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ABSTRACT 

A Systems Biology approach for the characterization of metabolic bottlenecks in 

recombinant protein production processes 

 

The main purpose of this thesis is to investigate the influence of recombinant protein production 

in the reorganization of the metabolic activities and the resulting stress-induced responses in the 

bacterium Escherichia coli. More specifically, the focus is on the RelA-mediated stringent 

response, a stress response that is triggered by the sudden lack of intracellular amino acids and 

that has been associated with the metabolic burden imposed by recombinant processes. 

To identify the main metabolic bottlenecks in recombinant biosynthetic processes, which include 

maintenance of recombinant DNA and expression of heterologous genes, a systematic modelling 

approach is proposed, capable of predicting the amino acid shortages caused by recombinant 

processes and the consequent activation of the RelA-dependent guanosine pentaphosphate 

(ppGpp) synthesis.  

The view of ppGpp as a primarily regulator of gene transcription has been expanded and it is now 

clear that the response controlled by ppGpp is crucial for cell survival during the adaptation to 

stressful conditions. Major advances have been achieved to understand this regulatory system 

governing gene expression in response to environmental growth perturbations, but so far mainly 

transcriptome and proteome analyses that have been applied to elucidate the stringent control 

mediated by ppGpp. Metabolomics analysis can provide substantial information on the impact of 

this stress response at the biochemical level, in particular during recombinant bioprocesses. 

Therefore, two metabolomics-based approaches were applied: metabolic profiling to evaluate the 

intracellular metabolic profiles and metabolic footprinting to estimate the profiles of extracellular 

metabolites.  

In these metabolomics studies two E. coli strains (E. coli W3110 and the isogenic ∆relA mutant) 

were used to investigate the influence of recombinant processes on the host cells’ metabolism, 

as well as the main metabolic activities affected by the RelA activity under different growth 
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conditions. The mutant strain presented a “relaxed” phenotype that characterized this bacterial 

system by an acute delay in most metabolic adaptations to transient growth conditions. Most 

importantly, it was shown that these mutant cells lack metabolic adjustments that are often 

observed after metabolic burden phenomena. Nevertheless, this cellular system presented major 

advantages in terms of biomass yield and productivity, which imply a remarkable improvement in 

recombinant bioprocesses. Thus, alleviating stress responses can be beneficial if they impair the 

desired quality and quantity of the recombinant product. However, it must be pointed out that 

this may be an alternative as long as recombinant bioprocesses are designed to achieve a finer 

balance between strain improvement strategies and culturing conditions. 
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RESUMO 

Caracterização das limitações metabólicas durante a produção de proteína 

recombinante usando abordagens da Biologia de Sistemas  

 

O trabalho realizado no âmbito desta tese teve como principal finalidade a avaliação das 

alterações metabólicas relacionadas com a produção de proteínas recombinantes em células 

bacterianas de Escherichia coli e a consequente activação de respostas de stress. Foi 

evidenciada a resposta restringente promovida pela actividade da enzima RelA, dado ser uma 

das principais respostas de stress induzidas pelo decréscimo da quantidade de aminoácidos 

disponíveis no meio intracelular como consequência da expressão de proteínas recombinantes. 

As diferenças na composição em aminoácidos entre as proteínas da biomassa e recombinantes, 

têm sido apontadas como principais causas para o desequilíbrio metabólico que conduz à 

exaustão de alguns metabolitos, nomeadamente de aminoácidos. 

De modo a explorar estes fenómenos e avaliar o impacto dos processos recombinantes no 

metabolismo das células hospedeiras, foi proposto um modelo matemático capaz de identificar 

pontos de estrangulamento na rede metabólica. Estes locais correspondem a vias metabólicas 

que apresentam limitações na capacidade catalítica e que serão essenciais para compensar o 

consumo desproporcionado de aminoácidos levado a cabo pela síntese de proteínas 

recombinantes. Associado a este fenómeno foi considerada a descrição da síntese de 

nucleótidos guanosina pentafosfato (ppGpp) induzida pela escassez de aminoácidos no meio 

intracelular.  

O reconhecimento deste nucleótido como um regulador fundamental na transcrição da 

informação genética tem sido amplamente descrito e tornou-se evidente que as respostas 

celulares controladas pelo ppGpp são determinantes para a sobrevivência e adaptação dos 

organismos a condições adversas. Neste sentido, vários estudos foram elaborados para elucidar 

o papel do ppGpp no controlo destas respostas de stress e nas alterações fisiológicas que advêm 

destes processos, nomeadamente ao nível do metabolismo. A análise do metaboloma, em 

comparação com o transcriptoma ou o proteoma, é capaz de capturar de forma mais directa a 
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relação entre as actividades metabólicas e a fisiologia dos organismos, designadamente em 

sistema recombinantes.  

Neste trabalho foram elaborados alguns estudos em que se aplicaram duas abordagens de 

análise metabolómica distintas: profiling metabólico, que se refere à análise do perfil de 

metabolitos intracelulares; e footprinting metabólico, que se refere à análise do perfil de 

metabolitos extracelulares. Nestes estudos foram usadas duas estirpes de E. coli (W3110 e a 

estirpe isogénica com mutação no gene relA) clonadas com um vector de expressão pTRC-His-

AcGP1 que codifica a proteína verde fluorescente AcGFP1, derivada da proteína AcGFP da 

Aequorea coerulescens. Foram avaliadas as principais alterações metabólicas provocadas pela 

indução da produção de proteína recombinante e pela actividade catalítica da enzima RelA em 

diversas condições de crescimento. Comparando os perfis metabólicos das duas estirpes, foram 

estimadas várias diferenças significativas que se podem revelar críticas durante processos 

recombinantes. A estirpe mutante revelou um comportamento típico de um fenótipo “relaxado”, 

que é caracterizado por um retardamento significativo na adaptação do metabolismo a 

alterações nas condições de crescimento. Não obstante, a estirpe mutante exibiu melhores 

resultados em termos de rendimento em biomassa e produtividade, o que representa uma 

vantagem notável para a aplicação destes sistemas bacterianos recombinantes ao nível 

industrial. Em resumo, a restrição de respostas de stress pode trazer benefícios se a qualidade e 

quantidade do produto estiverem em causa, mas deve salientar-se que não é uma solução 

absoluta, sendo que as condições de processamento devem ser também levadas em 

consideração na implementação destes bioprocessos. 
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OUTLINE OF THE THESIS 

The key contributions of this thesis are to the elucidation of the impact of the stringent response 

in the E. coli metabolism during recombinant bioprocesses and, in broader terms, to the 

importance of metabolomics-driven approaches to understand the metabolic behaviour of these 

recombinant cells.  

To assist the study of the stringent response phenomenon in E. coli cells, a literature mining 

exercise was first developed to compile, process, and analyse information that has been reported 

in the last four decades. Fundamental details on the mechanisms underlying the activation of this 

stress response and the pleiotropic effects of the ppGpp on cellular processes are given in 

Chapter 2. 

In Chapter 3, a modelling approach is proposed to describe the effects of recombinant protein 

production in the host cells’ metabolism and the consequent induction of the activity of RelA, a 

ribosome-bounded enzyme that synthesizes the key regulator of the stringent response, ppGpp. 

This approach combines a genome-scale model for the E. coli metabolism and kinetic 

descriptions for biomass, recombinant protein and ppGpp formation, as well as plasmid 

maintenance. 

To investigate how the inactivation of the relA gene is associated with changes in E. coli 

metabolism, metabolomics techniques were used In Chapter 4, E. coli W3110 and the isogenic 

mutant ∆relA strains were grown under steady-state conditions at different dilution rates. The 

intracellular metabolite levels of amino and non-amino organic acids were measured by GC/MS 

and metabolite profiles were evaluated to discriminate between metabolic states of E. coli cells. 

In Chapter 5, the ∆relA mutant strain, cloned with the vector pTRC-His-AcGFP1, was used to 

assess the impact of recombinant processes on the E. coli metabolism, which includes plasmid 

maintenance and protein formation. Because the stringent factor RelA is expected to impair the 

production of recombinant proteins, this work aimed at understanding if the deletion of the relA 

gene might be a potential strategy to enhance the performance of recombinant cells. 
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An alternative metabolomics approach was applied to inspect the metabolic behaviour of E. coli 

cells during the production of recombinant proteins. Chapter 6 presents the implementation of a 

metabolic footprinting approach to measure the extracellular metabolite levels during 

recombinant E. coli fed-batch cultures, the common industrial mode of operation of these 

processes. The physiological and metabolic changes associated to the induction of protein 

expression and nutritional shifts during the fed-batch process were inspected. 

In Chapter 7, conclusions and final remarks are devised.  
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OBJECTIVES OF THE THESIS 

Systems engineering strategies to enhance the productivity of recombinant proteins are still 

reliant on the E. coli cellular capabilities to cope with stressful conditions elicited by recombinant 

processes. To gain fundamental insight into the molecular mechanisms governing these events, 

particularly the stringent response, and to use this information to identify strategies for 

minimizing the impact of this phenomenon, the following objectives were considered in this 

thesis: 

• To present a comprehensive analysis of the literature on the E. coli stringent response, 

where key players and molecular mechanisms involved in this response are detailed; 

• To uncover new molecular players, which functional roles have not been directly 

associated with the E. coli stringent response in previous studies, but are relevant entities 

or participate in cellular processes closely related with this stress response; 

• To systematically analyse and characterize the stimulus of the stringent response during 

recombinant processes, as a consequence of the amino acids deprivation caused by the 

additional drainage of biosynthetic precursors for the production of recombinant proteins; 

• To identify key metabolic bottlenecks in the E. coli metabolism during recombinant 

processes, which indicate network points at which metabolic fluxes are to a certain extent 

restricted due to the unbalanced withdrawn of biosynthetic precursors; 

• To assess the ability of metabolomics approaches, in particular metabolic profiling and 

metabolic footprinting, to discriminate between cells in different metabolic states, as well 

as with different genetic backgrounds (e.g. E. coli W3110 and the isogenic mutant 

∆relA).  

• To characterize the RelA-mediated stringent response by comparing the metabolic 

behaviour of an E. coli W3110 strain with its isogenic mutant (∆relA); 

• To evaluate the impact of recombinant processes, including plasmid maintenance and 

expression of a recombinant protein (AcGFP1, a green fluorescent protein derived from 
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Aequorea coerulescens), in the metabolism of E. coli cells, and evaluate the effect of the 

relA mutation in this response; 

• To verify if E. coli ∆relA mutant strains can enhance the productivity of recombinant 

proteins, since the relA gene mutation would limit the ppGpp-induced stringent response 

during recombinant processes;  

• To determine the metabolic differences when recombinant bioprocesses are performed 

at different growth rates. 

 



CHAPTER 1 

GENERAL INTRODUCTION 

 

“...a new understanding of life emerged at the forefront of science.”  

Fritjof Capra in Complexity and Life,  

Theory Culture Society 2005; 22; 33 

 

 

1.1 ABSTRACT 2 
1.2 E. COLI: A MICROBIAL SYSTEM FOR RECOMBINANT PROTEIN 

EXPRESSION 3 

1.2.1 STRINGENT RESPONSE 7 

1.3 MODELLING THE STRINGENT RESPONSE IN RECOMBINANT SYSTEMS11 
1.4 METABOLOMICS APPROACHES FOR INVESTIGATING THE BEHAVIOUR 

OF RECOMBINANT E. COLI CELLS 19 

1.4.1 SAMPLE PREPARATION 22 
1.4.2 ANALYTICAL PLATFORMS 25 
1.4.3 DATA ANALYSIS 26 
1.4.4 METABOLOMICS-DRIVEN ANALYSIS OF E. COLI 29 

1.5 REFERENCES 38 

  



2 General Introduction 

 

1.1 ABSTRACT 

This chapter aims to introduce the main aspects involving the application 

of system-level approaches in the understanding of cellular processes 

during recombinant bioprocesses. The successful use of genetically 

engineered bacteria, like Escherichia coli, to overexpress recombinant 

proteins and the main problems associated with these bioprocesses, in 

particular the metabolic burden and physiological stress responses, with 

major focus on the stringent response, are reviewed. To fully characterize 

the impact of recombinant processes in the metabolism of E. coli and the 

consequent induction of the stringent response, modelling approaches are 

suggested. Finally, metabolomics approaches are introduced as relevant 

tools for studying recombinant E. coli bioprocesses. The main procedures 

to perform metabolome analysis are viewed in detail, as well as the last 

developments in bioinformatics tools for storing, analysing and 

interpreting metabolome data. Several examples are provided to illustrate 

the strengths and still existing limitations of this analytical approach. 

Topics on the main questions studied throughout this thesis are referred 

in the end of this chapter. 
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1.2 E. COLI: A MICROBIAL SYSTEM FOR RECOMBINANT 

PROTEIN EXPRESSION 

In the last decades, microbial cells have been exploited for the production of a variety of 

products. Recombinant DNA technologies, developed in the late 70's, offered a very powerful tool 

for the economical and large-scale production of recombinant proteins. These products are 

diverse and find their main applications in industries such as pharmaceutical, food, health care 

and environment. For instance, the human insulin was the first recombinant protein approved by 

the Food and Drug Administration (FDA) to enter in the market and is produced in the bacterium 

E. coli. Since then, many other recombinant proteins with industrial interest have been produced 

in several microbial systems such as bacteria, being E. coli the most common system, or yeasts, 

such as Saccharomyces cerevisiae and Pichia pastoris. In Figure 1.1 some of the therapeutic 

products that have been produced in recombinant E. coli systems within the last years are 

summarized.  

 

Figure 1.1. Biopharmaceutical products approved by the European Union that are 

synthesised via recombinant E. coli systems (Ferrer-Miralles N et al., 2009). 



4 General Introduction 

 

E. coli is by far the first choice for the production of recombinant proteins, and has been quite 

important in the development of certain molecular procedures, such as cloning, genetic 

modification and also for the small-scale production for research purposes. Besides its ability to 

grow rapidly and achieve high cellular densities on inexpensive substrates, it is one of the best 

characterized biological systems. However, several obstacles to the production of high quality 

proteins limit its application as a microbial factory. Post-translational modifications are often 

limited in E. coli systems and only recombinant proteins that are naturally non-glycosylated or are 

also active without glycosylation can be expressed with this microbial system (Demain AL and 

Vaishnav P, 2009; Ferrer-Miralles N et al., 2009; Schmidt FR, 2004). Moreover, the frequency of 

codons occurring in eukaryotic genes is different from that appearing in E. coli genes, which 

basically determines the low abundance of specific tRNAs, often leading to the premature 

termination of protein synthesis or to amino acid mis-incorporation, reducing the efficiency of 

protein expression (Gustafsson C et al., 2004; Kane JF, 1995).  

Yet, recent progress in the fundamental understanding of cellular processes in E. coli, together 

with the availability of improved expression vector systems, is making this bacterium more 

adequate for the expression of complex eukaryotic proteins. Several strategies to enhance 

recombinant protein production have become available: (i) reduction of plasmid copy number 

(Jones KL et al., 2000); (ii) use of different promoters to regulate expression (Peti W and Page R, 

2007); (iii) secretion of proteins into the periplasmic space or into the medium (Mergulhao FJ et 

al., 2005); (iv) changing the growth medium (Sahdev S et al., 2008); (v) lowering of temperature 

(Sahdev S et al., 2008); (vi) chromosomal insertion of the foreign genes (Srinivasan S et al., 

2003); and (vii) coexpression/knockout of certain key genes (Kim SY et al., 2009; Wong MS et 

al., 2008). This last approach is probably one of the most effective ones and is related with the 

metabolic engineering field. Stephanopoulos and co-authors (Stephanopoulos G et al., 1998) 

defined it as “the directed improvement of product formation or cellular properties through the 

modification of specific biochemical reactions or introduction of new ones with the use of 

recombinant DNA technology”. The metabolic engineering field proposes the directed 

modification of the genetic background of organisms to implement desirable metabolic 

capabilities in living cells. For example, Flores and co-workers (Flores S et al., 2004) developed a 

strategy to overcome the reduction of growth rate due to foreign protein expression, by modifying 

the pentose phosphate (PP) pathway. By increasing the carbon flux through the oxidative branch 
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of the PP pathway, it was possible to partially recover growth capacities of the recombinant E. 

coli cells. 

These approaches have resulted in some high-quality results by identifying some metabolic 

activities that could be manipulated to improve cell physiology during recombinant protein 

production, though other cellular phenomena capable to hinder recombinant bioprocesses are 

still unresolved. For example, the metabolic burden is associated with cellular processes related 

to plasmid DNA replication, plasmid-encoded mRNA transcription and the corresponding 

recombinant protein synthesis. These processes require the additional drain of biosynthetic 

precursors, energy and other cellular resources that are shared with the analogous host 

metabolic processes. The competition for a limited pool of cellular resources, like 

deoxyribonucleotides (dATP, dGTP, TTP, dCTP), ribonucleotides (ATP, GTP, UTP, CTP), amino 

acids and high-energy molecules, like NADH and NADPH, provokes serious perturbations in the 

cellular metabolism (Glick BR, 1995). Typically, in recombinant cultures this promotes the 

reduction of the cellular growth rate and final biomass yields. As metabolic precursors and high-

energy molecules are being consumed in the recombinant process, the host metabolic processes 

engaged in the cellular growth are severely burdened, unbalancing the host metabolism.  

