in principle support a flexible perception-action coupling in cooperative
settings (Newman-Norlund, van Schie et al., 2007).

The DNF-model of joint action extends our previous modeling work on action understanding and
goal-directed imitation (Erlhagen, Mukovskiy, & Bicho, 2006a, 2006b; Erlhagen, Mukovskiy, Chersi, &
Bicho, 2007). It consists of a multi-layered network of reciprocally connected neural populations that
represent in their activation patterns specific task-relevant information. Decision making in the joint
assembly task is implemented as a dynamic process that continuously integrates over time informa-
tion about the inferred goal of the co-actor (obtained through motor simulation), shared knowledge
about what the two actors should do (construction plan), and contextual information (e.g., the spatial
distribution of objects in the working area). For generating the overt motor behavior of the robot in the
joint construction scenario, we apply a posture-based motor planning and execution model. It trans-
lates the abstract decision about a complementary action (e.g., grasping an object to hold it out for the
partner) into a realistic, collision-free trajectory.

The paper is organized as follows: Section 2 introduces the joint construction task and briefly de-
scribes the robotic platform used for the human-robot interaction experiments. Section 3 gives an
overview of the motor planning model that we have used to generate the overt behavior of the robotic
arm and hand. Section 4 gives an overview of the model for decision making in joint action. Section 5
presents the basic concepts of the Dynamic Neural Field framework and summarizes the DNF-based
implementation of the joint action model. The selection of appropriate complementary actions in dif-
ferent joint action contexts are described in the results Section 6. The paper ends with a discussion of
results, concepts and future research.

2. Joint construction task

To validate the dynamic field model of joint action we have chosen a task in which a robot collab-
orates with a human in constructing a toy object from components that are initially distributed on a
table (Fig. 1).

The task requires only a limited number of different motor behaviors to be performed by the team
but is complex enough to show the impact of goal inference, shared task knowledge and context on
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Fig. 1. Human-robot joint action scenario. The task for the team is the joint construction of a toy object.

action selection. The components that have to be manipulated by the robot were designed to limit the
workload for the vision and the motor system of the robot. The toy object consists of a round platform
with an axle on which two wheels have to be attached and fixed with a nut. Subsequently, 4 columns
have to be plugged into holes in the platform. The placing of another round object on top of the col-
umns finishes the task. It is assumed that each teammate is responsible to assemble one side of the
toy. Since the working areas of the human and the robot do not overlap, the spatial distribution of
components on the table obliges the team to coordinate in addition to handing-over sequences. It is
further assumed that both partners know the construction plan and keep track of the subtasks which
have been already completed by the team. As part of the dynamic control architecture, the plan is
implemented based on the concepts of the dynamic field theory. Hand-designed connections between
populations encoding subsequent subtasks define the logical order of the assembly work (for more de-
tails see Section 4). Since the desired end state does not uniquely define this order, at each stage of the
construction the execution of several subtasks may be simultaneously possible. The main challenge for
the team is thus to efficiently coordinate in space and time the decision about actions to be performed
by each of the co-actors.

For the experiments we used a robot built in our lab (Silva, Bicho, & Erlhagen, 2008). It consists of a
stationary torus on which an arm with 7 degrees of freedom and a 3-fingered hand, and a stereo cam-
era head are mounted. A speech synthesizer allows the robot to communicate the result of its reason-
ing and decision processes to the human user. The information about object type, position and pose as
well as about the state of the construction is provided by the camera system. The object recognition
combines color-based segmentation with template matching derived from earlier learning examples
(Westphal, von der Malsburg, & Wiirtz, 2008). The same technique is also used for the classification of
object-directed, static hand postures such as grasping and communicative gestures such as pointing or
demanding an object.

3. Movement planning

For the human-robot experiments, a decision of the robot to execute a specific complementary ac-
tion has to be translated into a fluent, smooth and collision-free arm trajectory. A complementary
behavior may consist of a simple pointing towards a target object, but may also involve more complex
movements such as grasping a component with a specific grip or attaching different components of
the toy object to each other. These goal-directed movements define the motor repertoire of the robot
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in the construction task. To generate complete temporal motor behaviors of the robotic arm and hand
we use an approach that is inspired by the posture model of Rosenbaum and colleagues (Meulenbroek,
Rosenbaum, Jansen, Vaugham, & Vogtn, 2001; Rosenbaum, Meulenbroek, Vaugham, & Jansen, 2001).
This model has been proven to generate different types of realistic movements such as reaching,
grasping and manipulation of objects, and presents an elegant obstacle avoidance mechanism. The
posture model was first introduced for planar movements and was recently extended to the planning
in a 3D workspace (Vaugham, Rosenbaum, & Meulenbroek, 2006). A key assumption is that the plan-
ning of movements in joint space can be divided into two sub-problems: end posture selection and
trajectory selection. Here we give an overview of the implementation of this two-step planning pro-
cess in the robot. The model has been described with more technical details elsewhere (Costa e Silva,
Bicho, Erlhagen, & Meulenbroek, submitted). The planning system first selects a goal posture from the
set of all postures that (1) allows an object to be grasped without collision with any obstacle, and (2)
minimizes the displacement costs from the beginning to the end of the movement. Mathematically,
the selection process can be formalized as a nonlinear constraint optimization problem. It is numer-
ically solved taking into account the information about object type, position and orientation (provided
by the vision system), as well as the information represented by the activation patterns in the dynamic
field model about grip type and hand orientation relative to the object. Subsequently, the trajectory is
selected by computing for each of the 10 joints of the robotics arm and hand its trajectory, i.e., time
history of position, velocity and acceleration, from initial to end posture. Since the minimum jerk prin-
ciple is applied (Flash & Hogan, 1985), the movements of the joint follow a bell-shaped velocity profile,
resulting in a smooth straight-line movement in joint space. This joint trajectory defines the direct
movement without checking if an obstacle blocks a certain area in posture space. To detect potential
collision with an intermediate obstacle, the object to be grasped or a target object, the planning sys-
tem uses direct (forward) kinematics to internally simulate movement execution from start to end. If
no collision is anticipated, the movement is executed, otherwise the system searches for a feasible
movement. For finding this alternative a suitable bounce posture is selected. This bounce posture
serves as a subgoal for a back-and-forth movement, which is superimposed on the direct movement.
The end posture that is finally reached is the same as for the direct movement, only the selected path
differs to guarantee collision avoidance. The bounce posture is found by solving a similar constrained
optimization problem as applied for the end posture. It minimizes the displacement of the joints. To
generate the movement, the desired joint position and time interval, given by the planning model, is
sent to the low-level arm and hand controllers, using the high-level interface functions provided by
the manufacturer (AMTEC/SCHUNK and BARRETT Technology, respectively). They guarantee that
the planned trajectory is executed in the desired time interval. The real-time interaction experiments
with human users show that the movements of the robot are perceived as smooth and goal-directed
but slower compared to human motion. Moreover, a direct comparison with human data in reach to
grasp tasks reveals that the generated arm and hand trajectories reflect several characteristics ob-
served in biological motion such as for instance a biphasic tangential velocity profile or a maximum
grip aperture that occurs during the second half of the movement (Lommertzen, Costa e Silva,
Cuijpers, & Meulenbroek, 2008).