Moreover, as many amino acid precursors are drained from the TCA cycle, the fluxes over this 

pathway are lowered and the carbon flux through glycolysis exceeds the capacity of the TCA cycle 

to assimilate the surplus of acetyl-CoA, which is directed to the production of acetate (Majewski 

RA and Domach MM, 1990). The accumulation of toxic levels of acetate is undesirable, mostly 

because it represents a diversion of carbon that might otherwise have generated biomass or the 

recombinant product and it ends by retarding cellular growth (Luli GW and Strohl WR, 1990; 

Ponce E, 1999; Suarez DC and Kilikian BV, 2000; Turner C et al., 1994) and inhibiting protein 

formation (Shiloach J et al., 1996; Suarez DC and Kilikian BV, 2000; Turner C et al., 1994). Also, 

since most cellular processes are closely regulated by growth rate conditions, a decrease in the 

biomass formation indicates reduced amounts of components for the protein producing system, 

including ribosomal proteins or translation elongation factors, and of most catabolic enzyme 

levels. Thereby, the translational activity and the supply for most anabolic precursors become 

limiting factors as the recombinant protein synthesis rate increases.  
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Additionally, it has been shown that during the expression of recombinant proteins in E. coli, a 

variety of cellular responses can be elicited (Duerrschmid K et al., 2008; Seo JH et al., 2003): 

heat-shock-like responses, due to the accumulation of misfolded proteins (Allen SP et al., 1992; 

Thomas JG and Baneyx F, 1996); SOS responses if cells are exposed to agents that cause 

damage to DNA or interfere with DNA replication (Gill RT et al., 2000); and starvation responses 

caused by the excessive drainage of metabolic precursors and energy (Bonomo J and Gill RT, 

2005; Sanden AM et al., 2003). It has been reported (Dedhia N et al., 1997; Sanden AM et al., 

2003) that the expression of recombinant proteins may lead to an increase in intracellular 

concentration of guanosine tetraphosphate or ppGpp, which was first identified as a key regulator 

involved in the cellular response to amino acid starvation, the so-called stringent response 

(Cochran JW and Byrne RW, 1974; Haseltin WA and Block R, 1973; Magnusson LU et al., 2005; 

Stephens JC et al., 1975) (detailed in the next subsection and Chapter 2). Lately, this molecule 

was also associated with other nutrient starvation responses (Lin HY et al., 2004; Traxler MF et 

al., 2006). For example, the E. coli response to glucose starvation was linked to the induction of 

both the stringent and the general stress responses (Schweder T et al., 2002). The concentration 

of the corresponding regulators, i.e. ppGpp and the alternative RpoS sigma factor (also called σS) 

were shown to be tightly regulated by the cell in situations when a nutrient shift occurs. Indeed, 

many stress responsive genes that are regulated by the σS have been observed to be expressed 

during recombinant protein production (Duerrschmid K et al., 2008), namely dnaK and ibpA that 

encode proteins involved in the heat shock like response (Han MJ et al., 2004; Jurgen B et al., 

2000). Such typical stress response is commonly elicited to prevent the aggregation of unfolded 

proteins into inclusion bodies and has been explored to improve the productivity of specific 

recombinant systems (Endo S et al., 2006; Kohda J et al., 2002; Kwon MJ et al., 2002; 

Yokoyama K et al., 1998).  

In general, different stresses might be elicited simultaneously, working together as a complex 

regulatory system with a multitude of molecular components to ensure a coordinated and an 

effective answer. For example, it has been shown (Gill RT et al., 2000), by monitoring 

transcriptome and proteome profiles, that the production of recombinant proteins induces the 

expression of genes belonging to the heat-shock (e.g. dnaK and ibpA), SOS (e.g. recA), and 

starvation response regulons (e.g. rpoS), albeit to different levels and with different time profiles. 
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Thus, the interplay of several stress proteins may be critical to protect bacterial cells when 

exposed to environmental insults. As suggested in Chapter 2, some of the biological entities 

involved in the stringent response may as well participate in other stress responses. Proteins that 

are involved in responses to starvation, DNA damage, osmotic, oxidative or SOS stresses were 

highlighted in the bibliome analysis of the E. coli stringent response, which suggests that ppGpp 

might be involved in many cellular responses, other than the stringent response. Indeed, some 

links between the stringent response and others stress responses were evidenced. For example, 

the response to DNA damage stimulus was assigned by the RecA, RecG and Mfd proteins that 

intervene in the early dissociation of the elongation complex stalled by ppGpp (Trautinger BW et 

al., 2005) and the RecA regulator and the UvrABC nucleotide excision repair complex have been 

implicated in the DNA repair process and SOS response (Bichara M et al., 2007). 

 

1.2.1 STRINGENT RESPONSE 

From such a variety of stress responses, stringent response has been perhaps the less studied in 

recombinant systems. Currently, the regulatory mechanisms of the ppGpp activity during 

recombinant processes and the impact of this stress response in the metabolism are not entirely 

clear. It is acknowledged that under conditions of stress, cells accumulate high levels of ppGpp 

initiating a global change in the cellular physiology. However, most studies (Durfee T et al., 2008; 

Haddadin FT et al., 2009; Haddadin FT and Harcum SW, 2005) have just uncovered the main 

changes observed at the proteome or transcriptome levels. To investigate this cellular response 

at the metabolic level (i.e. the closest indicator of the physiological state of cells), the basis of the 

ppGpp mechanisms are first reviewed. 

The discovery that this unusual guanosine nucleotide is accumulated in response to starvation 

was followed by extensive studies on the downstream regulatory circuits of the stringent 

response, which suggested that the accumulation of ppGpp is an important link between 

nutritional stress and bacterial adaptation. It was first proposed by (Haseltin WA and Block R, 

1973) that the ratio of aminoacylated tRNA to free tRNA is one of the critical parameters that 

regulate the synthesis of ppGpp. When free tRNA is encountered at the A-site of the 50S 

ribosome, protein synthesis is delayed, resulting in an idling reaction in which ribosome-bound 



8 General Introduction 

 

RelA is activated to synthesize ppGpp (initially pppGpp is produced and is then converted to 

ppGpp). Thus, an increase in the population of free tRNA during starvation leads to an 

accumulation of ppGpp (Chatterji D and Ojha AK, 2001) (Figure 1.2). Since the induction of 

recombinant proteins can cause the exhaustion of the intracellular amino acid pools resulting in a 

change in the aminoacylated-tRNA to uncharged tRNA ratio, the accumulation of ppGpp is 

presumably associated with the induction of the classical stringent response. 

Less is known about the mechanism behind SpoT-dependent production of ppGpp and how SpoT 

senses starvation conditions. Nevertheless, it appears that SpoT is primarily responsible for the 

accumulation of ppGpp in response to most stresses and nutrient limitations apart from amino 

acid starvation (Murray KD and Bremer H, 1996; Vinella D et al., 2005). In addition, SpoT 

exhibits dual functions and is also responsible for hydrolyzing ppGpp. A strain lacking both RelA 

and SpoT is completely unable to produce ppGpp and the response to starvation of such a strain 

is called the relaxed response (Xiao H et al., 1991).  

One of the first effects of high-level intracellular ppGpp to be discovered was a sudden decrease 

in the transcriptional rate of ribosomal RNA (Baracchini E and Bremer H, 1988). Direct negative 

effects of ppGpp on promoters have been detected in vitro (Barker MM et al., 2001b; Jores L and 

Wagner R, 2003; Kajitani M and Ishihama A, 1984; Raghavan A and Chatterji D, 1998) and 

several mechanisms for direct negative regulation by ppGpp have been suggested (Barker MM et 

al., 2001b; Barker MM et al., 2001a; Gralla JD, 2005; Jores L and Wagner R, 2003; Roberts JW, 

2009; Srivatsan A and Wang JD, 2008). One of the effects of ppGpp appears to be a 

destabilization of the RNAP–promoter open complex. The rRNA promoters form intrinsically 

unstable open complexes with RNAP and are therefore thought to be specifically sensitive to 

further destabilization (Magnusson LU et al., 2005; Oshima T et al., 2002; Paul BJ et al., 

2004b). It has recently been shown that the negative effects of ppGpp on transcription in vitro 

are amplified by the presence of the protein DksA. DksA binds to RNAP by protruding into the 

secondary channel of RNAP (Perederina A et al., 2004) and decreases open complex stability, 

which accentuates the negative effects of ppGpp on rRNA promoters. DksA has also been 

suggested to contribute to the positive effects of ppGpp (Paul BJ et al., 2004a). 
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Figure 1.2. The (p)ppGpp-mediated stringent response (Figure 2.1 in Chapter 2).  

(A) Low amino-acid concentrations lead to decreased charging of the corresponding tRNAs. (B) The translational 

machinery depends on the translocation along the mRNA whereby a new acetylated-tRNA is positioned in the 

ribosome. Whenever an uncharged tRNA binds to the ribosome, the elongation of the polypeptide chain is stalled. (C) 

The stringent factor RelA is then activated in the presence of the ribosomal protein L11, catalyzing the synthesis of 

(p)ppGpp nucleotides. (D) These nucleotides bind directly to the RNA polymerase and affect the binding abilities of 

sigma factors to the core RNA polymerase. (E) The co-factor DksA also binds to the RNA polymerase and augments 

the (p)ppGpp regulation of the transcription initiation at certain σ70-dependent promoters, functioning both as 

negative and positive regulators. (F) These regulators change the gene expression: (i) decreasing the transcription 

activity of genes involved in the translational activity; (ii) and increasing the transcription of stress-related operons 

and genes encoding for enzymes needed for the synthesis and the transport of amino acids.   
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Among the positively regulated promoters are many that are dependent on alternative sigma 

factors (e.g. σS and σ54) (Brown L et al., 2002) and also those that are dependent on the 

housekeeping sigma factor, σ70 (e.g. promoters controlling genes encoding the universal stress 

proteins (Kvint K et al., 2003) and proteins involved in amino acid biosynthesis and uptake). In 

general, σ70-dependent genes involved in cell proliferation and growth are negatively regulated by 

ppGpp, whereas the σ70-dependent genes implicated in maintenance and stress defence are 

positively regulated by the alarmone (Nystrom T, 2004). Other models suggest that ppGpp acts 

through changes in the availability of RNAP, rather than decreasing the open complex stability. 

An increased availability of free RNAP during growth arrest has been suggested to be a 

consequence of RNAP falling off stable RNA promoters as a result of decreased open complex 

stability (Barker MM et al., 2001a; Zhou YN and Jin DJ, 1998). The positively regulated 

promoters are then induced because they are argued to be relatively poor at recruiting RNAP and 

are sub-saturated during normal growth. Jensen and Pedersen (Jensen KF and Pedersen S, 

1990) have argued that ‘stringent’ promoters, for example stable RNA promoters, require high 

concentrations of RNAP to be transcribed at their maximal rate and are therefore especially 

sensitive to a diminished availability of RNAP. 

Despite the many existing hypothesis, there is a general consensus that stringent response 

influences a cascade of events, starting with the over-accumulation of ppGpp molecules that later 

mediate the regulation of basic cellular processes, like the metabolism, translational activities or 

stress responses. The discovery of ppGpp accumulation during bacterial recombinant processes 

promoted even more the interest of the industry and researchers on this stress response. 

Limitations imposed by this response during recombinant bioprocesses represent significant 

losses in the quality and quantity of recombinant products. Moreover, the discovery of ppGpp as 

a key regulator of various cellular processes is another significant achievement that suggests that 

adaption to starvation is more complex than it was initially understood. And so, four decades after 

its discovery, stringent response still has an enormous scope for study. 
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1.3 MODELLING THE STRINGENT RESPONSE IN 

RECOMBINANT SYSTEMS   

All biological systems are characterized by a multitude of functional units that support cellular 

growth, reproduction and survival. The description of these systems is often complex, not only 

because it increases with the amount of functional units enclosed in the system, but also with the 

intricacy of their relationships. With the recent developments in omics technologies, combined 

with computational analysis, the identification of most biological molecules and the multi-level 

interactions among them needed to carry out cellular functions, was made possible (Figure 1.3). 

Most of these research studies address the system-level understanding of the organization and 

dynamics of cellular processes (e.g. transcriptional regulation, signal transduction pathways, etc). 

With the increasing interest on the development of new strategies to improve the efficiency of 

recombinant bioprocesses, several modelling approaches considering this systems-level 

perspective have been implemented (Chou CP, 2007; Gnoth S et al., 2008). Process 

optimization for recombinant protein production has been traditionally focused on genetic-based 

solutions for high-level gene expression (Baneyx F, 1999; Hannig G and Makrides S, 1998; 

Sorensen HP and Mortensen KK, 2005). However, with the application of these novel 

approaches, aspects like the host metabolism or its genetic background can now be engineered, 

improving considerably the performance of recombinant bioprocesses. A successful example was 

demonstrated by Wong and co-workers (Wong MS et al., 2008) that reduced ten-fold acetate 

accumulation in recombinant E. coli culture by disabling the phosphoenolpyruvate:sugar 

phosphotransferase system (PEP-PTS) through the deletion of the ptsHI operon. It is 

acknowledged that the production of acetate retards cell growth and inhibits protein formation, 

and these were significantly attenuated when using this mutated host strain and the final 

biomass concentration and volumetric productivity of recombinant proteins were increased.  
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Similar strategies to overcome the consequences of metabolic burden or physiological stresses, 

triggered during the overproduction of recombinant proteins, have been reported (Chou CP, 

2007; Gnoth S et al., 2008). For instance, the manipulation of stress-responsive genes (e.g. 

ibpAB, relA) or metabolic factors, can improve cell physiology during recombinant bioprocesses. 

As an example, the co-expression of the small heat-shock proteins (IbpA and IbpB) has proven to 

reduce the physiological stress associated with protein misfolding (Lethanh H et al., 2005). 

Moreover, it has been reported that by increasing the availability of NADH, a common energy 

carrier and cofactor involved in various biosynthesis pathways, cell physiology and recombinant 

protein production can be improved, which was achieved through the overexpression of the pncB 

gene in E. coli (San KY et al., 2002). The impact of the stringent response in recombinant protein 

production was also verified and it was found that ppGpp-less strains were able to produce 

recombinant protein 20-fold higher than the wild-type cells (Dedhia N et al., 1997). Although 

significant improvements in the production of recombinant proteins were obtained with these 

strategies, rational selection of the proper gene(s) to be coexpressed, overexpressed or deleted is 

still challenging. Systematic approaches for identifying potential targets and develop fine-tuned 

strategies to overexpress the recombinant product and suppress the natural responses to 

physiological stresses, becomes critical to improve recombinant bioprocesses.  

Mathematical modelling emerged as an important tool to examine central problems in the 

biological sciences, ranging from the organizational principles of individual cells to the dynamics 

of particular cellular processes. Although the mathematical representation of biological systems is 

perhaps one of the most complicated problems in systems biology, it is also one of the most 

practical ways to describe the properties of a system. Thus, to understand the whole scenario 

that leads to most of the limitations in recombinant bioprocesses, it would be important to 

explore the dynamics of the main cellular activities involved in the synthesis of recombinant 

protein, and in particular cellular responses to the metabolic burden and the ppGpp-induced 

response. 

To achieve a systems-level understanding of the impact of recombinant protein production in the 

host metabolism, it is crucial to mathematically represent the entire metabolic network of the 

organism. There are several modelling methodologies capable of describing the cellular 

metabolism, but there is, however, one modelling and simulation approach that has shown a 
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surprising ability to simulate and predict the metabolic behaviour of living cells - Flux Balance 

Analysis (FBA) (Edwards JS et al., 2001; Edwards JS et al., 2002; Pramanik J and Keasling JD, 

1997; Price ND et al., 2003; Reed JL and Palsson BO, 2003; Saner U et al., 1992; Schilling CH 

et al., 1999; Urbanczik R and Wagner C, 2005; Varma A and Palsson BO, 1993; Varner JD, 

2000) that assumes a steady-state condition for the internal fluxes of the system and optimal flux 

distribution. Many organisms have been studied by using these so-called stoichiometric models 

(Borodina I et al., 2005; Chung BK et al., 2010; Duarte NC et al., 2004; Feist AM et al., 2006; 

Feist AM et al., 2007; Navid A and Almaas E, 2009; Nogales J et al., 2008; Oliveira AP et al., 

2005; Reed JL et al., 2003; Schilling CH et al., 2002; Sheikh K et al., 2005; Varma A and 

Palsson BO, 1994), and E. coli metabolism was one of the first to be modelled using this 

approach (Varma A and Palsson BO, 1994), where the stoichiometry of metabolic pathways and 

maximal growth principles were used to predict cellular growth and the flux distribution through 

the metabolic network. 

More generally, metabolic models usually based on the fundamental law of mass conservation, 

where the metabolic state of a cell is described by mass balance equations written for all the 

metabolite concentrations (c) that are mathematically expressed as follows in the matrix form: 

vS
dt
dC .=  (1) 

Here, the dilution effect caused by biomass growth is considered negligible. Metabolic 

interactions are expressed in the stoichiometric matrix S, where each element Sij represents the 

stoichiometric coefficient that indicates the participation of the ith metabolite in the jth reaction. 

Vector v corresponds to the reaction rates or fluxes through the metabolic reactions. Figure 1.4 

shows an example. 
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Figure 1.4. Representation of the stoichiometry and mass balance equations in a metabolic 

network.  

(a) Small reaction network consisting of three metabolites (A, B, and C) and six biochemical reactions (v). Material 

balances for each metabolite. (c) Metabolic model or material balance equations according to Eq. 1. 

 

Under steady-state conditions, metabolite concentrations are constant and mass balances can be 

simplified to: 

0. =vS  (2) 

When the number of fluxes is greater than the number of metabolites, then the system is 

mathematically considered underdetermined and the solution space is defined as the null space 

of S, where an infinite number of feasible flux distributions satisfy the mass balance equations 

(Edwards JS and Palsson BO, 1998). For that reason, constraints imposed by the 

thermodynamics (e.g. reaction reversibility/irreversibility) and enzyme kinetic properties (e.g. 

maximum reaction rates) can be included in the model to reduce the solution space (Covert MW 

et al., 2003; Edwards JS et al., 2002). These constraints can be introduced as linear inequalities: 

Njv jjj ,...1, =≤≤ βα  (3) 
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Although constraints reduce the solution space of the system, they do not allow to define a single 

solution. FBA uses linear-optimization techniques to calculate an optimal flux distribution (a 

unique optimal solution) based on a pre-defined objective function (Edwards JS et al., 2001; 

Edwards JS et al., 2002; Pramanik J and Keasling JD, 1997; Price ND et al., 2003; Reed JL and 

Palsson BO, 2003; Schilling CH et al., 1999; Varma A and Palsson BO, 1993; Varner JD, 2000). 

The linear objective function (Z) can be maximized or minimized, according to the cellular 

function to be optimized (e.g., production of toxic by-products or cellular growth). The 

optimization problem can be formulated as: 

ZMaximize  

0. =vStosubject  

Njv jjj ,...1, =≤≤ βα  

(4) 

In nature and in specific circumstances, microbial cells have evolved towards maximization of 

biomass formation and, thus, this has been successfully used as an objective function in FBA 

simulations, to explore the capabilities and limitations of the metabolic network and predict 

cellular behaviour (Burgard AP and Maranas CD, 2003; Edwards JS et al., 2001; Edwards JS 

and Palsson BO, 2000; Ibarra RU et al., 2002; Schilling CH et al., 2002).  

The metabolic behaviour of recombinant systems has been investigated using flux balance 

approaches (Ow DS et al., 2009; Weber J et al., 2002). A genome-scale metabolic model for E. 

coli (Reed JL et al., 2003) was complemented with mass balance equations for the expression of 

recombinant proteins and plasmid maintenance (Ozkan P et al., 2005) and flux distributions 

provided access to information on metabolic pathway utilization and potential limitations. Flux 

distributions were quantitatively evaluated and revealed that metabolic perturbations imposed by 

the synthesis of recombinant proteins reduce cell growth rates and change the activity of 

catabolic pathways like the Embden-Meyerhof-Parnas (EMP) pathway and the tricarboxylic acid 

(TCA) cycle. Moreover, it was found that the maximizing growth rate as the cellular objective 

function does not provide the best description for the underlying cellular behaviour. Instead, 

maximization of maintenance energy (ATPm) expenditure generates a metabolic flux distribution 

that explains better the physiological state of recombinant E. coli (Ow DS et al., 2009).  
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Yet, predicted flux distributions by FBA simulations have shown certain inconsistencies between 

the model and experimental data. Some reasons have been pointed out, such as the lack of 

descriptions on regulatory phenomena or gaps in metabolic information (Breitling R et al., 2008; 

Feist AM and Palsson BO, 2008; Orth JD and Palsson BO, 2010; Raman K and Chandra N, 

2009). In most cases, the cell metabolism operates in a quasi- or pseudo-steady state, where 

metabolite concentrations do not change significantly over time, but some metabolic reactions 

can be heavily dependent on regulation. FBA models are therefore insufficient to predict 

metabolic activities; instead, they provide a snapshot of the metabolism at defined physiological 

states. The integration of transcriptional regulatory information into metabolic models using 

Boolean logic formulations has been already proposed (Covert MW et al., 2001). Still, the 

dynamics of some metabolic processes cannot be neglected and therefore kinetic models may 

need to be used, despite the complexity of this modelling approach. Dynamic flux balance 

analysis (DFBA) was alternatively proposed (Mahadevan R et al., 2002); however, the kinetic 

parameters of some important reactions are required, which is not always easy to get.  

Clearly, there is no single modelling approach capable of representing all cellular phenomena, 

mainly because the level of detail of mathematical model descriptions depends largely on the 

information available about the system. Sometimes, the best modelling approach relies on the 

combination of different types of mathematical representations, according to the major purposes 

of the study. As an example, a three-level integrated approach, where the integration of a 

stoichiometric metabolic network with a Boolean transcriptional regulatory network (rFBA) and a 

set of ordinary differential equations (ODEs) to describe the dynamic variation of certain 

metabolite variables, was reported (Covert MW et al., 2008). This modelling approach was able 

to model the E. coli central metabolism generating a metabolic flux distribution that was globally 

more accurate and informative.  

As follows, in this thesis a two-step modelling approach is presented, combining a stoichiometric 

and a kinetic model to represent the metabolic perturbations imposed by recombinant protein 

synthesis and the ppGpp-induced response, respectively (see Chapter 3). Since a more detailed 

understanding on the ppGpp-induced response is expected with such approach, a kinetic model 

was implemented to represent the induction of the RelA activity upon depletion of the amino 

acids pool. Indeed, kinetic models are more suited to detail the dynamics of cellular processes 
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that are highly dependent on regulation, such as protein translation processes (Zouridis H and 

Hatzimanikatis V, 2007) or folding and inclusion body formation in E. coli (Hoffmann F et al., 

2001). The combination of a flux balance model based on the stoichiometry of E. coli metabolic 

pathways (Reed JL et al., 2003) and kinetic reactions for biomass formation, recombinant protein 

production, plasmid maintenance and ppGpp synthesis, are here proposed to get a first 

systematic representation of the effect of the accumulation of ppGpp in the cell physiology during 

recombinant protein production. It was aimed to develop a large scale modelling approach 

integrating different model representations that, ultimately, simplifies the computational efforts by 

restraining the number of variables that need to be evaluated by dynamic modelling. As 

exemplified in Figure 1.5, this approach reduces the need for kinetic parameters, while the 

dynamics of certain metabolite concentrations can be inferred using metabolic fluxes predicted 

by the flux balance model (e.g. metabolite D).  

 

Figure 1.5. Example of an integrated modelling approach.  

The flux balance model describes the steady-state flux distributions (v1, v2, v3, v4, v5 and v6) through the metabolic 

network composed by metabolites A, B and C. Reaction rates v1 and v6 can be obtained from experimental 

measurements (e.g. substrate uptake rates). In the kinetic model, the expression for the reaction v7, is based on a 

Michaelis-Menten equation that describes the dynamic conversion of metabolites D and E into F and G.   
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1.4 METABOLOMICS APPROACHES FOR INVESTIGATING THE 

BEHAVIOUR OF RECOMBINANT E. COLI  CELLS  

The design of novel strategies to elucidate recombinant systems has been the primary goal of 

systems biotechnology (Bulter T et al., 2003; Glick BR, 1995). The optimal design and 

development of upstream to downstream recombinant bioprocesses have recently been 

expanded mainly due to the advent of diverse omics technologies. The increasing availability of 

omics data has provided scientists with an unforeseen level of information on many different 

recombinant systems. For example, DNA microarrays have been used to investigate 

transcriptome profiles of recombinant E. coli, where thousands of genes were identified to 

change their expression levels along the fermentation process. Among these genes, those 

associated with the stress responses, like heat shock and stringent responses, were found to be 

up-regulated and genes related to translation processes and energy synthesis were down-

regulated (Bonomo J and Gill RT, 2005; Haddadin FT and Harcum SW, 2005; Oh MK and Liao 

JC, 2000). Transcriptome analyses demonstrated that recombinant cultures are exposed to 

stressful conditions, which is denoted by the global changes in gene expression. To adapt to such 

conditions, cells engender a multitude of responses that often lead to important productivity 

losses, as well as cellular growth arrest.  

The impact of recombinant protein production in E. coli cells has also been investigated by 

proteomic studies (Aldor IS et al., 2005; Duerrschmid K et al., 2008; Kabir MM and Shimizu K, 

2001; Lee DH et al., 2007; Wang YH et al., 2005). Proteome changes reflected the physiological 

responses to heterologous protein production in recombinant E. coli, in particular the down-

regulation of glycolytic enzymes, TCA cycle associated enzymes and ATP synthase, and up-

regulation of cell protection proteins and some sugar transport proteins (Lee DH et al., 2007). 

Apparently, the production of recombinant proteins can interfere with the performance of many 

metabolic pathways in the host metabolism, entailing a series of metabolic changes (Bentley WE 

et al., 1990; Gill RT et al., 2000; Harcum SW and Bentley WE, 1999). The association of these 

metabolic adjustments with stress-related processes, like the stringent response, has also been 

reported (Andersson L et al., 1996; Chao YP et al., 2002; Haddadin FT et al., 2009; Hoffmann F 

and Rinas U, 2004; Schweder T et al., 1995). The stringent response has been characterized by 
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the down-regulation of nucleic acid and protein synthesis, and the simultaneous up-regulation of 

protein degradation (Ferullo DJ and Lovett ST, 2008; Jain V et al., 2006; Magnusson LU et al., 

2005), which in turn would result in considerable losses during recombinant bioprocesses. The 

view of ppGpp as a global regulator of gene transcription has been expanded and it is now clear 

that cellular processes controlled by ppGpp are widespread and involve many cellular 

mechanisms important during cellular growth (Magnusson LU et al., 2005). It has been reported 

(Schweder T et al., 1995) that the accumulation of intracellular ppGpp, especially in slow-growing 

fed-batch conditions, seems to have a great impact in the recombinant protein synthesis, mainly 

due to the uncoupling between cell growth and protein production. Although important aspects 

regarding the physiology of recombinant systems have been found with transcriptome and 

proteome analysis, the metabolic alterations mediated by recombinant bioprocesses are still 

poorly uncovered. Moreover, it has been argued that the generation of hypotheses through these 

omics data alone, is incomplete and may lead to incorrect interpretations (Zhang W et al., 2010).  

As the metabolome level is the closest indicator of the cells’ phenotype, metabolomics is now 

becoming the most relevant omics technology for understanding biological systems. 

Metabolomics aims at analysing and quantifying the complete set of metabolites (small organic 

molecules), providing substantial information on the organization of metabolism (see Table 1.1 

for definitions used in the metabolomics field). In fact, metabolites play significant roles in the 

cell, as they are key participants in catabolic and anabolic pathways, regulate metabolic activities 

at the genetic (e.g. transcriptional effectors) or at the enzymatic (e.g. inhibitors/activators or 

cofactors) level and can be external (or internal) indicators of the environmental conditions. It is 

now widely recognized that metabolites are key biomolecules that govern the whole cell 

functioning, as elucidated by the complexity of interactions with many other functional units (see 

Figure 1.3). Metabolomics is a systematic analysis focused on this holistic view and encloses 

major advantages compared to other omics technologies, such as:  

• Tractability: cells contain, in general, less metabolites than genes, transcripts, or 

proteins; 

• Good discriminatory skills: changes in concentrations of metabolites are faster compared 

with the concentrations of proteins or transcripts and sometimes changes in the 

metabolite levels are not always detected in transcriptome or proteome profiles; 
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• Cost-effectiveness: costs per analyses are lower compared to proteomics and 

transcriptomics.  

 

Table 1.1. Summary of some definitions used in the metabolomics field based on (Dunn WB 

and Ellis DI, 2005; Goodacre R et al., 2004). 

Term Definition 

Metabolome The complete set of small metabolites present in a biological sample. 

Endometabolome Small metabolites found in the intracellular medium 

Exometabolome Small metabolites that are secreted by cells 

Metabolomics 
Non-biased identification and quantification of the whole metabolome in a sample under a 
given set of conditions. 

Metabonomics 
Analysis of the dynamic metabolic responses to biochemical perturbations caused by 
diseases, drugs and toxins, often employed to evaluate tissues and biological fluids. 

Metabolic 
profiling 

Identification and quantification focused on a group of metabolites, for example, a class of 
compounds such as carbohydrates, amino acids or those associated with a specific 
pathway. 

Metabolic 
footprinting 

Analysis of the set of metabolites that are secreted (or consumed) by cells into (or from) the 
extracellular medium. 

Metabolic 
fingerprinting 

High-throughput, rapid, global analysis providing sample classification based on the 
qualitative metabolic profiles exhibited by a biological sample. 

Metabolite target 
analysis 

Qualitative and quantitative analysis of a specific set of metabolites, for example, that are 
involved in a particular enzyme system that would be affected by genetic/environmental 
perturbations. 

 

In the past few years, several studies have employed metabolomics approaches to evaluate the 

metabolic profiles of diverse microbial systems (Catchpole G et al., 2009; Dobson G et al., 2010; 

Dunn WB, 2008; Dunn WB and Ellis DI, 2005; Kell DB, 2004; Kol S et al., 2010; Mashego MR et 

al., 2007; Oldiges M et al., 2007; Pasikanti KK et al., 2008; van der Werf MJ, 2003; Yuliana ND 

et al., 2010). Although the measurement of metabolites per se exists since the early days of 

biochemistry and techniques are basically the same used for years in analytical chemistry, the 

analysis of several metabolites in parallel in a unique sample is the novelty of this approach. 

Metabolite analysis is challenging due to the number of analytes present in biological samples, 

their concentration ranges and, most significantly, their chemical diversity. Progresses have been 

accomplished by the development of new experimental procedures and technological advances.  
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In a basic workflow procedure, there are three essential steps that define the capacity and 

success of the designed metabolome analysis (Figure 1.6). From the sample preparation that 

should take into consideration the chemical diversity and dynamic concentrations range of the 

metabolites under analysis, to the selection of the proper analytical platform, which can be 

comprised by a single analytical technique or the combination of various techniques, and the 

definition of data analysis methods, all these steps are crucial to obtain a more comprehensive 

analysis of the metabolome. These major steps will be further detailed below. 

 

 

Figure 1.6. General workflow procedure of the metabolome analysis. 

(1) The range of biological samples to be analysed is vast, which influences largely the applied methodologies to 

prepare theses sample. (2) With the latest technological advances, several analytical platforms became available 

increasing the sensitivity, quantitativeness and robustness of metabolomic analyses. (3) However, the growing 

application of these approaches in the identification and quantification of metabolites with a large chemical diversity, 

analytical software tools are facing some challenges. The need for specialized mathematical, statistical and 

bioinformatic tools is increasing.  

 

1.4.1 SAMPLE PREPARATION 

During this step, metabolites contained inside the cell (i.e. endometabolome) or the extracellular 

metabolite pool secreted into the culture broth (i.e. exometabolome) are collected. The 

endometabolome is more technically demanding than the exometabolome. Besides the difficulty 
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in designing protocols capable of extracting metabolites from the intracellular milieu, a previous 

quenching step has to be devised to assure a rapid metabolic activity arrest. The quenching step 

is essential to assure that all metabolic activities inside the cell are arrested, and thus no further 

enzymatic conversions of metabolites are taking place. Usually, quenching protocols employ a 

rapid increase or decrease in temperature to prevent enzyme activity (Dunn WB, 2008), which is 

followed by the release of metabolites from the interior of the cell using heat or cold and 

occasionally acid or base solutions to assist cell lysis.  

The first procedure combining fast quenching and subsequent separation of cells and 

supernatants, was developed by de Koning and van Dam (de Koning W and van Dam K, 1992). 

The quenching solution (60% methanol at -40ºC) was used to halt yeast metabolism and cells 

were collected after centrifugation at -20ºC. However, this method and others using cold 

methanol as a quenching agent have been contested due to cellular leakage (Taymaz-Nikerel H 

et al., 2009; Villas-Boas SG and Bruheim P, 2007; Wittmann C et al., 2004). During quenching 

procedures it is crucial that metabolites remain inside the cells, otherwise the levels of 

metabolites after cellular extraction would be underestimated. Therefore, several quenching 

protocols have been proposed, and successfully applied, to different microbial cells (see Table 

1.2).  

 

Table 1.2. List of some quenching solutions that have been applied in microbial metabolome 

analysis.  

Quenching agent Details References 

Cold methanol/water 60% (v/v) methanol at -40ºC (de Koning W and van 
Dam K, 1992) 

Cold perchloric acid 35% (w/w) in water  at -40ºC (Weuster-Botz D, 1997) 

Liquid nitrogen liquid N2 at -150ºC (Chassagnole C et al., 
2002) 

Cold methanol/water with 
ammonium carbonate or HEPES 

60% (v/v) methanol buffered with 0.85% (w/v) 
ammonium carbonate or with 70 mM HEPES at -
40ºC 

(Faijes M et al., 2007) 

Cold glycerol/saline 3:2 (v/v) glycerol:saline solution (13.5%NaCl) at -
20ºC 

(Villas-Boas SG and 
Bruheim P, 2007) 

Cold methanol/glycerol 3:2 (v/v) methanol:glycerol at -50ºC (Link H et al., 2008) 

Cold ethanol/sodium chloride 40% ethanol and 0.8% (w/v) sodium chloride at -
20ºC 

(Spura J et al., 2009) 
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Following the quenching procedure, cells are separated from the quenching solution by 

centrifugation or filtration, and subsequently subjected to extraction procedures through 

permeabilization of cell walls, usually with chemical or physical agents. These agents should 

allow for maximum extraction (i.e. as many metabolites as possible) with minimal alteration of 

the extracted metabolites. Logically, the choice for the most appropriate extraction method 

depends on the used microbial system, since cell wall and membrane structures, as well as 

composition, differ from organism to organism. Currently, the range of available chemical agents 

(Table 1.3) offers the possibility to optimize the extent and diversity of extracted metabolites in 

order to obtain meaningful metabolome data. 

 

Table 1.3. List of chemical extraction methodologies applied to microbial cells to remove 

intracellular metabolites.  

Extraction 
agent 

Details 
Microbial 

cells 
References 

Perchloric 
acid 

Cold perchloric acid 50% (v/v) is added to samples and 
after rapid vortexing, the mixture is kept on ice for 10 min. 
Then, it is centrifuged for 10 min and extracts are 
neutralized with 15N KOH. 

Bacteria (Maharjan RP and 
Ferenci T, 2003) 

Potassium 
hydroxide 

Hot solution of 0.2N KOH at 80ºC is added to samples 
and incubated for 10 min. After cooling on ice for 5 min, 
cell debris is removed by centrifugation and the extracts 
are neutralized with 0.1 mL perchloric acid (0.5 N). 

Bacteria 
Filamentous 
fungus 

(Hajjaj H et al., 1998; 
Maharjan RP and 
Ferenci T, 2003) 

Hot ethanol Samples are boiled in 75% (v/v) ethanol at 80ºC. After 
evaporation of the ethanol/water mixture, the pellet is 
resuspended in water. 

Yeast  (Gonzalez B et al., 
1997) 

Methanol/ 
chloroform 

1:2 (v/v) methanol/ chloroform at -20ºC is added to the 
samples and the mixture is vortexed for 30 s. Then 
samples are transfered to dry ice, where they are kept for 
45 min and vortexed for 30 s every 15 min. The 
suspensions are then centrifuged for 10 min at 0ºC. 

Yeast (de Koning W and van 
Dam K, 1992) 

Hot 
methanol 

2:1(v/v) methanol/water is added to the sample and 
incubated for 30 min at 70ºC. The suspensions are then 
centrifuged for 10 min. 