4. Model overview

Fig. 2 presents a sketch of the DNF-based architecture for decision making in cooperative joint ac-
tion. It consists of various layers each containing one or more neural populations encoding informa-
tion specific to the construction task (a detailed description of the labels in each layer is given
in the Supplemental material). The lines indicate the connectivity between individual populations
in the network. Basically, the architecture implements a flexible mapping from an observed action
of the co-actor onto a complementary motor behavior.

The multi-layered architecture extends a previous DNF-model of the STS-PF-F5 mirror circuit of
monkey (Erlhagen et al., 2006a) that is believed to represent the neural basis for a matching between
the visual description of an action in area STS and its motor representation in area F5 (Rizzolatti &
Craighero, 2004). This circuit supports a direct and automatic imitation of an action performed by
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Fig. 2. Joint action model. It implements a flexible mapping from observed actions (layer AOL) onto complementary actions
(layer AEL) taking into account the inferred action goal of the partner (layer IL), contextual cues (layer OML) and shared task
knowledge (layer CSGL). The goal inference capacity is based on motor simulation (layer ASL).

another individual. Importantly for joint action, however, the model allows also for a flexible percep-
tion-action coupling by exploiting the existence of object-directed action chains in the middle layer PF
(Fogassi et al., 2005) that are linked to the representations of their final goals or outcomes in prefrontal
cortex (PFC). The automatic activation of a particular chain during action observation (e.g., reaching-
grasping-placing) drives the connected goal representation which in turn may bias the decision pro-
cesses in layer F5 towards the selection of a complementary rather than an imitative action. Consistent
with this model prediction, a class of mirror neurons has been reported in F5 for which the effective
observed and effective executed actions are logically related (e.g., implementing a matching between
placing an object on the table and bringing the object to the mouth (di Pellegrino, Fadiga, Fogassi, Gal-
lese, & Rizzolatti, 1992)). For the robotics work we refer to the three layers of the matching system as
the action observation (AOL), action simulation (ASL) and action execution (AEL) layers, respectively.
An observed object-related hand movement that is recognized by the vision system as a particular
primitive is represented in AOL. In the action simulation layer (ASL) populations encode entire chains
of action primitives that are in the motor repertoire of the robot (e.g., reaching-grasping-placing/
attaching a particular part) or communicative hand gestures (e.g., pointing towards or requesting a
part). They are connected to population representations of the associated end states or goals in the
intention layer IL (e.g., right wheel attached). The activation of a particular chain during action obser-
vation thus allows the robot to predict the co-actor’s motor intentions by internally simulating the ac-
tion outcomes. Very often, however, the observation of a particular motor act alone (e.g., grasping) is
not sufficient to make this prediction since the motor act may be part of several chains. To solve this
ambiguity, the neural populations in ASL get additional inputs from connected populations represent-
ing situational context and/or prior task knowledge about what the co-actor should do in a particular
situation. An important contextual cue is the spatial distribution in the workspace of parts necessary
for the assembly work. The object memory layer (OML) encodes memorized information about the
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position of these parts in each of the two working areas, separately for each object type. The common
subgoals layer (CSGL) encodes the currently available subgoals as well as the subtasks that have been
already accomplished by the team. The available subgoals are continuously updated based on feed-
back from the vision system in accordance with the construction plan. The information about the
sequential order in which subtasks have to be accomplished (e.g., attach right wheel first and subse-
quently fix it with a nut) is encoded in the synaptic links between populations representing these sub-
goals in two different neural fields (indicated with labels ‘present’ and ‘next’ in layer CSGL, see Fig. 2).
Input from the vision system signaling the achievement of a certain subtask activates the respective
population representation in the first layer which in turn drives through the connections the popula-
tions representing the next possible assembly steps in the second layer. To guarantee pro-active
behavior of the robot, the model implements the possibility to update the current subgoals also based
on input from IL representing the predicted motor intention of the co-actor. This allows the robot to
start preparing an action serving a subsequent goal (e.g., transferring a nut to the co-actor for fixing
the wheel) ahead of the realization of the preceding subtask (e.g., co-actor is going to attach right
wheel). In the action execution layer (AEL) populations that encode the same action sequences and
communicative gestures like the ASL compete for expression in overt behavior. They integrate input
from the IL, OML and CSGL.