Bacteria (Maharjan RP and 
Ferenci T, 2003) 

Tris-
H2SO4/EDTA 

Samples are added to half the volume of Tris-H2SO4/EDTA 
(20 mM/2 mM), pH 7.75, at −25°C. After 1 min, samples 
are thawed and pipetted into another one-half volume of 
Tris-H2SO4/EDTA, pH 7.75, at 90°C. The mixture is then 
vortexed and after 10 min centrifuged. 

Bacteria 
Yeast 

(Buziol S et al., 2002) 

Cold 
methanol 

Freeze-thawing cycles at low temperatures (-20ºC). To 
enhance recovery, cells are washed with cold methanol 
once or twice. 

Bacteria 
Yeast 
Filamentous 
fungus 

(Maharjan RP and 
Ferenci T, 2003; Smart 
KF et al., 2010; Villas-
Boas SG et al., 2005) 
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1.4.2 ANALYTICAL PLATFORMS 

Once the biological samples are prepared there are several analytical platforms available that can 

be applied in metabolomics: gas chromatography (GC), capillary electrophoresis (CE), or liquid 

chromatography (LC) coupled with mass spectrometric detection (MS), direct infusion mass 

spectrometry (DIMS), Fourier transform-infrared (FT-IR) and nuclear magnetic resonance 

spectroscopy (NMR). Since the metabolome comprehends a vast range of chemical species with 

diverse physical and chemical properties and those analytes occur in a wide concentration range, 

analytical procedures are quite challenging. With the recent progresses in analytical technologies 

and the possibility to combine more than one in the analytical platforms, metabolomics 

experiments gained a wider coverage in terms of the type and number of metabolites analysed. 

Currently, the most popular method for metabolomics analysis is GC/MS (Coucheney E et al., 

2008; Jonsson P et al., 2005; Kaspar H et al., 2008; Koek MM et al., 2006a; Kopka J, 2006; 

Pasikanti KK et al., 2008; Sajewicz M et al., 2009). In the GC equipment, a liquid sample is 

injected and rapidly vaporized and mixed with a carrier gas. Then, metabolites in the vaporized 

sample are separated on the GC column and follow to the MS device. Mass spectrometers 

operate in a three-step process: analytes are ionized in an ion source, either operating at 

atmospheric or vacuum pressures; ions are then separated according to the mass-to-charge 

(m/z) ratio in a mass analyser; and finally detected, either physically at a detector as an ion 

current or by the detection of orbital frequencies as image currents. Many advantages have been 

described for its application in metabolomic investigations, including its sensitivity (detection of 

μM concentrations) and the ability to identify metabolites through the fragmentation mass 

spectra. However, disadvantages like the requirement of chemical derivatization procedures, to 

convert some metabolites into less-polar, volatile and thermally stable derivatives before GC 

separation, are considerable. Chemical derivatization involves the substitution of active hydrogens 

in functional groups, such as –COOH, –OH, –NH, and –SH by other chemical groups via 

alkylation, acylation or silylation reactions. Silylation is the most traditional and results in stable 

derivatives with good reproducibility and wide range of metabolites that can be derivatized. 

However, it has been described as difficult to execute and time-consuming. Alkylation presents 

technical advantages compared to silylation, but the application range is limited. Nevertheless, 

important intermediates in the cellular metabolism, like carboxylic acids, amines, amino alcohols, 
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and amino acids, are likely to be converted to volatile derivatives with this chemical derivatization. 

These chemical processes allow the detection of many more metabolite classes in a single 

GC/MS run. Although, some degree of variability can be introduced in the metabolome data, 

mainly because sample derivatization is a multi-step process, generally manual, GC/MS 

applications in metabolomic investigations are valuable in the identification of metabolites of 

microbial, plant and mammalian systems. 

 

1.4.3 DATA ANALYSIS 

Since the start of metabolomics, software approaches to automated data interpretation have 

been scarce, and most efforts have been made in individual laboratories to support their own 

scientific investigations. Mass spectral libraries are the main example, since mass spectra vary 

with the performed analytical procedures. For example, different derivatization agents produce 

different metabolite derivatives, which consequently generate altered mass spectra. Collaboration 

projects should be encouraged to promote the construction of larger and more complete 

libraries. The computerized matching of an unknown spectrum with a database/library would 

provide a very rapid and useful tool in metabolic profiling procedures. The Automated Mass 

Spectral Deconvolution and Identification System (AMDIS) (Stein SE, 1999) from the National 

Institute of Standards and Technology (NIST) has been largely applied to match unknown spectra 

with libraries in order to identify most detected components.  

After identifying and quantifying the metabolome of a biological system, the main goal is to find 

relevant metabolites that discriminate between different phenotypic characteristics. By using 

statistical methods (e.g. multivariate data analysis or pattern recognition), differences between 

metabolomes can be identified and further contextualized to generate useful new knowledge. 

Most of the data analysis methods that have been applied in metabolomics, and also in many 

other omics data analyses, are based on unsupervised techniques, such as hierarchical cluster 

analysis (HCA) and principal component analysis (PCA) (Arbona V et al., 2009; Boroczky K et al., 

2006; Griffin JL, 2004; Llorach-Asuncion R et al., 2010; Pohjanen E et al., 2006). Supervised 

methods are usually more powerful as the classification is based on prior knowledge (e.g. Fisher 

discriminant analysis); however, they have the disadvantage of requiring a training data set, 
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which sometimes it is not easy to select and can overfit the model. Unsupervised methods, on 

the other hand, separate samples into classes without any training data set, but it is not always 

easy to interpret the basis for the generated clusters (Mendes P, 2002). Obviously, the most 

suitable data analysis method should be selected according to the aim of the study. 

Unsupervised methods are prioritized when prior information about the sample identity is 

unknown (e.g., in identification of a silent mutation phenotype) and the aim is sample 

classification. On the other hand, if sample identification is known and it is aimed to find 

characteristic metabolite profiles (e.g., search for groups of metabolites that define the phenotype 

of a microbial strain), supervised methods are ideal. Common statistical methods such as t-test 

or ANOVA, can also be used to find significant changes in the metabolite profiles. PCA analysis 

often uses only variables with significant changes tested by t-test or ANOVA. PCA analysis is 

mostly used for data visualization, where multivariate data is transformed into principal 

components and are projected on a 2D or 3D plots, facilitating data interpretation. An important 

aspect about this method is that PCA will emphasize variable components with high intensity 

levels, while lower metabolite levels are neglected, even if those are significant. Thus, data 

normalization is often performed before statistical analysis. Most books about chemometrics and 

statistics for analytical chemistry explore most of these subjects in detail, including data cleaning, 

normalization and transformation. 

But, besides all the challenges in technical, computational or statistical analysis, the 

interpretation of data is perhaps the paramount dilemma in metabolomics. As stated by 

Professor Henry Nix, co-chair of the Australian Wild Country Science Council: “Data does not 

equal information; information does not equal knowledge; and, most importantly of all, 

knowledge does not equal wisdom. We have oceans of data, rivers of information, small puddles 

of knowledge, and the odd drop of wisdom.” Thus, to keep pace with this flood of data, 

procedures for storage, analysis and interpretation of omics data must be developed. Meanwhile, 

few attempts have been made to build tools capable to expedite these processes (Table 1.4).  
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Table 1.4. List of bioinformatics tools for storing, reporting, analysing and interpreting 

metabolomics data.  

Tools Description References 

Databases   

Madison 
Metabolomics 
Consortium 
Database 
(MMCD)a

 

Supports high-throughput NMR and MS data sets for the identification 
and quantification of metabolites present in biological samples. 

(Cui Q et al., 2008) 

Human 
Metabolome 
Databaseb

 

The database covers more than 7900 metabolite entries with 
information about small molecule metabolites found in the human 
body. It contains three kinds of data: chemical data, clinical data and 
molecular biology/biochemistry data. 

(Wishart DS et al., 
2009) 

MassBankc
 Public repository of mass spectra of small chemical compounds for 

life sciences (<3000 Da). The database contains data for 2337 
authentic metabolites and for other synthetic compounds. 

(Horai H et al., 2010) 

METLINd
 Metabolite database for metabolomics containing over 15,000 

structures. Also, assists metabolite identification by providing public 
access to its repository of current and comprehensive mass spectral 
metabolite data. 

(Smith CA et al., 
2005) 

NISTe
 The 2008 version of the NIST/EPA/NIH Mass Spectral Library (NIST 

08) contains four libraries and a database of retention index values. 
Together they contain 220,460 spectra of 192,108 different 
chemical compounds. 

(Stein SE, 1995) 

Data analysis   

MetaboAnalystf Web-based tool for metabolomic data processing, data normalization, 
multivariate statistical analysis, graphing, metabolite identification 
and pathway mapping. 

(Xia J et al., 2009) 

MetaFINDg
 An application for 'post-feature selection' that aid metabolite signature 

elucidation, feature discovery and inference of metabolic correlations. 
(Bryan K et al., 2008) 

MSEAh
 A web-based tool to identify biologically meaningful patterns in 

quantitative metabolomic data. 
(Xia J and Wishart 
DS, 2010b) 

MEVi
 MeV is an application for the analysis, visualization and data-mining 

of large-scale data. It was developed for the analysis of microarrays, 
but is a versatile analytical tool. 

(Saeed AI et al., 
2006) 

Data 
visualization   

MetPAj
 A free and easy-to-use web application designed to perform pathway 

analysis and visualization of quantitative metabolomic data. 
(Xia J and Wishart 
DS, 2010a) 

MetExplorek
 A web server that offers the possibility to link metabolites identified in 

untargeted metabolomics experiments within the context of genome-
scale reconstructed metabolic networks. 

(Cottret L et al., 
2010) 

Metscapel
 A plug-in for Cytoscape, used to visualize and interpret metabolomic 

data in the context of human metabolic networks. 
(Gao J et al., 2010) 

ahttp://mmcd.nmrfam.wisc.edu/; bhttp://www.hmdb.ca/; chttp://www.massbank.jp/; dhttp://metlin.scripps.edu/; 
ehttp://chemdata.nist.gov/; fhttp://www.metaboanalyst.ca/, ghttp://mlg.ucd.ie/metafind; hhttp://www.msea.ca; 
ihttp://www.tm4.org/mev/; jhttp://metpa.metabolomics.ca/; khttp://metexplore.toulouse.inra.fr/; 
lhttp://metscape.ncibi.org/ 

http://mmcd.nmrfam.wisc.edu/�
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Databases for storing detailed metabolite profiles, including raw data and detailed metadata, are 

being created. However, the implementation of standard formats for recording and reporting 

metabolomics data is not yet commonly used (Sansone SA et al., 2007). Although some data 

analysis tools for metabolomics applications have became available in the last years, most 

researchers have found general software environments, like R or MATLAB, more versatile for 

statistical computing. Other software tools developed to analyse specific omics data, like 

MultiExperiment Viewer (MeV) for microarrays data (Saeed AI et al., 2006), can also be useful 

when analysing metabolomics data. As presented in Chapters 4 and 5, clustering algorithms 

from MeV were quite valuable when classifying samples with different phenotypic characteristics. 

Most recently, computational tools for elucidating and visualizing metabolome data have 

emerged, namely MetPA (Xia J and Wishart DS, 2010a), MetExplore (Cottret L et al., 2010) and 

Metscape (Gao J et al., 2010). The depiction of metabolome information into diagrams that 

provide an overview of the metabolite neighbourhood and relationships is one of the potentialities 

of these tools. The shift from roadmaps of metabolic pathways into the construction of 

comprehensive metabolic networks, where all biochemical entities and their relationships are 

represented (Bersini H et al., 2005; Borenstein E and Feldman MW, 2009; Jeong H et al., 2000; 

Jinq Z et al., 2006; Montanez R et al., 2010), was perhaps the driving force behind these 

initiatives.  

 

1.4.4 METABOLOMICS-DRIVEN ANALYSIS OF E. COLI 

The E. coli metabolism has been extensively characterised, but only in the last decade 

metabolomics approaches were applied to evaluate (simultaneously) the global metabolite 

profiles, both qualitatively and quantitatively. One of the first approaches was developed by 

Tweeddale and co-workers (Tweeddale H et al., 1998) and applied a two-dimensional thin-layer 

chromatography to analyse the slow growth metabolism of E. coli growing on glucose in minimal 

medium. Later on, metabolome analyses were performed using more sophisticated techniques, 

such as GC/MS or NMR, which have expanded our knowledge on E. coli metabolism (Koek MM 

et al., 2006b). For instance, the E. coli metabolome has been investigated to understand key 

metabolic processes, such as the central nitrogen metabolism (Yuan J et al., 2009) and glycolytic 
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activities under different growth rates (Schaub J and Reuss M, 2008), or cellular responses to 

carbon and nitrogen starvation (Brauer MJ et al., 2006). Other studies identified novel enzymatic 

activities, such as the hydroxybutyrate dehydrogenase that is involved in the metabolism of 

succinic semialdehyde, and other potentially toxic intermediates that may accumulate under 

stress conditions in E. coli (Saito N et al., 2009a). Thus, metabolomic approaches can reveal 

new cellular metabolic processes, or bring important insights into the physiology of E. coli. The 

evaluation of metabolite levels and further association to enzymatic reactions has been 

fundamental in the elucidation of many biochemical functions, as well as to characterize 

enzymatic properties.  

Often these biochemical reactions are organized into metabolic pathways as functional modules 

of organisms metabolic networks graph theory principles have been applied to study the structure 

and topological properties of these metabolic networks to dissect functional and behavioural 

features of many organisms (Almaas E, 2007; Barabasi AL and Oltvai ZN, 2004; Mazurie A et al., 

2010). As such, metabolic interpretations can be biased if the metabolic networks are incomplete 

or inaccurate. As stated (Montanez R et al., 2010) “a network is an abstraction of reality and its 

construction can determine the conclusions derived from it”. Therefore, computational 

approaches that evaluate the correlation between metabolite levels, in order to infer metabolic 

networks or even to discover novel pathways, have been explored in metabolomics-driven 

analysis (Steuer R et al., 2003). It is remarkable how metabolite levels can be repeatedly 

correlated and more significantly, how frequently these correlations are shown between 

metabolites that are not neighbours in a metabolic pathway, but, most likely, are involved in 

regulatory mechanisms. To exemplify the potential of this approach, the metabolic correlations 

between metabolites analysed by GC/MS in the extracellular medium of an E. coli fermentation 

(metabolome data from experiments analysed in Chapter 6) were determined (Figure 1.7).  
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Figure 1.7. Metabolic correlations between extracellular metabolites detected by GC/MS 

during a recombinant E. coli fed-batch fermentation. 

The relative concentrations of extracellular metabolites produced during a recombinant E. coli W3110 fed-batch 

fermentation were analysed by GC/MS (see Chapter 6 for details). Abbreviattions: acon-C – cis-aconitate; bnz – 

benzoate; cbm – carbamate; cit – citrate; gly – glycine; itcon – itaconate; succ – succinate. 

 

As demonstrated, there are seven extracellular metabolites that show, at some extent, correlated 

patterns between their relative levels measured during the fermentation process. It indicates that 

a degree of association is likely to exist between these metabolites. Several reasons can be 

deduced, but the most reasonable is the participation in the same metabolic process or closely 

related processes. It should be emphasized that these interpretations are based on the 

assumption that extracellular metabolite levels are closely related to their intracellular 

concentrations, i.e. extracellular metabolic changes might be envisioned as changes in the 

intracellular metabolism, thus reflecting phenotypic alterations. To further interpret these 

metabolic correlations, metabolites were depicted into the E. coli metabolic network from EcoCyc 

(Keseler IM et al., 2009) (Figure 1.8).  
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Figure 1.8. Diagram showing the neighbourhood of metabolites detected in the metabolite 

footprints. 

a) The E. coli metabolic network from EcoCyc (Keseler IM et al., 2009) was used to locate the metabolites found to 

have highly correlated profiles. b) Diagram showing the seven correlated metabolites; circles represent metabolites, 

in which the larger ones indicate those that were found to be correlated, while squares illustrate catalytic enzymes. 

Isolated metabolites have no links in the network associating these metabolites. Arrows indicate production (green) 

and consumption (orange) reactions. This exercise was performed using the MetExplore tool with a Cytoscape plug-in 

(Cottret L et al., 2010).  

 

As shown in Figure 1.8, at least three metabolites (citrate, cis-aconitate and succinate) are 

neighbours in the metabolic network, participating in the TCA cycle. Although cis-aconitate has a 

higher correlation coefficient with citrate than with succinate (i.e. its closest neighbour), it was 

shown that both are participants in the same metabolic pathway only two reactions distant. 

These reactions are connected through D-isocitrate that is an important node in the metabolic 

network, which has brought new considerations when examining the complete metabolite 

footprints studied in Chapter 6.  
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Figure 1.9. Clustering analyses of the E. coli W3110 endometabolome: (A) hierarchical and 

(B) K-means clustering.  

Intracellular metabolites extracted from E. coli cells grown in chemostat cultures at three dilution rates (0.05, 0.1 

and 0.2 h-1) were analysed by GC/MS. Metabolite clusters were determined using MeV algorithms (Saeed AI et al., 

2006) for hierarchical clustering (HCL) and K-means clustering based on the Pearson’s correlation metrics. 

Correlation coefficients (r) vary from 1 to -1 and coefficients higher than 0.8 indicate strong correlations between 

metabolite profiles. The dashed line delimits the correlation coefficient threshold below which metabolite profiles 

were considered uncorrelated.  

 

Other methods that can used to find and visualize metabolite correlations are the hierarchical 

and k-means clustering analysis. As demonstrated in Figure 1.9, metabolite profiles from the 

endometabolome of E. coli W3110 cells grown in chemostat culture, were classified into six 

clusters. These clusters represent the set of metabolites that showed similar metabolic patterns 

when the culturing conditions were changed. For example, it was clear that at lower dilutions 

rates (0.05 and 0.1 h-1) short chain fatty acids (hxa: hexanoate [n-C6:0], octa: octanoate [n-C8:0] 
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and dca:decanoate [n-C10:0]) and benzoate were present in low levels, but increasing the 

dilution rate a significant increase in their levels was verified. The opposite was seen for long 

chain fatty acids. However, one pattern was similar among four clusters. It seems that, in 

general, at a dilution rate of 0.1h-1 metabolite levels increase. This is analysed in detail in Chapter 

4. 

 

 

Figure 1.10. Pair-wise metabolite-metabolite correlations constructed from GC/MS 

measurements of intracellular metabolites from W3110 and ∆relA E. coli cultures.  

 

Metabolic correlations can also be explored for comparison of metabolite profiles produced by 

different E coli strains when growing in the same conditions (see Chapters 4 and 6). As 

exemplified in Figure 1.10, metabolic profiles of endometabolome samples from E. coli W3110 

and ∆relA cells were evaluated by pair-wise correlation coefficients (r), showing that almost half 

of the metabolites detected by GC/MS analysis showed strong correlated patterns (i.e. r above 

0.8). Some metabolites revealed negative correlations, which mean that the intracellular 

accumulation of these metabolites followed an opposite pattern in one of the E. coli cultures, e.g. 

malate (mal) with r equal to -0.3.  

As described, there are many ways to explore metabolome data and capture relevant metabolic 

patterns that explain some physiological characteristics observed during fermentation processes. 
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The fact that physiological responses to stimulus in microorganisms are often mediated by 

metabolic reactions entangled in intricate relationships in the metabolic network is pertinent. 

Moreover, alterations in quantitative levels of metabolites provide valuable information for 

understanding the dynamics of metabolic activities and the organizational principles underlying 

the metabolic networks. The access to metabolome data that can be further represented into 

large scale metabolic networks supports the holistic perspective of the metabolism that has been 

sustained by the systems biology view (Kitano H, 2002). However, it must be noted that 

interpretations are heavily shaped by the metabolomics approach performed to generated 

metabolome data and, consequently, the obtained metabolite coverage. For example, a 

metabolic footprinting approach is not capable to cover the same range of metabolites as an 

approach designed to measures intracellular metabolites. It is not expected that the entire set of 

metabolites produced under certain metabolic conditions are equally present inside and outside 

the cells. However, this approach offers several advantages, like technical simplicity, higher 

reproducibility and the possibility to find metabolic markers that could be used to monitor 

physiological alterations during bioprocesses that would not be otherwise detectable. 

Metabolomic measurements have also been used to elucidate the function of the unknown and 

novel genes (Forster J et al., 2002; Griffin JL, 2004; Raamsdonk LM et al., 2001). Although 

genome sequencing projects have been successfully applied in the functional genomics field, the 

potential of metabolomics to determine gene functions has also been considered (Bino RJ et al., 

2004). Still today, of 4460 E. coli genes, only 2650 (59.3%) have experimentally defined 

functions (Keseler IM et al., 2009), which denotes the necessity for new tools capable to uncover 

cellular functions of enzymes and other unassigned proteins. Although bioinformatics tools have 

been widely used to predict functional assignments, many metabolic activities are currently 

orphan. For example, metabolomics analysis presented in this thesis exposed that some 

metabolites detected by GC/MS in E. coli samples could not be linked to any known metabolic 

pathway. Metabolites, such as itaconate, malonate, 2-phenylglycine or benzoate, have no 

assigned metabolic reaction in the E. coli metabolic network, according to public databases, such 

as KEGG (Kanehisa M and Goto S, 2000) and EcoCyc (Keseler IM et al., 2009), or genome-scale 

metabolic models (e.g. iAF1260 model of E. coli K12 (Feist AM et al., 2007)). Yet, metabolome 

data confirmed that these metabolites are produced by E. coli cells and have characteristic 
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metabolic profiles that were correlated with other metabolites in the metabolic network (see 

Figure 1.8).  

Different approaches can be devised to confirm the role of these metabolites in the cellular 

metabolism. As detailed in Figure 1.11, metabolite profiling can be explored as a screening 

methodology to investigate and discover in vitro and in vivo activities of enzymes, by monitoring 

the changes in metabolite levels. Indeed, the 4-hydroxybutyrate dehydrogenase activity in E. coli 

was recently discovered using a metabolite profiling-based method (Saito N et al., 2009b).  

 

 

Figure 1.11. Schematic representation of metabolomics-driven approaches to identify new 

enzymatic functions (Saito N et al., 2010). 

There are two fundamental approaches that have been implemented: in vitro, where gene products with unassigned 

biochemical functions, often overproduced using recombinant systems with fusion tags to facilitate the purification, 

are added to a metabolome cocktail; and in vivo, where cells are genetically modified (target deletion of specific 

genes) or are exposed to environmental perturbations to observe metabolic changes. Mass spectrometry-based 

methods are used for metabolite identification and metabolic profiling allows for the verification of metabolite 

patterns that might explain phenotypic features. It is always advised further experimental validations for the new 

assigned functions.  
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In this thesis in vivo metabolite profiling-based methods were used to determine the metabolic 

status of E. coli cells under various environmental and genetic conditions:  

• Two E. coli strains were used. wild-type E. coli W3110 and the isogenic mutant ∆relA; 

• Both E. coli strains were cloned with a pTRC-His-AcGFP1 vector and were tested in 

producing and non-producing conditions; 

• Cells were grown in different fermentation modes: fed-batch and chemostat cultivations; 

• Several growth conditions were evaluated: from extremely low to excessive nutrient 

availability. 

 

Although a significant number of metabolites, known to participate in central metabolic pathways 

of E. coli, were not measured by the implemented GC/MS approach, the obtained metabolome 

data allowed for important discoveries that will be detailed in Chapters 4, 5 and 6. As previously 

mentioned several attempts to improve the performance of E. coli cells during recombinant 

bioprocesses have been presented in the last years. In particular, omics technologies have been 

applied with some success to derive new hypothesis to engineer host cells improving 

recombinant protein productivity. However, metabolomics is still the less used technology, 

certainly because the implementation of these methodologies is more difficult, and thus, any 

interpretation based on transcriptome or proteome data lacks the link to phenotypic 

characteristics. To enable predictive metabolic engineering, analytical approaches might not only 

incorporate experimental information from gene expression profiles or protein abundances, but 

primarily metabolic data that could be derived from metabolomics or/and fluxomics.  
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STRINGENT RESPONSE OF ESCHERICHIA COLI: 

REVISITING THE BIBLIOME USING LITERATURE MINING 

 

“Nearly 40 years ago two spots appeared on autoradiograms, as if by magic...”  

By K. Potrykus and M. Cashel in (p)ppGpp: Still Magical?,  
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2.1 ABSTRACT  

This work aims to present a novel approach to the large-scale compilation, 

processing, and analysis of literature on the stringent response in 

Escherichia coli. This cellular response consists of a range of (p)ppGpp-

induced cellular activities triggered by amino acid depletion, and involving a 

multitude of molecular components, namely genes, tRNAs, mRNAs, gene 

products and small molecules, that ensure a coordinated and effective 

response. Specialised controlled vocabulary supported the automatic 

recognition of molecular components whereas statistical co-occurrence 

analysis suggested the most likely to be biologically engaged. As a result, 

the cellular processes affected by the activity of (p)ppGpp nucleotides were 

identified and further investigated, complementing existing reviews on this 

pleiotropic cellular response. The RelA and SpoT enzymes that control the 

basal levels of (p)ppGpp nucleotides and the RNA polymerase to which 

these nucleotides bind, were the most represented components. However, 

the identification of less annotated components revealed that some 

(p)ppGpp-induced functional activities are still unclear or largely overlooked. 

The suggested literature mining approach offers a more comprehensive 

analysis of the stringent response in E. coli, enhancing the process of 

compiling and processing relevant literature, as well as enabling the 

incremental extension of the knowledge base, following up research 

breakthroughs. 
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2.2 INTRODUCTION  

The survival capacities of all living organisms are dependent on the ability to sense and 

respond to environmental changes. Organisms can face several stress conditions, such as 

nutritional and energetic starvation, excess of toxic substances and presence of inhibitory 

agents, all of which can affect normal growth (Nystrom T 1999; Mukherjee TK et al. 1998). 

The identification of the specific mechanisms involved in microbial survival under stress 

conditions is expected to provide insight into stress response systems across life forms. In 

particular, the stringent response of the E. coli serves as a paradigm for understanding global 

responses to sudden nutritional starvation (Chatterji D and Ojha AK 2001; Durfee T et al. 

2008). Moreover, there is an industrial motivation for understanding the mechanisms of the 

stringent response in E. coli, since it is sometimes triggered during recombinant protein 

production, leading to decreased productivities (Harcum SW 2002; Haddadin FT et al. 2009). 

In recent years, numerous publications have discussed the mechanisms involved in this 

response (Jain V et al. 2006; Battesti A and Bouveret E 2009; Srivatsan A and Wang JD 2008; 

Chang DE et al. 2002; Murray KD and Bremer H 1996; Xiao H et al. 1991). Studies indicate 

that the accumulation of unusual guanosine nucleotides, collectively called (p)ppGpp, is the 

hallmark of the stringent response of E. coli (Magnusson LU et al. 2005) (Figure 2.1). Such 

accumulation is known to be controlled by the activity of two enzymes, RelA and SpoT. Upon 

depletion of amino acids, the ribosome-bound RelA enzyme (ppGpp synthetase I) is induced to 

synthesise (p)ppGpp nucleotides when an uncharged tRNA binds to the acceptor site of the 

translating ribosome (Torok I and Kari C 1980). In turn, the bifunctional SpoT enzyme (ppGpp 

synthetase II), which also possesses weak synthetase activity, is responsible for maintaining 

the intracellular levels of (p)ppGpp nucleotides via enzymatic degradation (Johnson GS et al. 

1979).  
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Figure 2.1. The (p)ppGpp-mediated stringent response.  

(A) Low amino-acid concentrations lead to decreased charging of the corresponding tRNAs. (B) The translational 

machinery depends on the translocation along the mRNA whereby a new acetylated-tRNA is positioned in the 

ribosome. Whenever an uncharged tRNA binds to the ribosome, the elongation of the polypeptide chain is stalled. 

(C) The stringent factor RelA is then activated in the presence of the ribosomal protein L11, catalyzing the 

synthesis of (p)ppGpp nucleotides. (D) These nucleotides bind directly to the RNA polymerase and affect the 

binding abilities of sigma factors to the core RNA polymerase. (E) The co-factor DksA also binds to the RNA 

polymerase and augments the (p)ppGpp regulation of the transcription initiation at certain σ70-dependent 

promoters, functioning both as negative and positive regulators. (F) These regulators change the gene expression: 

(i) decreasing the transcription activity of genes involved in the translational activity; (ii) and increasing the 

transcription of stress-related operons and genes encoding for enzymes needed for the synthesis and the 

transport of amino acids.  
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The (p)ppGpp-mediated response involves the control of the genetic expression by direct 

interaction of the (p)ppGpp nucleotides with the RNA polymerase (RNAP) (Chatterji D et al. 

1998; Artsimovitch I et al. 2004). Typically, transcription depends on the recognition of the 

promoter elements by the complex RNAP-sigma (σ) factor and the DNA-binding activity of 

transcription factors. During stringent response (p)ppGpp nucleotides, in conjunction with the 

DksA protein, bind to RNAP activating the transcription of the genes coding for stress-

associated sigma factors and amino acid biosynthesis and inhibiting the transcription of stable 

RNAs (rRNA and tRNA) (Paul BJ et al. 2004). 

This (p)ppGpp-mediated scenario is quite complex and many fundamental details, such as the 

mechanisms underlying the activation of transcription by (p)ppGpp, remain unknown or 

uncertain (Potrykus K and Cashel M 2008; Wu J and Xie J 2009). Experimental results keep 

being produced, and therefore continuous and incremental literature review is required to gain 

a better understanding of the process. In this work, we propose the development of a literature 

mining approach that complements manual literature review. This semi-automatic information 

extraction approach aims at speeding up the review process, but, far more important, takes 

advantage of public database information and ontology assignments to provide for large-scale 

enrichment and contextualisation of textual evidences. Manual curation was on top of the 

automatic annotation process and addressed the validity and consistency of the extracted 

information.  

A corpus, i.e., a set of documents, related to the stringent response of E. coli (published till 

2009) was retrieved using NCBI PubMed tools. EcoCyc database (Keseler IM et al. 2009), a 

key resource for E. coli studies, provided for most of the controlled vocabulary used for the 

identification of relevant entities in the documents, namely genes, gene products and small 

molecules. Moreover, EcoCyc gene and gene product assignments to Gene Ontology (GO) 

(Ashburner M et al. 2000) and MultiFun ontology (Serres MH and Riley M 2000) enabled the 

annotation of biological processes and molecular functions. Additionally, the Proteomics 

Standards Initiative-Molecular Interactions (PSI-MI) ontology (Hermjakob H et al. 2004) 

supported the annotation of experimental techniques.  

The analysis of corpus annotations aimed at (i) corroborating existing knowledge about key 

players and processes involved in the stringent response of E. coli and (ii) unveiling knowledge 
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that has been overlooked in the existing reviews. Analysis was based on the assumption that 

entities, processes and functions of interest could be identified by finding those terms (i.e. the 

set of name variants that identify a given biological entity or experimental technique) that were 

significantly present among all terms found on the corpus. As such, the frequency and variance 

of term annotation supported the identification of key players, whereas GO and MultiFun 

assignments to gene products assisted on the inspection of the involved biological processes. 

Finally, a decade-by-decade retrospective analysis was performed to evaluate the influence of 

technology advances on these findings and to get a broader perspective on the current 

knowledge of the stringent response.  

 

2.3 EXPERIMENTAL PROCEDURES  

The semi-automatic information extraction approach designed to review existing literature on 

the stringent response of E. coli, which integrated automatic document retrieval and entity 

recognition processes, manual curation and corpus analysis, is shown in Figure 2.2.  

 

 

Figure 2.2. Semi-automatic information extraction approach.  

The first step encompasses the retrieval of relevant documents that are then processed to recognize biological 

entities and map ontological concepts. The corpus analysis enables the identification of key players or significant 

information by an incremental curation that can further deliver information for retrieving new relevant documents. 
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2.3.1  SEMI-AUTOMATIC INFORMATION EXTRACTION APPROACH 

A keyword-based search in PubMed, using the query ((“Escherichia coli” OR “E. coli”) AND 

“stringent response”) was used to compile the set of documents analysed in this work. @Note 

(Lourenco A et al. 2009), a workbench for Biomedical Text Mining enabled the use of common 

literature mining techniques, namely dictionary and rule-based techniques, in the recognition 

and annotation of genetic components, gene products and small molecules. Its regular 

expression module enabled the identification of genes and proteins that adhere to standard 

gene and protein naming conventions for E. coli (e.g. three lower case letters followed by a 

fourth letter in upper case or a term consisting of four digits preceded by character ‘b’ are 

candidates for gene names).  

The annotated corpus was stored into XML files for enabling further computer processing. 

Manual curation was regarded as the second stage of annotation and aimed at validating 

automatic annotations and coping with automatic annotation flaws and limitations. Each XML 

file was manipulated by the curator using the @Note’s manual curation environment. The 

curator was able to add, remove and correct annotations, evaluating possible improvements in 

the entity recognition process, namely the refinement of the vocabulary and the adjustment of 

the set of regular expressions.  

 

2.3.2 CONTROLLED VOCABULARY  

EcoCyc database (version 13.0, released in March 2009) provided for most of the controlled 

vocabulary. It supported the automatic identification of genetic components, gene products and 

small molecules as follows: common names and extensive name variants (synonyms) were 

used for recognising all entities in the corpus; entity name variants were normalised by 

associating the corresponding database record identifier to the annotation; and database 

assignments to GO and MultiFun categories enabled the mapping of annotated terms to the 

associated molecular functions and biological processes. Additional vocabulary was extracted 

from PSI-MI ontology for the annotation of experimental techniques.  
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2.3.3 ANALYSIS METHODOLOGY 

The number of annotations of a term (or entity), the number of documents that contributed for 

those annotations and the number of documents composing the corpus constituted the 

baseline of the statistical metrics used in the analyses. Let D be the set of documents in the 

corpus and T be the set of annotated terms in D. For every Tti ∈ , the frequency, the mean, 

the standard deviation of annotation, and the variance-to-the mean ratio (or coefficient of 

dispersion) were computed as described in Table 2.1. 

 

Table 2.1. Annotation statistics used in the analysis. 
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The frequency of annotation, freqti, is the fraction of documents in D that refers to the term ti. In 

turn, the mean, µti, and the standard deviation, σti, weight the number of annotations of a term, 

#annotsti, in the documents in D that include those annotations, docsti, and measure the 

average or dispersion of the annotations, respectively. The mean indicates the 

representativeness of the term in the subset docsti whereas the standard deviation indicates the 

variability of annotation in the subset. The variance-to-mean ratio (also called index of 

dispersion), VMRti, is a quantitative measure of the degree of clustering of term annotations. A 
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ratio that is greater than 1 indicates a clustered distribution, i.e., term annotations are 

unevenly distributed in the subset docsti; less than 1 indicates an evenly dispersed distribution, 

i.e., term annotations are evenly distributed in the subset docsti; equal to 1, a random 

distribution; and, equal to 0, indicates a constant distribution, i.e., the number of term 

annotations is the same in all documents that refer to the term. Finally, the frequency of co-

annotation relates two different entities, assuming that entities that are often co-annotated (in 

the same document) are biologically engaged. The frequency of co-annotation was estimated 

and these interactions were illustrated using the Cytoscape biomolecular interaction viewer and 

analyser (Shannon P et al. 2003). 

The statistics of the ontology assignments of the annotated terms were studied for process and 

function analysis. The functions of the annotated gene products and the involved biological 

processes are reflected in their GO and MultiFun annotations and thus, processes and 

functions of interest were identified by finding statistically enriched terms (mainly by looking 

into the frequency of annotation). Similar assessments were taken over PSI-MI assignments 

towards the identification of the techniques that have contributed the most to the study of the 

stringent response. Apart from the systematic analysis of the set of annotations in corpus, a 

retrospective analysis of annotations per decade was also undertaken (i.e. frequency of 

annotation per decade). Such analysis aimed at looking into the evolving experimental 

techniques that contributed to the study of the stringent response over the decades and, in 

particular, evaluating the impact that the technological evolution had in the identification of 

molecular participants. 