To give an example of the dynamic decision making process implemented in the field architecture,
think of the situation that the co-actor reaches towards a wheel in his working area. The wheel on his
construction side has been already attached, but not the wheel on the side of the observer. The avail-
able information about active and already accomplished subtasks together with the observed hand
motion activates automatically the chain representation of a ‘reach-grasp wheel-handover’ behavior
in the ASL which subsequently activates the motor intention ‘handover wheel’ in the IL. As a conse-
quence, the robot may prepare at the time of the reaching for receiving the wheel. Now imagine that
the same motor act is observed at the start of the construction, that is, the wheel on the co-actor’s side
has not been attached yet. Consequently, specific input from CSGL in support of the object transfer
hypothesis is missing. Now input from the AOL representing the type of the observed grasping behav-
ior (top versus side grip) may decide which of the two possible chains associated with different motor
intentions may become activated. A top grip (i.e., a grip from above) is usually used for directly attach-
ing the wheel, whereas grasping from the side is the most secure way to hand over the wheel to the
partner. In the latter case, the robot will prepare a complementary grasping behavior to receive the
wheel. In the former case, an adequate complementary behavior of the robot might be to reach for
a wheel in its workspace to attach it on its construction side.

5. Model details: Basic concepts of dynamic neural field theory

Each layer of the model is formalized by one or more Dynamic Neural Fields (DNFs). The DNFs
implement the idea that task-relevant information about action goals, action primitives or context
is encoded by means of activation patterns of local populations of neurons. In the action observation
layer for instance, high levels of activation of a neural pool representing a certain grasping behavior
means that the specific grip type has been detected and classified by the vision system whereas a
low activation level indicates that information about the specific grip type is currently not processed
(see Fig. 3, top).

As shown in the bottom panel of Fig. 3, the activation patterns are initially triggered by input from
connected populations and/or sources external to the network like for instance the vision system. In
the example, the input to the population representing an above grip is stronger compared to the input
to the population representing a side grip.

The activation patterns may become self-sustained in the absence of any input due to the recurrent
interactions within the local populations. To guarantee the existence of self-stabilized solutions of the
field dynamics, the pattern of recurrent interactions between cells must be spatially structured with
excitation dominating at small and inhibition at larger distances. The distance between neurons may
be defined in anatomical space (as in the original work by Wilson and Cowan (1973) and Amari
(1977)) or in a more abstract space given by some feature dimension that the neurons encode (e.g.,
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neural field activation

input

above grip side grip

Fig. 3. Top panel: Representation of information in the dynamic field framework for the example of a grasping behavior (top
panel). Activation patterns may represent through a localized peak of activation with an excitation level above a certain
threshold (dotted line) the presence of information about a certain grasping behavior (above grip). Low excitation levels
indicate that information about the alternative grasping behavior (side grip) is currently not processed. Bottom panel: The
activation patterns of the neural populations are initially triggered by external input which may come from connected
populations or like in the example from the vision system.

movement direction or direction in visual space). For high-dimensional spaces representing for in-
stance different grasping behaviors the metric distance is not directly observable. However, it may still
be defined operationally by the degree of overlap between their neural representations. For function-
ally distinct behaviors associated with the achievement of different goals, we assume that they are
represented by separate neural sub-populations (all able to self-sustain high levels of activation) lo-
cated at a distance that guarantees a purely inhibitory interaction between the neurons of these pools.
For the modeling we employed a particular form of a DNF first analyzed by Amari (1977). In each
model layer i, the activity u;(x, t) at time t of a neuron at field location x is described by the following
integro-differential equation (for an overview of analytical results see Erlhagen and Bicho (2006)):

ou;(x,t)

R

= —ui(x, t) + Si(x, t) + /Wi(x —X)fi(u(x', ))dx — (1)
where 7; > 0 and h; > 0 define the time scale and the resting level of the field dynamics, respectively.
The integral term describes the intra-field interactions. It is assumed that the interaction strength,
w;(x,x'), between any two neurons x and x' depends only on the distance between field locations.
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Fig. 4. (a) Nonlinear output function f(u) of sigmoid shape with threshold u,. (b) Synaptic weight function w(Ax), Ax = x — x/, of
center-surround type. The recurrent interactions are excitatory for neighboring neurons, whereas for larger distances inhibition

dominates.