Finally, a set of recent documents that review the literature on the subject were manually 

retrieved from PubMed. Their contents were evaluated in terms of annotations of genetic 

components, gene products and small molecules and further compared to the annotations 

retrieved from the corpus. 
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2.4 RESULTS  

Since the aim of this approach was to extract detailed information on the stringent response, 

the process of document retrieval was focused on full-texts. A keyword-based search on 

PubMed retrieved a total of 251 documents, from which 231 documents had full-texts available 

under different subscription policies. Open-access journals provided for 129 documents 

whereas 64 documents were retrieved using team’s institutional journal subscriptions. At the 

end, an overall of 193 full-text documents, most of which published in recent years, were 

available for annotation (Figure 2.3). 

 

 

Figure 2.3. Number of retrieved full-text publications per year (accumulated). 

 

The automatic identification of biological entities in the documents, so-called entity recognition, 

was based on EcoCyc controlled vocabulary for major biological classes and involved the 

recognition of genetic components (genes, RNA and DNA molecules), gene products (proteins, 
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including transcription factors and enzymes) and small molecules. Additionally, a hand-crafted 

dictionary supported the recognition of experimental techniques and their association to PSI-MI 

ontology concepts. The manual curation process consisted on reviewing document 

annotations, i.e., the text markups (XML tags) for recognised entities, to ensure the corpus 

quality and consistency. Errors of the automated recognition process such as the annotation of 

false entities (e.g. the words ‘release’ or ‘crease’ were annotated as enzymes based on 

common enzyme suffix ‘ase’), homonyms (e.g. the same term ‘elongation factor Tu’ to 

designate two different polypeptides ‘TufA’ and ‘TufB’) and PDF-to-text format conversion typos 

(e.g. ‘4azaleucine’ and ‘9galactosidase’ were corrected to ‘4-azaleucine’ and ‘β-galactosidase’, 

respectively) were manually curated. After manual curation, the corpus consisted of 93893 

annotations for 2474 entities.  

 

Figure 2.4. Corpus annotation contents.  

Overview of the extent of entities (A) and entity annotations (B) corresponding to each class. GO assignments (C) 

for molecular functions and biological processes mapped for each set of gene products (i.e. enzymes, 

transcription factors and other proteins) and MultiFun gene assignments (D) for different functional roles (BC-1 to 

Metabolism, BC-2 to Information transfer, BC-3 to Regulation, BC-4 to Transport, BC-5 to Cell processes, BC-6 to 

Cell structure, BC-7 to Location of gene products and BC-8 to Extrachromosomal origin) were recognized in the 

corpus.  
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Gene and gene products ontology assignments to MultiFun and GO were straightforward since 

all entries in the EcoCyc dictionary keep the corresponding database assignments to these 

ontologies. Similarly, ontology assignments to PSI-MI concerning laboratory techniques were 

enabled by the hand-crafted dictionary. Annotations were distributed as follows (Figure 2.4): (i) 

most of the annotated entities represent genetic components (50% of the entities), whereas 

small molecules accounted for the largest number of annotations (35% of the overall number of 

annotations); (ii) enzymes and proteins contributed to most GO assignments; and (iii) the 

MultiFun cellular function categories ‘Metabolism’(BC-1) and ‘Location of gene products’ (BC-

7) related to most of the annotated genes.  

The analysis of the corpus was based in the assumption that relevant entities could be 

identified by finding frequent terms. Thus, the analysis was primarily based on the number of 

documents where each entity was annotated and the number of entity annotations per 

document. First, the frequency of annotation (freqti) assessed the recurrent mention of an entity 

throughout the corpus and the mean (meanti) and standard deviation (stdti) of annotation 

showed its relevance in the discussion. Then, the variance-to-mean ratio (VMRti) indicated the 

existence of document clusters, which put emphasis on particular entities that are much less 

discussed on the rest of the documents. Additionally, the frequency of co-annotation (freqti,tj) 

was calculated for highly representative entities (entities with high frequency and mean) to 

identify those entities that were most probably engaged to them. 

To understand the evolving of the topic throughout the years, and in particular the impact of 

technology-driven advances, this analysis was extended to the study of annotations per decade. 

The analysis of gene and gene product assignments to MultiFun and GO ontologies pursued 

the comprehension of the molecular functions and biological processes involved in the 

stringent response of E. coli. 
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2.4.1  BIOLOGICAL ENTITIES 

The systems-level investigation of the stringent response involved the search for three main 

biological classes: genetic components (genes, RNA and DNA molecules), gene products 

(proteins, transcription factors and enzymes) and small molecules.  

 

Table 2.2. Annotations of the genetic components in the corpus.  

Individual genetic components (i.e. genes, DNAs and RNAs) were evaluated considering the number of documents 

where these entities were annotated and their number of annotations in the corpus. Statistical measurements are 

detailed in the Methods and Materials section. VMR: variance-to-mean; Std: standard deviation. 

Class Term 
Number of 

Annotations 
Number of 
Documents 

Frequency 
(%)Ψ 

M ean Std VM R  

Ge
ne

 

relA 3163 138 71.50 22.92 27.23 33.14 
spoT 1315 88 45.60 14.94 27.42 52.07 
lac 354 63 32.64 5.620 19.42 72.20 
lacZ 534 50 25.91 10.68 17.16 28.90 
thi 91 47 24.35 1.940 0.050 4.000 
rel 523 47 24.35 11.13 20.68 36.36 
recA 82 39 20.21 2.100 1.810 0.5000 
rpsL 95 36 18.65 2.640 3.530 4.500 
thr 84 36 18.65 2.330 3.760 4.500 
rpsG 103 34 17.62 3.030 7.250 16.33 
leu 98 34 17.62 2.880 6.800 18.00 
rpoS 205 33 17.10 6.210 10.83 16.67 
kan 308 33 17.10 9.330 16.61 28.44 
glnV 42 31 16.06 1.350 0.7400 0 
rpoB 389 30 15.54 12.97 17.60 24.08 
ptsG 240 30 15.54 8.000 21.54 55.13 
trp 144 25 12.95 5.760 14.73 39.20 
carA 60 20 10.36 3.000 3.810 3.000 
hsdR 23 19 9.840 1.210 0.5600 0 

DN
A 

DNA 1839 137 70.98 13.42 16.31 19.69 
plasmid DNA 193 36 18.65 5.360 12.31 28.80 
chromosomal DNA 63 24 12.44 2.630 2.440 2.000 
cDNA 125 23 11.92 5.430 5.820 5.000 

RN
A 

RNA 4193 140 72.54 29.95 38.21 49.79 
uncharged tRNA 1168 117 60.62 9.980 19.64 40.11 
rRNA 1116 97 50.26 11.51 25.97 56.82 
a mRNA 999 91 47.15 10.98 19.52 36.10 
rrnA 911 87 45.08 10.47 22.51 48.40 
stable RNA 430 87 45.08 4.940 8.030 16.00 
a charged tRNA 140 43 22.28 3.260 4.200 5.330 
rrnB 301 26 13.47 11.58 19.30 32.82 
rrn 321 26 13.47 12.35 30.42 75.00 
16s-rRNAs 156 25 12.95 6.240 9.090 13.50 

ΨA threshold of 10% of the frequency of annotation was set for each genetic component category.   
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The analysis of the frequency of annotation of genetic components (see Table 2.2) evidenced 

that entities like the relA gene and the RNA and DNA molecules were annotated in more than 

70% of the documents. Though the representativeness of such entities in these documents was 

considerably high (i.e. high mean of annotation), the annotations were over-dispersed (VMR>1). 

For example, the relA gene has a mean of over 22 annotations per document and a VMR of 

over 33, meaning that a small part of the documents presents a very high number of 

annotations, which suggests that these are focused on the discussion of the role of this gene in 

the stringent response. 

Similarly, the analysis of gene product annotations (see Table 2.3) exposed RelA, RNAP and 

ribosomes as highly annotated entities (present in over than 50% of the documents) with a 

considerable degree of over-dispersion (VMR>1). More interesting, the Fis transcriptional dual 

regulator, which modulates several cellular processes, such as the transcription of stable RNA 

(PMID: 2209559; PMID: 9973355)1

 

 (Ross W et al. 1990; Walker KA et al. 1999), presented a 

low frequency of annotation (less than 10% of the documents), but was highly annotated in the 

associated documents (with a mean of almost 50 annotations per document). An extremely 

high value of VMR (over 150) pointed out that some of these documents are really devoted to 

the discussion of this biological entity. 

 

 

 

 

 

 

                                            

1 The PubMed Unique Identifiers (PMIDs) indicate which documents from the corpus supported the evidences. 
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Table 2.3. Annotations of the gene products in the corpus.  

Individual gene products (i.e. enzymes, transcription factors and other proteins) were evaluated considering the 

number of documents where these entities were annotated and their number of annotations in the corpus. 

Statistical measurements are detailed in the Methods and Materials section.  

Class Term 
Number of 

Annotations 
Number of 
Documents 

Frequency 
(%)Ψ 

Mean Std VM R  

Pr
ot

ei
ns

 

Ribosome 1643 128 66.32 12.84 23.57 44.08 
Rel 1021 62 32.12 16.50 36.60 81.00 
LacZ 543 53 27.46 10.30 17.44 28.90 
Sigma 38 factor 392 42 21.76 9.330 15.40 25.00 
Sigma factor 112 35 18.13 3.200 5.870 8.330 
UvrD 56 35 18.13 1.600 1.300 1.000 
RpoB 252 35 18.13 7.200 11.50 17.29 
RecA 99 31 16.06 3.190 4.260 5.330 
EF-Tu 223 26 13.47 8.580 17.32 36.13 
Der 51 25 12.95 2.040 2.140 2.000 
Sigma 70 factor 134 21 10.88 6.380 11.19 20.17 

Tr
an

sc
ri

pt
io

n 
fa

ct
or

s 

Fis  888 18 9.330 49.33 86.88 150.9 
Fur 56 13 6.740 4.310 9.260 20.25 
CRP 279 12 6.220 23.25 36.28 56.35 
DnaA 121 11 5.700 11.00 23.00 48.09 
H-NS 73 11 5.700 6.640 10.73 16.67 
LexA 101 10 5.180 10.10 18.32 32.40 
IHF 54 9 4.660 6.000 5.250 4.170 

En
zy

m
es

 

RelA 4138 152 78.76 27.22 31.16 35.59 
RNAP 1873 117 60.62 16.01 28.08 49.00 
SpoT 1024 60 31.09 17.07 42.19 103.8 
EcoRI 215 53 27.46 4.060 4.970 4.000 
β-galactosidase 294 47 24.35 6.260 6.550 6.000 
BamHI 149 43 22.28 3.470 5.870 8.330 
HindIII 114 41 21.24 2.780 2.160 2.000 
RNase 109 36 18.65 3.030 4.280 5.330 
YbcS 50 23 11.92 2.170 2.620 2.000 
Reverse 
transcriptase 

34 21 10.88 1.620 1.050 1.000 

tRNA synthetase 54 20 10.36 2.700 2.630 2.000 
Endonuclease I 29 20 10.36 1.450 1.400 1.000 

ΨA threshold of 10% of the frequency of annotation was set for enzymes and other proteins, whereas a threshold 

of 5% was set for transcription factors. VMR: variance-to-mean; Std: standard deviation. 

 

The analysis of the annotation of small molecules (see Table 2.4) revealed that, though almost 

83% of the documents discussed the general role of amino acids and nucleotides, the mean of 

annotation of specific nucleotides and amino acids was quite low (less than 10 annotations per 

document in most cases). The two exceptions were the nucleotides ppGpp and (p)ppGpp (the 

collective reference for ppGpp and pppGpp). A high frequency of annotation (75% and 37%, 
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respectively) and a high mean of annotation (29 and 43, respectively) confirm that these 

nucleotides are central in the stringent response in E. coli. Indeed, during amino acid 

starvation (p)ppGpp nucleotides coordinate several cellular activities by influencing gene 

expression. As a result, further analysis based on the frequency of co-annotation of these 

nucleotides (and also the related pppGpp nucleotide) with gene products was issued to support 

the identification of more key players (Figure 2.5). 

 

Table 2.4. Annotations of the small molecules in the corpus.  

Individual small molecules were evaluated considering the number of documents where these entities were 

annotated and the number of annotations in the corpus. Statistical measurements are detailed in the Methods 

and Materials section.  

Term 
Number of 

Annotations 
Number of 
Documents 

Frequency (%)Ψ Mean Std VM R  

Amino acids 1557 160 82.90 9.730 13.83 18.78 
Nucleotides 1230 145 75.13 8.480 9.290 10.13 
ppGpp 4159 145 75.13 28.68 31.00 34.32 
β-D-glucose 792 123 63.73 6.440 10.63 16.67 
Pi 662 113 58.55 5.860 12.60 28.80 
Guanosine 407 112 58.03 3.630 3.540 3.000 
ATP 587 100 51.81 5.870 7.410 9.800 
GTP 748 91 47.15 8.220 13.85 21.13 
AMP 598 90 46.63 6.640 10.09 16.67 
PPi 447 87 45.08 5.140 5.180 5.000 
H2O 210 83 43.01 2.530 2.430 2.000 
Tris 261 82 42.49 3.180 2.800 1.330 
Carbon 288 80 41.45 3.600 4.850 5.330 
Chloramphenicol 435 77 39.90 5.650 8.250 12.80 
pppGpp 632 74 38.34 8.540 13.61 21.13 
(p)ppGpp 3127 72 37.31 43.43 56.00 72.93 
NaCl 189 67 34.72 2.820 2.790 2.000 
L-lactate 413 65 33.68 6.350 20.84 66.67 
Glycerol 145 65 33.68 2.230 1.850 0.5000 
Ethanol 189 65 33.68 2.910 4.400 8.000 
Na+ 145 63 32.64 2.300 2.100 2.000 
Ampicillin 321 62 32.12 5.180 12.74 28.80 
EDTA 142 60 31.09 2.370 1.680 0.5000 
L-methionine 248 59 30.57 4.200 6.670 9.000 
L-histidine 183 59 30.57 3.100 5.410 8.330 
L-valine 396 57 29.53 6.950 11.90 20.17 
Formate 136 57 29.53 2.390 2.360 2.000 

ΨA threshold of 30% of the frequency of annotation was set for compounds. VMR: variance-to-mean; Std: standard 

deviation.   
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Figure 2.5. Proteins co-annotated with ppGpp, pppGpp and the collective (p)ppGpp 

entities.  

Edges indicate the proteins co-annotated with these core nucleotides and nodes represent proteins with frequency 

of co-annotation higher than 10%. Highly co-annotated proteins are represented by nodes with a larger size 

(frequencies of co-annotation greater than 50%). Pink nodes represent the proteins that were co-annotated with 

the three entities, while green and yellow nodes indicate the proteins that are co-annotated with only two and one 

of the nucleotides, respectively. 

 

The (p)ppGpp nucleotides were found to be considerably co-annotated with highly 

representative proteins, namely: the RelA and SpoT enzymes that control the basal levels of the 

nucleotides (around 93% and 67%, respectively); ribosomes that are affected by the nucleotides 

activity (around 79%); RNAP (around 64%); and the RpoS, the alternative sigma factor σ38 that 

acts as the master regulator of the general stress response (around 40%) (PMID: 9326588) 

(Shiba T et al. 1997). Some proteins were co-annotated with only one or two of the terms. For 

instance, the Gpp enzyme that converts pppGpp into ppGpp (PMID: 8531889; PMID: 

6130093) (Condon C et al. 1995; Hara A and Sy J 1983) was essentially co-annotated with 
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pppGpp. In turn, the RecA protein, which catalyses DNA strand exchange reactions (PMID: 

17590232) (Manganelli R 2007), and the tRNA synthetase were co-annotated with (p)ppGpp 

and ppGpp with a frequency higher than 10%, whereas other proteins were mainly co-

annotated with (p)ppGpp and pppGpp: the elongation factor (EF) G, known to facilitate the 

translocation of the ribosome along the mRNA molecules (PMID: 8531889) (Condon C et al. 

1995); the RplK (or 50S ribosomal subunit protein L11) that was reported to be essential when 

the 30S ribosomal initiation complex joins to the 50S ribosomal subunit and in the EF-G-

dependent GTPase activity (PMID: 17095013; PMID: 12419222) (Wendrich TM et al. 2002; 

Jenvert RM and Schiavone LH 2007); and the enzyme PhoA known to be involved in the 

acquisition and transport of phosphate (PMID: 9555903) (Rao NN et al. 1998). Additionally, 

results pointed out potentially interesting associations with less represented proteins, such as: 

the Fur transcriptional activator that controls the transcription of genes involved in iron 

homeostasis (PMID: 15853883) (Vinella D et al. 2005); the HN-S transcriptional dual regulator 

that is capable of condensing and supercoiling DNA (PMID: 10966109) (Johansson J et al. 

2000); the DnaA protein implicated in the chromosomal replication initiation (PMID:1690706) 

(Chiaramello AE and Zyskind JW 1990); the DinJ-YafQ complex involved in the inhibition of 

protein synthesis and growth (PMID:12123445) and the MazE antitoxin of the MazF-MazE 

toxin-antitoxin system involved in translation inhibition processes (PMID:12123445) (Chang DE 

et al. 2002).  

 

2.4.2 ONTOLOGY TERM ENRICHMENT 

Recent developments in the functional annotation of genomes using biological ontologies 

provided the means to contextualise literature mining outputs, i.e. to disclose the biological 

meaning behind the annotated entities. The automatic mapping of annotated entities to 

ontology concepts was possible because EcoCyc supports the assignment of MultiFun and GO 

ontology concepts to genes and gene products in its curation procedures. MultiFun ontology 

classifies gene products according to their cellular function, namely: metabolism, information 

transfer, regulation, transport, cell processes, cell structure, location, extra-chromosomal 

origin, DNA site, and cryptic gene. In turn, GO embraces three separate ontologies: cellular 
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components, i.e. the parts of a cell or its extracellular environment; molecular functions, i.e. 

the basic activities of a gene product at the molecular level, such as binding or catalysis; and 

biological processes, i.e. the set of molecular events related to the integrated functioning of 

cells, tissues, organs or organisms.  