For the present implementation we used the following weight function of lateral-inhibition type
(Fig. 4b):

Wi(X = X') = A exp(—(x = X)*/207) — Winhi 2)
where A; > 0 and ¢; > 0 describe the amplitude and the standard deviation of a Gaussian, respectively.
For simplicity, the inhibition is assumed to be constant, Wiu»; > 0, meaning that integration of inhib-

itory input does not change with distance between field sites. Only sufficiently activated neurons con-
tribute to interaction. The threshold function f;(u;) is chosen of sigmoidal shape with slope parameter

B and threshold u, (Fig. 4a):
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Fig. 5. Bi-stable system: In response to weak input the dynamic field generates an input driven activation pattern (dashed line).
When the input drives the field activation beyond a threshold value the homogeneous state (solid line) looses stability and a

self-stabilized activation pattern evolves (dashed-dotted line).
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As illustrated in Fig. 5, the model parameters are adjusted to guarantee that the field dynamics is
bi-stable (Amari, 1977), that is, the attractor state of a self-stabilized activation pattern (dashed-dot-
ted line) coexists with a stable homogenous activation distribution (solid line) that represents the ab-
sence of specific information (resting level). If the summed input, S;(x,t), to a local population is
sufficiently strong to drive the field activation beyond a certain threshold, the homogeneous state
loses stability and a localized pattern in the dynamic field evolves. Weaker external signals lead to
a subthreshold, input-driven activation pattern (dashed line) in which the contribution of the interac-
tions is negligible.

Normally, a constant input from a single population does not drive directly connected populations.
It may play nevertheless an important role for the processing in the joint action circuit. The preshaping
by weak input brings populations closer to the threshold for triggering the self-sustaining interactions
and thus biases the decision processes linked to behavior. Much like prior distributions in the Bayesian
sense, multi-modal patterns of subthreshold activation in for instance the action execution layer (AEL)
may represent the probability of different complementary actions (Erlhagen & Schéner, 2002).

The summed input from connected fields v is given as Si(x, t) = k>_,Si(x, t). The parameter k scales
the total input relative to the threshold for triggering a self-sustained pattern. This guarantees that the
inter-field coupling is weak and the field dynamics is dominated by the recurrent interactions. The in-
put from each connected field u; is modeled by Gaussian functions. As shown in Fig. 6, the input from a
connected population j in layer u; to a target population m in layer u; is modeled by a Gaussian
function. This input is applied whenever the activation in population j is beyond the threshold for a
self-stabilized activation peak. The total input from all sub-populations in field u; to field u; is
mathematically described by:

SIxt) =" > amicyj(t) exp(—(x — xm)*/20?). (4)
m ]

Here cj(t) is a function that signals the existence or evolution of a self-sustained activation pattern in
field u; centered at position y; (i.e., signals that subpopulation j in u is active), and ay; is the inter-field
synaptic connection between subpopulation j in u; to subpopulation m in u;.

The existence of a self-stabilized activation peak in a dynamic field is closely linked to decision
making. In layers ASL, IL and AEL subpopulations encoding different chains (ASL), goals (IL) and com-
plementary actions (AEL), respectively, interact through lateral inhibition. Fig. 7 shows the temporal
evolution of two competing populations encoding two different actions. The inhibitory interactions
cause the suppression of activity below resting level in competing neural pools whenever a certain
subpopulation becomes activated above threshold in response to external input.

tuy)

field activation in 1,

A J

input from connected field 24,
field activation U;

Fig. 6. Schematic view of the input from a population j in layer u; that appears to be activated beyond threshold level to a target
population m in u;. The input is modeled as a Gaussian function.
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u(x.t)

action 2
action 1

Fig. 7. Decision making in neural fields. The temporal evolution of activity in two populations representing two different
actions is shown. An input of equal strength is applied at time t =0 to both populations. Note that at that time the neurons
appear to be already pre-activated above resting level due to subthreshold input from other populations. The population
representing action 1 wins the competition since its level of pre-activation is slightly higher than the level of the neural pool
representing action 2.

The attractor state of a self-sustained activation peak can be used to implement a working memory
function, which happens for sufficiently small values of the global inhibitory parameter h; > 0. Con-
versely, for sufficiently large values of h; > 0 the existing suprathreshold self-sustained activation be-
comes unstable and field activation decays back to resting level (the field becomes mono-stable). To
implement these working memory versus forgetting mechanisms we defined a proper dynamics for
the global inhibitory parameter h; > 0 (Bicho, Mallet, & Schéner, 2000):

This dynamics increases h; toward h; .« (destabilizing memory), at a time scale 7; ., While a
suprathreshold pattern of activation exists (¢, = 1). It restores h; to hi mi, (to enable the working mem-
ory), at a time scale Timin. The restoring process is much faster than the destabilizing process
(Timin < Timax), SO that quickly after forgetting, the field dynamics is again able to self-sustain (i.e.
memorize) a suprathreshold pattern of activation. The presence of a self-sustained peak is signaled by

¢h = [H(Nu) — H(Ns)IH(Nu) (6)

where H(-) is a Heaviside step function, and

N, = /H(u(x))dx (7)
is the total suprathreshold activation in the field and

Ns — / H(S(x))dx ®)

is the total external input activation to the field.

In the OML and the CSGL self-sustained peaks encode memorized information about the location of
the relevant parts in the two working areas and the already achieved and currently available subgoals,
respectively. Since multiple potential target objects and subgoals may exist simultaneously, the field
dynamics must support multi-peak solutions. Although specific lateral interaction functions exist that
support such solutions (Laing, Tray, Gutkin, & Ermentrout, 2002), we implemented for simplicity syn-
aptic weight functions, in these layers, with limited spatial ranges of lateral inhibition to avoid com-
petition (i=CSGL, OML):
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6. Results

In the following we present results of real-time human-robot interactions in the joint construction
scenario. It is assumed that both actors know the construction plan and are able to perceive the state
of the construction. Each actor thus knows in principle what assembly steps the team still has to per-
form. The examples are chosen to illustrate the impact of action observation and context on action
selection from the perspective of the robot. In each case, the initial spatial distribution of objects in
the two working areas obliges the robot to continuously monitor and interpret the actions of its
human partner, since actions such as handing-over or demanding objects are necessarily involved.
A detailed discussion of the goal inference capacity is not within the scope of the present paper.
We therefore focus on examples at the beginning of the joint assembly work for which action
understanding is straightforward (for details of the motor simulation mechanism see Erlhagen et al.
(2006a) and Erlhagen, Mukovskiy, Chersi, & Bicho (2007)).