Here, the analysis of ontology assignments was focused on MultiFun cellular functions and GO 

biological processes (Table 2.5 and Table 2.6). The aim was to identify the processes and 

functions to which annotated entities contributed the most. As such, the frequency of ontology 

assignment represented the fraction of documents in the corpus that included entities with 

assignments to the concept. The frequency of assignment estimated the particular contribution 

of an entity to the overall assignment of the ontology concept and the frequency of annotation 

of the entity indicated the number of documents in which that entity was annotated. Since one 

entity can be associated to several ontology concepts and the representation of an ontology 

concept depends on the number of annotations of the embraced entities, the frequency of 

assignment evaluated the most contributing entities to ontology concepts whereas the 

frequency of annotation provided indication of whether those entities are considerably 

discussed in the corpus or not. 

The analysis of MultiFun cellular function assignments (Table 2.5) evidenced gene functions 

related to central metabolism processes, post-transcriptional processes and transcription 

related functions (covered by over 50% of the documents). The most assigned MultiFun cellular 

functions, namely metabolic functions related to nucleotide and nucleoside conversions (BC-

1.7.33) and proteolytic cleavage of compounds (BC-3.1.3.4), derived from the highly annotated 

relA and spoT genes. The lacZ gene, another highly annotated gene (26% of the documents), 

that encodes the β-galactosidase enzyme responsible for the hydrolysis of β-galactosides into 

monosaccharides, contributed significantly (almost 50% of assignments) to the annotation of 

cellular functions implicated in the metabolism of carbon compounds (BC-1.1.1). The gene fis 

that encodes the Fis transcriptional dual regulator and the gene rpoB coding for the β subunit 

of the RNAP, contributed the most to the annotation of transcriptional related functions (BC-

2.2.2). Similarly, genes like dksA that encodes the DksA protein, rplK that encodes the 50S 

ribosomal subunit L11, and rpsG and rpsL coding for the 30S ribosomal subunitsS7 and S12, 

respectively, contributed the most to the annotation of transcription related processes (BC-
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2.3.2). By looking into the frequency of annotation of the corresponding encoded products, it 

was verified that there is a discrepancy of annotation between the genes contributing to 

enriched ontology terms and the corresponding gene products. Therefore, the use of the 

MultiFun ontology not only pointed out relevant gene function assignments, but also disclosed 

the participation of several gene products that, even though presenting extremely low 

frequency of annotation, were highlighted by functional association. Some examples are 30S 

ribosomal subunit protein S12 and 30S ribosomal subunit protein S7 encoded by rpsL and 

rpsG, respectively. 

On the other hand, the analysis of GO biological process assignments (Table 2.6) highlighted 

metabolic and genetic information transfer processes as the most frequent in the corpus (over 

50% of the documents). Although the general concept of metabolic process had the highest 

frequency (89% of the documents), two particular metabolic processes: the nucleobase, 

nucleoside and nucleotide interconversion (GO:0015949) and the guanosine tetraphosphate 

metabolic (GO:0015969) processes, had high frequencies (around 80% of the documents) as 

well. The gene product that contributed the most to the annotation of metabolic-related 

processes was the RelA enzyme, with over 80% of the assignments. Regarding genetic 

information transfer, transcription (GO:0006350), DNA-dependent transcription regulation 

(GO:0006355) and translation (GO:0006412) were the most represented processes (56%, 52% 

and 40% of the documents, respectively). The σ38 factor, the CRP transcriptional dual regulator, 

known to participate in the transcriptional regulation of genes involved in the degradation of 

non-glucose carbon sources (PMID: 10966109) (Johansson J et al. 2000) and the Mfd protein, 

found to be responsible for ATP-dependent removal of stalled RNAPs from DNA (PMID: 

7968917) (Selby CP and Sancar A 1994), contributed similarly to the annotation of 

transcription and DNA-dependent transcription regulation processes, ranging between 10% and 

20% of the assignments. Translation process assignments were derived from the RplK (or 50S 

ribosomal subunit protein L11) and the DksA proteins, with 28% of the assignments each, and 

the Elongation Factor Tu (EF-Tu), which mediates the entry of the aminoacyl tRNA into the 

ribosome, with 13% of the assignments.  
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In terms of stress-specific ontology annotations, responses to stress (GO: 0006950), starvation 

(GO: 0042594), osmotic stress (GO: 0006970) and DNA damage stimulus (GO:0006974) 

were the most frequently assigned cellular response processes (present in almost 40% of the 

documents). The response to stress was mostly assigned by the RecA regulatory protein, the 

RelB transcriptional repressor and the transcription antitermination protein NusA (frequencies 

of assignment of 20%, 16% and 10%, respectively). In the response to starvation, SpoT enzyme 

detached from other contributing gene products (almost 70% of the assignments). The σ38 

factor and the EF-Tu protein were the main contributors to the assignment of osmotic stress 

responses (59% and 34% of the assignments, respectively), while the response to DNA damage 

stimulus was derived from the annotation of proteins Mfd, RecA and RecG (28%, 11% and 11% 

of the assignments, respectively). The process of restoring DNA after damage, called DNA 

repair (GO:0006281), was also assigned by the aforementioned annotated entities.  

Since results evidenced significant assignment of stress-related processes, it was considered 

interesting to explore in detail the functional annotations of gene products related to E. coli 

stress responses (Table 2.7). A decade-by-decade analysis was performed to evaluate the 

extent of documents that study entities associated with these functional annotations. As shown, 

the response to starvation (GO:0042594) was mostly evidenced in the last decade, being 

assigned in almost 70% of the documents of this decade. The response to DNA damage 

stimulus (GO:0006974) and osmotic stress (GO:0006970) were also considerably assigned in 

the last decade (50% of the documents). On the contrary, the defense response to bacterium 

(GO:0042742) was less assigned in the documents from the last two decades (less than 10% 

of the documents) and the stringent response (GO:0015968) was poorly assigned in the last 

decade, probably because GO only associates this biological process to the 50S ribosomal 

subunit protein L11, which only recently has been studied in the context of this stress. 
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Table 2.7. Assignment of GO concepts related to stress responses.  

The frequency of annotation of stress response-related concepts was estimated for documents published in the 

four decades analysed (from 1970 to 2009). 

GO Concept GO Description 
Frequency of Ontology 

Annotation 
1970 1980 1990 2000 

Response to 
starvation 

A change in state or activity of a cell or an 
organism as a result of a starvation stimulus, 
deprivation of nourishment. 

- 15% 28% 68% 

Response to DNA 
damage stimulus 

A change in state or activity of a cell or an 
organism as a result of a stimulus indicating 
damage to its DNA. 

7% 26% 31% 50% 

Response to osmotic 
stress 

A change in state or activity of a cell as a result 
of an increase or decrease in the concentration 
of solutes outside the cell. 

21% 28% 35% 50% 

Response to stress A change in state or activity of a cell or an 
organism as a result of a disturbance in 
organismal or cellular homeostasis. 

- 31% 46% 46% 

Response to oxidative 
stress 

A change in state or activity of a cell or an 
organism as a result of oxidative stress. 

- 3% 20% 45% 

SOS response An error-prone process for repairing damaged 
microbial DNA. 

- 23% 30% 45% 

Response to antibiotic A change in state or activity of a cell or an 
organism as a result of an antibiotic stimulus. 

- 23% 30% 15% 

Response to drug A change in state or activity of a cell or an 
organism as a result of a drug stimulus.  

- 15% 35% 11% 

Response to 
temperature stimulus 

A change in state or activity of a cell or an 
organism as a result of a temperature stimulus. 

- - 9% 11% 

Defense response to 
bacterium 

Reactions triggered in response to the presence 
of a bacterium that act to protect the cell or 
organism. 

14% 26% 9% 8% 

Stringent response A specific global change in the metabolism of a 
bacterial cell as a result of starvation. 

- 13% 7% 6% 

Response to heat A change in state or activity of a cell or an 
organism as a result of a heat stimulus. 

- 3% 13% 5% 

Response to cold A change in state or activity of a cell or an 
organism as a result of a cold stimulus. 

- - - 3% 

Response to toxin A change in state or activity of a cell or an 
organism as a result of a toxin stimulus. 

- - - 3% 

Cellular response to 
starvation 

A change in state or activity of a cell as a result 
of deprivation of nourishment. 

- - - 1% 

Response to copper 
ion 

A change in state or activity of a cell or an 
organism as a result of a copper ion stimulus. 

- - - 1% 

Response to 
desiccation 

A change in state or activity of a cell or an 
organism as a result of a desiccation stimulus. 

- - 4% - 

Response to 
methotrexate 

A change in state or activity of a cell or an 
organism as a result of a methotrexate stimulus.  

- - 2% - 
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2.4.3  EXAMINING LESS-REPORTED ENTITIES 

In the present corpus, most of the biological entities identified as major participants in the E. 

coli stringent response, were also extensively cited in recent reviews (Wu J and Xie J 2009; 

Srivatsan A and Wang JD 2008; Potrykus K and Cashel M 2008; Jain V et al. 2006; 

Magnusson LU et al. 2005). As illustrated in Figure 2.6, biological entities considered to be key 

components in the important reviews, namely the enzymes RelA and SpoT and the RNAP, were 

also evidenced by the semi-automatic information extraction approach.  

 

Figure 2.6. Venn diagram comparing annotations from corpus and selected reviews. 

This diagram indicates the number of entities per class that were retrieved from the corpus and from the latest 

reviews considered to be relevant in this subject. The intersecting zone gives the number of entities that were 

simultaneously reported in the two set of documents.  

 

However, when examining the extent of annotations from the selected reviews and the corpus, 

it was evident that many biological entities have been disregarded or less reported in the 

reviews. Biological entities, such as transcriptional factors and other gene products like stress-

related proteins, were not described in the selected reviews. As exemplified in Table 2.8, the 
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role of some biological entities that are directly (or indirectly) associated with the stringent 

response, is often underestimated by most literature revisions.  

 

Table 2.8. Some examples of less-reported entities (namely in recent reviews), which are 

relevant in the E. coli stringent response. 

Biological 
entities 

Freq 
(%) 

Details References 

DnaJ - chaperone 
with DnaK 

3.11 Chaperone protein that assists the DnaJ/DnaK/GrpE system of E. coli. 
The overproduction of ppGpp has shown to induce the accumulation of 
these chaperones. 

(Jones PG et al. 
1992) 

ClpB chaperone 1.55 ClpB, together with the DnaJ/DnaK/GrpE chaperone system, is able to 
resolubilize aggregated proteins.  

(Mogk A et al. 
2003) 

GroEL-GroES 
chaperonin complex 

0.52 GroEL and GroES are both induced by heat and when ppGpp is 
overproduced in E. coli. 

(Jones PG et al. 
1992) 

RuvB - repair 
helicase 

1.55 Component of the RuvABC enzymatic complex that promotes the 
rescue of stalled (often formed by ppGpp) or broken DNA replication 
forks in E. coli. 

(Shinagawa H et 
al. 1988) 

CsrA - carbon 
storage regulator 

1.04 Regulator of carbohydrate metabolism, which activates UvrY, 
responsible for the transcription of csrB that, in turn, inhibits the CsrA 
activity. 

(Sabnis NA et al. 
1995) 

uvrY 0.52 Encodes the UvrY protein that has been shown to be the cognate 
response regulator for the BarA sensor protein. This regulator 
participates in controlling several genes involved in the DNA repair 
system (e.g. CsrA) and carbon metabolism.  

(Pernestig AK et 
al. 2001) 

cstA 0.52 Gene encoding the CstA peptide transporter, which expression is 
induced by carbon starvation and requires the CRP-cAMP 
transcriptional regulator. The CstA translation is regulated by the CsrA 
that occludes ribosome binding to the cstA mRNA. 

(Dubey AK et al. 
2003) 

CspD - DNA 
replication inhibitor 

0.52 CspD is a toxin that appears to inhibit the DNA replication. ppGpp is 
one of the positive factors for the expression of cspD. 

(Yamanaka K and 
Inouye M 1997) 

FabH - β-ketoacyl-
ACP synthase III 

0.52 A key enzyme in the initiation of fatty acids biosynthesis that is 
stringently regulated by ppGpp. 

(Podkovyrov SM 
and Larson TJ 
1996) 

FadR transcriptional 
dual regulator 

1.55 Regulates the fatty acid biosynthesis and fatty acid degradation at the 
level of transcription. ppGpp has been shown to be also involved in the 
regulation of these pathways 

(Podkovyrov SM 
and Larson TJ 
1996) 

NtrC-Phosphorylated 
transcriptional dual 
regulator 

1.04 Regulatory protein involved in the assimilation of nitrogen and in slow 
growth caused by N-limited condition. It was reported that ppGpp levels 
increase upon nitrogen starvation. 

(Peterson CN et 
al. 2005) 

dps 2.59 Gene encoding the Dps protein that is highly abundant in the 
stationary-phase and is required for the starvation responses. It was 
found to be regulated by ppGpp and RpoS. 

(Gong L et al. 
2002) 

psiF  2.07 Gene induced during phosphate starvation that has been associated 
with the accumulation of ppGpp. 

(Rao NN et al. 
1998) 

chpR 2.07 Encodes the MazE antitoxin, a component of the MazE-MazF system 
that causes a "programmed cell death" in response to stresses, 
including starvation. Genes mazE and mazF are located in the E. coli 
rel operon and are regulated by ppGpp. 

(Aizenman E et 
al. 1996) 

mazG 0.52 Encodes the MazG nucleoside pyrophosphohydrolase that limits the 
detrimental effects of the MazF toxin under nutritional stress conditions. 
Overexpression of mazG inhibits cell growth and negatively affects 
accumulation of ppGpp. 

(Gross M et al. 
2006) 
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The recognition of these proteins in the corpus was invaluable, allowing to uncover various 

stress-responsive proteins that are normally associated with other stress responses, such as 

chaperones (e.g. DnaJ, ClpB or the GroEL-GroES chaperonin complex) and toxin-antitoxin 

systems (e.g. protein encoded by chpR). The description of such entities as participants in the 

stringent response discloses a more insightful overview of the complexity of these entangled 

cellular processes. For example, the identification of entities related to certain metabolic 

pathways, like the fatty acids biosynthesis (e.g. FabH and FabR), or DNA processes, like DNA 

replication (e.g. CspD) and DNA repair (e.g. uvrY), expanded the characterization of stringently 

regulated activities that were not evident in most reviews analysed.  

 

2.4.4 EVOLUTION OF TECHNOLOGY 

The evolution of experimental techniques was expected to intersect points of turnover on the 

study of the stringent response. This assumption was confirmed by comparing the number of 

annotations of biological entities (genetic components, gene products and small molecules) 

and experimental techniques (grouped into major PSI-MI classes) per decade (Figure 2.7).  

The analysis evidenced that the repertoire of experimental techniques has been growing 

significantly and the study is ever more dedicated to genetic components. In particular, results 

showed the use of an ever-growing number of experimental interaction detection methods 

(MI:0045) and a considerable number of experimental participant identification (MI:0661) and 

experimental feature detection (MI:0659) methods.  

The analysis of the frequency of annotation (Table 2.9) evidenced that the chromatography 

technology (MI:0091), experimental feature detection (MI:0657), genetic interference 

(MI:0254) and primer specific polymerase chain reaction (PCR) (MI:0088) techniques were 

annotated in more than 40% of the documents. Most techniques were referred roughly two 

times per document, but primer-specific PCR (MI:0088) and array technology (MI:0008) 

presented a considerable mean of annotation (with over 10 and 8 annotations per document, 

respectively) and high VMR values (22.5 and 6.13, respectively), which indicated that these 

techniques were essentially discussed in a given set of documents. 
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Figure 2.7. Comparison of the expansion of knowledge to the applied experimental 

techniques. 

Bars represent the number of biological entities (left Y axis) found for the three major biological classes, i.e., 

genetic components (genes, RNAs and DNAs), gene products (proteins, transcription factors and enzymes) and 

small molecules. Lines plot the number of experimental techniques (right Y axis) associated to the annotated PSI-

MI classes.  

 

Also, a detailed look into the frequency of annotation per decade points out that some of the 

techniques used in early studies have a reduced application today and highlights the increasing 

influence of high-throughput technologies in recent studies. For instance, experimental 

interaction detection methods (MI:0045) such as the scintillation proximity assay (MI:0099), 

the molecular sieving (MI:0071), the filter trap assays (MI:0928) and the cosedimentation 

through density gradient (MI:0029) showed a higher frequency of annotation in the first decade 

(1970-1980) whereas the comigration in gel electrophoresis (MI:0807) and enzymatic studies 

(MI:0415) experienced an increase in the frequency of annotation throughout the decades.  
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Table 2.9. PSI-MI assignments to annotated experimental techniques.  
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2.5 DISCUSSION  

The aim of this work was to use literature mining to complement manual curation in the 

revision, systematisation and interpretation of current knowledge on the stringent response of 

E. coli. Literature mining was expected to speed up the retrieval of relevant literature and help 

on the identification of important biological players and their molecular functions. The 

controlled vocabulary extracted from EcoCyc repository (GO and MultiFun assignments) and 

PSI-MI ontology was expected to support large-scale information processing and biological 

contextualisation.  

At present, manual curation can extract more detailed information from literature than it is 

possible by mining approaches, and more accurately define the participants and their roles. 

However, to achieve a broad coverage, both approaches can efficiently complement each 

other. Results suggested that: (i) automatic literature retrieval is able to provide documents of 

interest whereas controlled vocabulary from publicly available databases can support the 

identification of relevant entities; (ii) database ontology assignments enable entity 

contextualisation into cellular functions and biological processes, delivering a more 

comprehensive and biologically meaningful scenario; and (iii) statistical analysis identifies 

biological entities of interest and facilitates document indexing for additional manual curation. 