The connections between the neural populations in the various fields are hand-coded meaning that
the different inputs that may bias the selection of a particular complementary action are pre-defined.
The robot shows flexibility in its behavior since in the complex dynamical system of interacting
populations the decision for a certain action depends on both the informational content of the various
inputs to populations in AEL and their timing. Changes in the time course of activity in a connected
field due to competition between neural pools or noisy input data for instance may thus affect which
complementary behavior the robot selects.

As summarized in Table 1, the total number of goal-directed sequences and communicative ges-
tures that represent relevant complementary behaviors in AEL is restricted to 9 alternatives. At any
point of time of the human-robot interaction only a few of these alternatives are simultaneously pos-
sible, that is, are supported by input from connected layers. It is important to stress, however, that the
dynamic decision making implemented in AEL also works for more complex situations with a larger
set of possible response alternatives (e.g., at later stages of the construction process). In line with
the classical Hick-Hyman law, the number of alternatives only affects the time it takes to stabilize
a peak solution representing a decision in the dynamic neural field (Erlhagen & Schoner, 2002).

Videos of the human-robot experiments can be found at http://dei-s1.dei.uminho.pt/pessoas/este-
la/JASTvideos.htm. The robot uses speech to communicate the outcome of the goal inference and deci-
sion making processes implemented in the dynamic field model to the human co-actor. As our studies
with naive users show, this basic form of verbal communication facilitates natural and fluent interac-
tion with the robot (Bicho, Louro, & Erlhagen, 2010).

Numerical values for the dynamic field parameters and synaptic inter-field connections may be
found in the Supplemental material.

Table 1
Goal-directed sequences and communicative gestures.
Action Sequence of motor primitives Short description
Aq Reach wheel — grasp — attach Attach wheel
A Reach wheel — grasp — handover Give wheel
As Reach hand — grasp wheel — attach Receive wheel to attach
Ay Reach nut — grasp — attach Attach nut
As Reach nut — grasp — handover Give nut
Ag Reach hand — grasp nut — attach Receive nut to attach
Az Hold out hand Request piece
Ag Point to wheel Point to wheel
Ag Point to nut Point to nut
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6.1. Same observed action, different complementary behaviors

According to the plan, the construction starts with attaching the two wheels and subsequently fix-
ing each of them with a nut. Fig. 8 (video snapshots), Fig. 9 (DNF in AEL) and Fig. 10 (DNF in IL), show
that the same observed gesture may have a different interpretation depending in the context in which
it occurs and thus leads to a different complementary action.

In this experiment the two wheels and one nut are initially located in the workspace of the robot.
The robot may thus decide to choose an action that serves one of two possible subtasks: attaching the
wheel on its side (A;) or transferring a wheel to the partner (A,) so that he can attach it on his side. As
shown in snapshots S2-S3 the co-actor first reaches his empty hand towards the robot.

The robot interprets this gesture as a request for a wheel since attaching a wheel on the side of the
co-actor is still a valid subtask. As a consequence, both possible complementary actions, A; and A, in
AEL are initially supported by excitatory input from the connected layers OML, IL and CSGL. As can
been seen by the suprathreshold activation peak at position A,, the robot decides to first serve the hu-
man by grasping the wheel for handing it over (snapshots S4-S5). Later (see snapshots S6-S7) the robot
selects and performs the action sequence associated with the achievement of its own subtask. The rea-
sons for this ‘social’ attitude of the robot are slightly stronger synaptic connections from the intention
layer IL to AEL compared to the synaptic links between representations in CSGL and AEL. As a conse-
quence the decision process appears to be biased by the stronger input from the representation of the
request. After both wheels have been attached to the platform, the human partner again demands an
object (at time ~78 s). This time the robot interprets the hand gesture as demanding a nut since the
associated subtask representation in CSGL (‘fix wheel with nut’) has become active (see snapshot S8).

Fig. 8. Video snapshots that illustrate a scenario where the same observed action may have different interpretations, depending
on the context in which it occurs, and thus lead to different action selection.
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Fig. 9. Temporal evolution of total input to AEL (panels a and b) and field activation in time (panels ¢ and d) for the experiment
in Fig 8.
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Fig. 10. Temporal activation in layer IL representing the inferred goal of the human partner for experiment in Fig 8.

Fig. 10 illustrates the evolution of an activation peak in IL representing the inferred goal of the co-ac-
tor. However, a fulfilment of the request would not support efficient joint task execution since both
co-actors have exactly one nut in their working areas. The information about the spatial distribution
of the nuts represented in OML inhibits the representation of the complementary action that would

Please cite this article in press as: Bicho, E., et al. Neuro-cognitive mechanisms of decision making in joint action:
A human-robot interaction study. Human Movement Science (2011), doi:10.1016/j.humov.2010.08.012



http://dx.doi.org/10.1016/j.humov.2010.08.012

E. Bicho et al./Human Movement Science xxx (2011) xXX—Xxx 15

lead to the transfer of the nut (As) and triggers instead the selection of a pointing movement (Ag) as
the most adequate motor behavior. Pointing towards the nut in the partner’s workspace is an efficient
way to attract attention and communicate the error to the co-actor (snapshots $9-S10). As illustrated
by snapshots S11-S12 and the field activation after time 99 s, the robot subsequently decides to reach
and grasp a nut with the purpose to fix the wheel at its construction side (As).

In this example pointing is an appropriate complementary behavior since the human partner could
reach the nut that he had seemingly overlooked probably because of the presence of an obstacle. The
situation would be different if the obstacle not only reduces the visibility of the nut but also makes it
impossible for the user to grasp it. In this case, removing the obstacle or grasping the object to hold it
out for the co-actor would be appropriate complementary actions (if the object could be reached by
the robot). In the model, additional input from a population encoding the presence of an obstacle to
the AEL could bias the decision process towards the selection of one of these behaviors. Interestingly,
a class of mirror neurons has been recently described that are differently modulated by the location in
space of observed motor acts relative to the monkey (Caggiano, Fogassi, Rizzolatti, Thier, & Casile,
2009). These are “grasping” neurons that become active when the experimenter places an object in
the monkey’s peripersonal space. In the experiments an obstacle was introduced that changed the
properties of the mirror neurons according to the possibility that the monkey was able to interact with
the object. The authors interpret their findings as further evidence for the hypothesis that mirror neu-
rons encode observed actions for subsequent different types of behavior either direct grasping or
intermediate steps like approaching the observed agent or removing the obstacle. This interpretation
fits nicely to the highly context-sensitive mapping of observed actions onto executed actions imple-
mented by the dynamic field model.

6.2. Anticipatory action selection

In the second experiment the robot has two nuts and one wheel in its workspace. The human part-
ner has a wheel in his workspace and thus decides to start the assembly work by reaching and grasp-
ing the wheel on his side to directly attach it (Fig. 11). As can be seen in Fig. 11a, before the co-actor
starts the movement the input to the decision field of the robot from the task representations in CGSL
support the selection of the action sequence A; associated with a subgoal that the robot can achieve
alone. However, immediately after motion onset the observed reaching behavior triggers a motor sim-
ulation process in ASL that anticipates that the co-actor most likely is going to attach the wheel on his
side. Fig. 11a shows that a new input to the decision field appears in the period 10 and 14 s that is
associated with the achievement of a future goal of the co-actor (‘fix wheel with nut’) represented
in CSGL. Like in the preceding example the robot is supposed to serve first observed or anticipated
needs of the human user. Since the input supporting a handing-over sequence (As) is stronger than
the input supporting the goal-directed sequence A, the robot decides at about time 18 s to reach
and grasp a nut to hold it out for the co-actor (compare Fig. 11b and the snapshots in Fig. 11c). As dis-
cussed in Section 4 the predictive rather than reactive updating of common subgoals in CSGL is auto-
matically triggered by the input from the representation of the inferred goal in IL.

6.3. Timing of actions matters

The last experiment highlights that the timing of actions is important for the coordination of deci-
sions and intentions among the actors. Normally the faster actor takes the lead in the joint decision
process and the slower actor follows by choosing actions that complement the observed ones. In
the example shown in Fig. 12 the wheel on the co-actor’s construction side has been already attached.
The robot has two nuts in its workspace, whereas the co-actor has a wheel in his reach. The trial starts
with the co-actor requesting an object (see snapshot S1). The robot infers that he wants to fix the
wheel with a nut and decides to first hand over the nut (at time ~14 s). Subsequently, the robot re-
quests a wheel from the co-actor (at time ~50 s). The first handing-over sequence thus appears to
be initiated by the human, whereas the robot leads the transfer of the second object. The snapshots
in Fig. 12c illustrate this sequence of human-robot interactions. Concerning the state of the construc-
tion and the initial distribution of object in the two working areas, the situation illustrated in Fig. 13¢
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Fig. 11. Anticipatory action selection. (a) Top view of temporal evolution of total positive input to AEL showing the two possible
actions, A; (reach and grasp wheel to attach) and As (reach and grasp nut to handover). (b) Top view of temporal evolution of
field output illustrating the competition between the two actions. Action As wins the competition and the robot transfers the
nut to the human partner. (c) Video snapshots (see text for details).

Please cite this article in press as: Bicho, E., et al. Neuro-cognitive mechanisms of decision making in joint action:
A human-robot interaction study. Human Movement Science (2011), doi:10.1016/j.humov.2010.08.012



http://dx.doi.org/10.1016/j.humov.2010.08.012

E. Bicho et al./Human Movement Science xxx (2011) xXX—Xxx 17

Positive input, S, (x.9)>0

—
Q
S
2
T
|

AS - —— : 1
| (give nut) :

action, x

AT -

_E(request wheel)

AB -

10 22 34 46 58 70
time, ¢ (sec)

Field output, f(u g, (x.2))

(o)~

?

A : f
(give nut) ‘

action, x

(request wheel)

sl F : N

AQl-: -

T 22 34 46 58 70
time, ¢ (sec)

—

g 11

47 s

Fig. 12. Time matters. (a) Top view of temporal evolution of total positive input to AEL showing the two possible actions, As (reach
and grasp nut to handover) and A; (hold out hand as a request for a piece). (b) Top view of temporal evolution of field output
illustrating the competition between the two actions. Action As wins the competition and the robot gives the nut to the human
partner and next action A; becomes activated and the robot request a wheel to the human. (c) Video snapshots (see text for details).

is exactly the same as in Fig. 12c. The only difference is that the co-actor now quickly tries to serve the
needs of the robot after having fixed the wheel on his side with a nut. As shown in snapshots S4 and S5
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competition between the actions and resulting decisions. (c) Video snapshots (see text for details).

A human-robot
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the co-actor reaches and grasps a wheel with the intention to hold it out for the robot. Since through
motor simulation the robot is able to predict at the time of the grasping the consequences of the ongo-
ing action, it may prepare for receiving the wheel. The input associated with the respective action se-
quence appears at about 45 s (compare Fig. 12a). It is stronger compared to the input supporting the
request of a wheel and thus biases the decision process of the robot.

7. Discussion

Decision making refers to the process of selecting a particular action from a set of alternatives.
When acting alone an individual may choose a motor behavior that best serves a certain task based
on the integration of sensory evidence and prior task knowledge. In a social context, this process is
more complex since the outcome of one’s decisions can be influenced by the decisions of others. A fun-
damental building block of social interaction is thus the capacity to predict and understand actions of
others. This allows an individual to select and prepare an appropriate motor response which may
range from cooperative to competitive (Sebanz et al., 2006).

Here we have presented a dynamic neural field model of decision making in a joint action task. In
its multi-layered architecture the model reflects mechanisms that are believed to support the remark-
ably efficient and fluent interaction of humans in cooperative tasks. Most importantly, the model
implements a highly context sensitive mapping of observed actions onto to-be-executed complemen-
tary actions. As our real-world joint construction experiments show, the robot responds to the same
observed behavior in dependence of the context in which it occurs. This is in line with a growing body
of experimental evidence supporting the notion that the matching of observed and executed actions in
the mirror circuit is much more flexible than previously thought (Newman-Norlund, van Schie et al.,
2007; van Schie et al., 2008). As the representation of context, goals and goal-directed action se-
quences are interconnected, the dynamic model explains how the observation of a motor act together
with situational cues may directly activate the self-sustained population representations of the asso-
ciated goal and the most appropriate complementary action. This ‘automatic’ process suggests that in
known task settings the coordination of actions, goals and intentions in space and time between co-
actors may occur rather effortlessly and does not require a fully developed human capacity for con-
scious control (Hassin, Aarts, & Ferguson, 2005; Ferguson & Bargh, 2004).

The theoretical framework of dynamic neural fields has been first introduced to the motor domain
to model metric and dynamic aspects of motor planning and decision making found in neurophysio-
logical and behavioral studies (for a recent review see Schoner (2008)). DNF-based models implement
two basic ideas: (1) movement plans evolve continuously in time and are updated at any time during
movement preparation as a function of new sensory evidence, and (2) the brain performs action selec-
tion and motor planning in an integrated manner (Gold & Shadlen, 2002). The activity in a neural pop-
ulation representing a certain decision variable increases continuously in time as a result of
accumulated evidence represented by input from connected populations. If a certain activation
threshold is reached the integration process is over and the system is committed to a decision. In
the model this transition is paralleled by a transition from an input-driven to a self-stabilized regime
of the field dynamics. The decision variable may represent simple movement parameters such as
direction and extent (e.g., Erlhagen & Schoner (2002)) or like in the present application complete tem-
poral behaviors such as grasping or entire action sequences composed of action primitives. The discov-
ery of the mirror neurons in premotor cortex suggests that in motor planning areas neural populations
encoding very different levels of abstraction coexist (Rizzolatti & Craighero, 2004).

Bayesian models represent a quite popular alternative approach for modeling decision and integra-
tion processes in the face of uncertainty (Kersten & Yuille, 2003; Kérding & Wolpert, 2006). More re-
cently, Bayesian inference and belief propagation have been used as theoretical tools to model also
aspects of joint action coordination (e.g., Cuijpers, van Schie, Koppen, Erlhagen, & Bekkering, 2006;
Hoffman & Breazeal, 2007). It is important to note that the dynamic field framework is compatible
with central aspects of probabilistic models. For instance, the pre-activation below threshold of sev-
eral populations in the action execution layer due to prior task knowledge and contextual information
may be interpreted in the sense of a probability density function for different complementary actions.
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This prior information has to be combined with evidence about the inferred goal of the co-actor. In
fact, it can be shown that in the input-driven regime the field dynamics may implement Bayes’ rules
(Cuijpers & Erlhagen, 2008). In our view, there are two major advantages of the dynamic field ap-
proach. First, stabilizing decision against noise and fluctuations in the input stream is of particular
importance in cases of high conflict between alternative complementary actions. Second, as an exam-
ple of the dynamical approach to cognition (Schéner, 2008), a DNF-based model allows us to address
the important temporal dimension of goal coordination in joint action (Sebanz et al., 2006). The deci-
sion process linked to complementary actions unfolds over time under multiple influences which are
themselves modeled as dynamic representations with proper time scales. As our experiments show,
the absence or delay of information from layer IL will automatically lead to a decision that does not
include the co-actor’s behavior (or its interpretation). This may cause a change of roles in the joint task
execution. Normally, the teammate with the faster decision process takes the lead in the cooperative
task and the observer follows by choosing an action which complements the inferred goal (e.g., grasp-
ing the object with a complementary grip in the handing-over sequence). This flexibility in joint task
execution greatly contributes to an efficient team performance.

Although the focus of the present study was on testing the dynamic model in real-time human-ro-
bot interactions it is worth mentioning that the model makes also predictions for human joint action
coordination that could be further investigated in experiments. The reaction time study by van Schie
and colleagues (2008) that showed evidence for an automatic facilitation of a complementary re-
sponse in a cooperative setting used a one-to-one mapping between observed and to-be-executed ac-
tions. It would be interesting to extend this study to a more realistic situation in which a single
observed action is compatible with several complementary behaviors like in the present assembly
task. Due to the lateral inhibition in the action execution layer, the level of pre-activation of popula-
tions will decrease whenever several response alternatives are simultaneously supported by contex-
tual and/or task information. Since the level of pre-activation affects the rate at which the population
activity rises, the model predicts a dependence of reaction time on the number and probability of
choices in the cooperative task (for a dynamic field approach to the classical Hick-Heyman law see
Erlhagen and Schéner (2002)).

Among the many questions about joint action coordination that have not been directly addressed
in the present experiments, an important one concerns how the model could be extended to deal with
the coordination of multiple tasks. We have started to explore this challenge in a join construction task
in which the human-robot team has to assemble several distinct toy objects from a fixed set of com-
ponents. Different from the present study, the robot does not directly participate in the construction
work but serves as an intelligent assistant that pro-actively hands over components and informs the
user about detected errors. By reducing the complexity of the action selection and execution process
this choice allowed us to focus on the high-level planning aspects of the multi-object construction
task. The dynamic field model implements the idea supported by many behavioral and neurophysio-
logical studies that people encode goal-directed behaviors, such as assembling an object, by segment-
ing them into discrete actions, organized as goal-subgoal hierarchies (e.g., Hamilton & Grafton, 2008;
Hard, Lozano, & Tversky, 2006). In the model, a population encoding a particular object as the final
goal of the assembly work pre-activates through synaptic links the various populations encoding all
associated subgoals. In the CGSL, the representations of the currently available subgoals for the team
become activated above threshold due to the input from connected pools representing already
achieved subtasks. Since different objects may share a set of subtasks (e.g., attaching two parts in a
specific manner) synaptic links may exist to representations of subgoals belonging to objects other
than the one currently under construction. These representations lack, however, the additional input
from a population encoding the final goal. Consequently, their activation level remains below thresh-
old. Using the same neural representations as part of action plans belonging to different tasks is attrac-
tive from an engineering point of view since it allows us to optimize the computational resources. It is
important to stress however that joint action coordination may also benefit from special purpose rep-
resentations (e.g., the grasping populations described in Fogassi et al. (2005)). The activation of inten-
tional action chains in ASL during action observation supports the capacity of the robot to react in
anticipation of the co-actor’s motor intentions.
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Even in routine tasks errors in joint action coordination may occur. The user may for instance select a
part associated with a subgoal that has been already accomplished by the team or that represents an
assembly step to be performed in the future only. It is thus important that the robot is able to cope with
erroneous situations and unexpected events. In the present experiments, the robot points to a part in the
co-actor’s workspace that he has seemingly overlooked. The observed request gesture is thus associated
not only with the complementary behavior of handing over the required part to the user but also with a
hand movement that aims at attracting the co-actor’s attention. The additional information about
whether or not the part is located in the user’s workspace (represented in the OML) biases the selection
in the AEL. A more sophisticated action monitoring system that would allow the robot to deal with er-
rors on the intention level should be able to detect a mismatch between predicted outcomes of observed
actions and the possible subgoals for the team. Within the DNF-framework this can be achieved by pos-
tulating the existence of neural representations that integrate the activity from populations in the IL and
the CSGL. For instance, the co-actor’s request of a part that is not compatible with the current state of the
construction will automatically activate a population representing this mismatch. Through synaptic
links to neural pools in the AEL, the suprathreshold activity of this population may in turn bias the selec-
tion of an adequate corrective response (Bicho, Louro, Hipolito, & Erlhagen, 2009).

For the present robot experiments all inter-field connections were tailored by the designer. Conse-
quently, testing the dynamic field model of decision making in joint action was restricted to the specific
assembly task. An important long-term goal of our research is to endow the robot with learning and
adaptation capacities that ultimately will allow the artificial agent to autonomously develop the cogni-
tive skills necessary for efficient joint action in new tasks from a minimal set of in-built representations.
We adopt here a socially guided machine learning paradigm in which a human trainer teaches a robot
through demonstration and verbal or gestural commands in much the same way as parents teach their
children (e.g., Otero, Saunders, Dautenhahn, & Nehaniv, 2008; Thomaz & Breazeal, 2008). First experi-
mental results of our attempt to apply a learning dynamics for establishing inter-field connections show
the feasibility of the approach. Using correlation based learning rules with a gating that signals the suc-
cess of behavior, we have shown for instance how mirror-like representations that support an action
understanding capacity may develop during learning and practice (Erlhagen et al., 2006a; Erlhagen
etal., 2006b). Importantly, the developmental process goes beyond a simple modification of parameters
of pre-defined representations. It may explain the emergence of new task-specific populations which
have not been introduced to the architecture by the human designer (Erlhagen et al., 2007).

A major goal of our group is to advance towards a new generation of robots able to interact with
humans in a more natural and efficient manner. We believe that taking inspiration from biology to
make both the observable trajectories and the cognitive processes supporting joint action more hu-
man-like is a promising approach since it makes the artificial agent more predictable for the human
user. While many technical aspects of robotics (e.g., vision, sensorimotor coordination) have been sim-
plified, we also believe that the robotics work based on the unifying framework of dynamic neural
fields is potentially very interesting for researchers from the cognitive and neuroscience domains.
Implementing the dynamics of cooperative joint action in an embodied cognitive system allows them
to directly test their theories and hypothesis about joint action coordination.
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