Ultimately, the literature mining approach presented clues on entities and associations of 

interest and suggested which documents in the corpus should be further inspected for details 

on given entities or processes. 

The analysis evidenced the (p)ppGpp nucleotides as some of the most annotated biological 

entities: the ppGpp nucleotide was annotated in 75% of the documents, and the term (p)ppGpp 

exhibited the highest average of annotations per document (Table 2.4). The extensive number 

of documents supporting these annotations evidenced that the role of (p)ppGpp nucleotides in 

the stringent response has been extensively studied. Corpus analysis disclosed that the 

synthesis of ppGpp was first associated in 1970 to the activity of relA gene product (PMID: 

4315151) (Cashel M and Kalbache B 1970), which, during amino acid deprivation, promotes 

the accumulation of this nucleotide above the basal levels. Later, in 1980, the ppGpp level was 

found to be controlled by the SpoT enzyme via GTP hydrolysis activity (PMID: 6159345) 
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(Lagosky PA and Chang FN 1980). From then on, studies have been detailing the role of these 

entities on the (p)ppGpp-mediated response.  

Most studies have been focused on the activity of the relA gene and its product RelA (over 70% 

of the documents), while a fewer set of documents (roughly 30% of the documents) has 

reported the activity of the spoT gene and the SpoT enzyme (see Tables 2.2 and 2.3). In part, 

because RelA was the first enzyme discovered to be involved in the stringent response, but 

mostly because it is the first biological entity to respond to the amino acid starvation. 

Accordingly, nucleobase, nucleoside and nucleotide metabolic processes emerged as the most 

assigned functional class associated with the metabolic response to amino acid starvation. The 

lacZ gene was also highly annotated in the corpus, but it was surmised to be associated with 

the involvement of this gene in most genetic manipulation procedures described in many 

studies. 

Transcriptional and translational processes were also highlighted by the analysis. The 

acknowledgment that (p)ppGpp nucleotides manipulate gene expression, so that gene products 

with important roles in the starvation survival are favoured at the expense of those required for 

growth and proliferation, has been widely reported (PMID:12123445; PMID:10809680) 

(Chang DE et al. 2002; Liang ST et al. 2000). In vitro studies demonstrated that (p)ppGpp bind 

directly to the RNAP, affecting the transcription of many genes (PMID:4553835) (Irr JD 1972). 

Also, studies hypothesised that the configuration of the RNAP is altered, decreasing the affinity 

of the housekeeping sigma factor (i.e. σ70) to RNAP and thus, allowing other sigma factors to 

compete and influence promoter selectivity (PMID:12023304) (Jishage M et al. 2002). As 

covered by the corpus analysis, besides RNAP (annotated in over 60% of the documents), four 

of the existing sigma factors in E. coli were also annotated: the σ38 that acts as the master 

regulator of the general stress response (annotated in 22% of the documents); the σ70 that is 

the primary sigma factor during exponential growth (annotated in 11% of the documents); the 

σ54 that controls the expression of nitrogen-related genes (annotated in 4% of the documents); 

and the σ32 that controls the heat shock response during log-phase growth (annotated in 3% of 

the documents). Although the regulation of transcription initiation is not yet fully understood, 

current knowledge suggests that these four sigma factors may interact with the RNAP during 

stringent control.  
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Further inspection of the functional annotations of transcription-related processes helped in the 

characterisation of other annotated entities to understand their roles in this scenario, namely: 

the β subunit of the RNAP (RpoB) to which (p)ppGpp nucleotides bind (PMID:9501189) (Zhou 

YN and Jin DJ 1998); the CRP transcriptional dual regulator that is activated in response to 

starvation conditions (PMID:10966109) (Johansson J et al. 2000); the Fis transcriptional dual 

regulator, whose gene promoter is inhibited during the transcription initiation by the (p)ppGpp-

bound RNAP polymerase (PMID:2209559; PMID:9973355) (Ross W et al. 1990; Walker KA et 

al. 1999); and the Mfd protein that releases the arrested RNAP-DNA complexes after (p)ppGpp 

nucleotides induce the transcription elongation pausing, protecting genome integrity during 

transient stress conditions (PMID:7968917) (Selby CP and Sancar A 1994). In resume, 

(p)ppGpp nucleotides not only modulate the RNAP activity, either by reducing the expression of 

genes like fis (which in turn modulates the expression of the crp gene) or increasing the 

expression of the σ38 gene, but also mediate the inhibition of the RNAP replication-elongation, 

which afterwards requires the Mfd protein to remove the stalled RNAPs (PMID:16039593; 

PMID:7968917) (Selby CP and Sancar A 1994; Trautinger BW et al. 2005). Although most 

studies have focused on the influence of the (p)ppGpp nucleotides on the mechanisms that 

regulate transcription initiation activities, their regulatory effects on the elongation of DNA 

transcription are also important. The combined control of the DNA transcription initiation and 

elongation are central to a prompter cellular response to nutritional starvation (Srivatsan A and 

Wang JD 2008). 

Similarly, (p)ppGpp also influence certain translation-related processes. Studies showed that 

(p)ppGpp inhibits translation by repressing the expression of ribosomal proteins and also 

potentially inhibiting the activity of the particular proteins (PMID:7021151; PMID:11673421; 

PMID:6358217) (Yang X and Ishiguro EE 2001; Pingoud A and Block W 1981; Pingoud A et al. 

1983). Corpus analysis evidenced the annotation of ribosomal proteins, such as the 50S 

ribosomal subunit protein L11 and the 30S ribosomal subunit proteins S7 and S12, as well as 

the EF-Tu and the non-ribosomal DksA protein. The 50S ribosomal subunit protein L11 has 

been indirectly implicated in the feedback inhibition of (p)ppGpp, because ribosomes lacking 

this protein are unable to stimulate the synthesis of these nucleotides (PMID:11673421; 

PMID:17095013) (Jenvert RM and Schiavone LH 2007; Yang X and Ishiguro EE 2001). The 
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involvement of the DksA protein in translation processes was inferred through the inspection of 

functional assignments. As reported (PMID:16824105) (Nakanishi N et al. 2006), DksA 

regulates the posttranscriptional stability of σ38 factor, which increases dramatically when 

(p)ppGpp levels are high. Although these are the main (p)ppGpp interactions at the 

translational level, the impact of these nucleotides in the translation apparatus was further 

analysed based on the frequency of co-annotation of gene products with (p)ppGpp nucleotides 

that unveiled additional participants at this level. As a result, it was possible to perceive the 

relevance of specific translation GTPases known to be inhibited by (p)ppGpp nucleotides, 

namely: the Der protein that stabilises the 50S ribosomal subunit and the EF-G that facilitates 

the translocation of the ribosome along the mRNA molecules (PMID:8531889) (Condon C et 

al. 1995).  

Apart from identifying and contextualising numerous biological participants in the stringent 

response, the proposed analysis (in particular, the analysis of GO functional assignments) 

suggested that some of the biological entities involved in the stringent response may also 

participate in other stress responses. Responses to starvation, DNA damage and osmotic, 

oxidative and SOS stresses, which are gaining increasing attention in the last decades, are 

some examples of stress responses that were also evidenced in the analysis of the corpus 

(over 30% of the documents). Yet, it was striking to notice that the stringent response concept 

was barely assigned, probably because few biological entities are currently associated with this 

GO concept. In fact, the 50S ribosomal subunit protein L11 was the only entity in this corpus 

associated with the concept. Nevertheless, several biological entities that interplay between 

different responses to stress were identified. For example: the link between the stringent 

response and the response to osmotic and oxidative stresses was demonstrated via the 

involvement of the σ38 factor and EF-Tu protein; the response to DNA damage stimulus was 

assigned by the RecA, RecG and Mfd proteins that intervene in the early dissociation of the 

elongation complex stalled by ppGpp (PMID: 16039593) (Trautinger BW et al. 2005); and 

finally, the RecA regulator and the UvrABC nucleotide excision repair complex have been 

implicated in the DNA repair process and SOS response (Bichara M et al. 2007).  

With the extensive list of biological players retrieved from the corpus it was possible to 

recognize and investigate most of the (p)ppGpp induced cellular processes. The basic 
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participants in the stringent response were highlighted by their frequency of annotation and 

their representativeness in the corpus. The (p)ppGpp nucleotides and the RelA and SpoT 

enzymes that control (p)ppGpp basal levels, along with the RNAP, were pointed as the most 

significant entities in the corpus. Nonetheless, corpus analysis also revealed the involvement of 

entities that have been disregarded or less reported in most recent revisions (Wu J and Xie J 

2009; Srivatsan A and Wang JD 2008; Potrykus K and Cashel M 2008; Jain V et al. 2006; 

Magnusson LU et al. 2005). In most cases, this is due to the fact that the reviews are not 

focused on the detailed description of the molecular mechanisms involved in the stringent 

response. They reflect the current state of knowledge, including the different levels of cellular 

processes that are triggered during this stress response, but do not specify which biological 

entities are involved in these processes. However, researchers often need to compile this 

information, not only for experimental purposes, but also for computational modelling or to 

better understand the complexity of the response. Hence, in this study, the stringent response 

was broadly described considering the large variety of biological entities that were directly or 

indirectly affected by the (p)ppGpp within specific metabolic, transcriptional and translational 

processes.  

Following a retrospective analysis, the remarkable advances accomplished in the investigation 

of the (p)ppGpp-induced starvation response in E. coli became evident. The (p)ppGpp 

metabolism has been investigated since the 70s, as well as the transcriptional, translational 

and DNA replication control by these nucleotides. Technological developments have promoted 

the discovery of many new entities and have clarified their roles in the stringent response. At 

the early stage of the study of the stringent response, some traditional experimental techniques 

were considered decisive in the identification of the main metabolic participants (see Figure 

2.7 and Table 2.9). Yet, in the last decades, research efforts have been focused on the newest 

molecular biology techniques, namely high-throughput detection methods. In particular, 

techniques based on array technology have addressed the rapid screening of biological entities 

as well as molecular interactions (PMID: 18039766; PMID: 17233676) (Durfee T et al. 2008; 

Chatterji D et al. 2007). DNA microarrays have been used to inspect the genome-wide 

transcriptional profiles of E. coli (PMID: 18039766) (Durfee T et al. 2008). This technology has 

also provided information on transcriptional regulation, determining negatively controlled 
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promoters (typically involved in cell growth and DNA replication) and positively controlled 

promoters (the amino acid biosynthesis, the transcription factors, and/or alternative sigma 

factor genes). Although the reconstruction of the transcriptional regulatory structure of the 

stringent response is far from complete, these recent advances have brought a closer view of 

the pleiotropic nature of the response. 

Finally, results showed that it is possible to scale-up conventional manual curation coping with 

the ever-increasing publication rate and, at the same time, provide automatic means of 

identifying and contextualising participants of interest. Beyond the accomplishments of the 

approach on this particular study, its extension to the analysis of other stress responses 

and/or organisms is fairly easy and interesting. Adaptation to other scenarios implicates the 

compilation of sets of related documents and eventually other controlled vocabularies (when 

considering other organisms). As future work, the incorporation of an automatic relation 

extraction process is foreseen as a most valuable support to the inspection and understanding 

of involved interactions.  
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CHAPTER 3 
A SYSTEMATIC MODELLING APPROACH TO ELUCIDATE 

THE TRIGGERING OF THE STRINGENT RESPONSE IN 

RECOMBINANT E. COLI SYSTEMS  

 

 

“The main strengths of metabolic modelling are in testing  

where knowledge is inadequate...” 

 
By P. Cronjé and E. A. Boomker in Ruminant physiology: 

 digestion, metabolism, growth, and reproduction,  
CABI, 2000 
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3.1 Abstract  

A hybrid modelling approach, combining a stoichiometric model of the 

E. coli metabolic network and kinetic-based descriptions for the 

production of the recombinant protein, cell growth and ppGpp 

synthesis, was applied to describe metabolic bottlenecks associated 

with recombinant processes. The model represents the triggering of the 

stringent response upon the deprivation of amino acids caused by the 

additional drainage of biosynthetic precursors for the production of 

recombinant proteins. The equation for ppGpp synthesis allows to 

estimate the accumulation of this molecule above its basal levels once 

amino acid shortages occur. The capability to predict these stress-

responsive events might be crucial in the design of optimal cultivation 

strategies. 
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3.2 Background 

The production of recombinant proteins can challenge cells with different levels of stress and 

metabolic burden (Hoffmann F and Rinas U, 2004; Schweder T et al., 2002). The cellular 

processes for plasmid DNA replication and expression require the drainage of biosynthetic 

precursors, energy and other cellular resources that are shared with the host cell’s metabolic 

processes. Consequently, the competition for a limited pool of cellular resources will provoke 

serious perturbations in metabolism (Bentley WE et al., 1990; Glick BR, 1995). Typically, it 

promotes the reduction of cellular growth and protein productivity in recombinant cells (Glick BR, 

1995). In particular, the metabolic load imposed by the overexpression of recombinant proteins, 

with an amino acid composition that is often different from the average composition of biomass 

proteins, leads to the imbalance of the cellular metabolism resulting in the over-accumulation of 

some metabolites and shortage of others, like some amino acids. In the past few years, the 

association of this metabolic burden with other cellular events, like the stringent response, has 

been demonstrated (Andersson L et al., 1996; Chao YP et al., 2002; Haddadin FT et al., 2009; 

Hoffmann F and Rinas U, 2004; Schweder T et al., 1995) and the understanding of the whole 

scenario underlying these cellular events in recombinant bioprocesses is fundamental for 

productivity purposes. For example, the stringent response has been characterized by the down-

regulation of stable RNAs (i.e., tRNA and rRNA) and protein synthesis, and the simultaneous up-

regulation of protein degradation (Ferullo DJ and Lovett ST, 2008; Jain V et al., 2006; 

Magnusson LU et al., 2005), which results in considerable losses during recombinant 

bioprocesses.  

The unusual accumulation of a guanosine nucleotide, termed GDP 3’-diphosphate or GTP 3’-

diphosphate, collectively called (p)ppGpp, was identified as one of the key factors that provide 

bacteria the ability to survive under hostile conditions (Chatterji D and Ojha AK, 2001; Jain V et 

al., 2006; Magnusson LU et al., 2005; Mukherjee TK et al., 1998; Torok I and Kari C, 1980; Wu 

J and Xie J, 2009), such as the lack of amino acids. The discovery that these unusual guanosine 

nucleotides are accumulated in response to starvation was followed by extensive studies on the 

downstream pathways of the stringent response, which suggested that accumulating ppGpp is an 

important link between nutritional stress and bacterial adaptation (Cashel M and Kalbache B, 
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1970; Chatterji D and Ojha AK, 2001; Foster PL, 2005; Mukherjee TK et al., 1998; Nystrom T, 

2004b; Nystrom T, 2002).  

It was initially proposed (Haseltin WA and Block R, 1973) that the ratio of aminoacylated transfer 

RNAs (tRNAs) to free tRNAs is one of the critical parameters that regulate the synthesis of ppGpp. 

When free tRNA is encountered at the A-site of the 50S ribosome, protein synthesis is delayed, 

resulting in an idling reaction in which ribosome-bound RelA is activated to synthesize ppGpp 

(pppGpp is produced first and then it is converted to ppGpp). Thus, an increase in the population 

of free tRNA during starvation leads to an accumulation of ppGpp (Chatterji D and Ojha AK, 

2001). The ppGpp levels are controlled by two enzymes, RelA and SpoT. RelA is the major ppGpp 

synthase (also known as ppGpp synthetase I) whose activity occurs in the presence of Mg2+, 

whereas the SpoT protein mainly carries out a pyrophosphate hydrolase activity in the presence 

of Mn2+, although it has also mild synthetic activity (ppGpp synthetase II). 

The pleiotropic effects of the intracellular accumulation of ppGpp have been explored and major 

alterations in the transcription of many stringently controlled genes were found (Magnusson LU et 

al., 2005; Nystrom T, 2004a; Srivatsan A and Wang JD, 2008). In general, genes involved in cell 

proliferation and growth are negatively regulated by ppGpp, whereas genes implicated in 

maintenance and stress defence are positively regulated by this regulator. 

 

3.3 Modelling amino acid shortages towards the 

synthesis of ppGpp 

The view of ppGpp primarily as a regulator of gene transcription has been expanded and it is now 

clear that the response controlled by ppGpp is crucial for cell survival during the adaptation to 

stressful conditions (Magnusson LU et al., 2005). To understand the impact of recombinant 

processes in metabolism it is crucial to capture the molecular basis of the ppGpp synthesis in 

response to metabolic stimuli, like the deprivation of amino acids. However, this stress-

responsive process is still poorly understood, though it is acknowledged that during recombinant 

processes the accumulation of this regulator above a threshold level promotes the stringent 

response.  
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Here we propose a model to examine two fundamental events: the amino acid deprivation 

caused by the unbalanced drainage of biosynthetic resources imposed by the recombinant 

protein production; and the consequent induction of the ppGpp synthesis. A deterministic 

mathematical modelling approach based on a hybrid system, i.e. a system in which discrete 

events are combined with kinetic expressions, was implemented to capture the behaviour of 

these cellular phenomena.  

 

3.3.1 Model description 

Our aim is to analyse the initial steps of the E. coli stringent response by creating a modelling 

structure that acts as a basis to analyse the impact of the synthesis of heterologous proteins on 

the cellular behaviour, specifically in the intracellular accumulation of ppGpp. A combined 

modelling approach was developed to represent the key metabolic bottlenecks in the E. coli 

metabolism during recombinant processes and, subsequently, the induction of the ppGpp 

biosynthetic pathway (Figure 3.1).  

First, the genome-scale metabolic model of E. coli iJR904 (Reed JL et al., 2003) was used for 

simulations using Flux Balance Analysis (FBA) (Price ND et al., 2003; Schilling CH et al., 1999; 

Varma A and Palsson BO, 1994) to determine the metabolic fluxes leading to the biosynthesis of 

amino acids. This approach simulates the E. coli metabolic network under steady-state 

conditions, based on the mass balance of metabolites constrained by stoichiometry and 

thermodynamics, and estimates the optimal metabolic flux distribution subjected to an objective 

function. Details about the mathematical formulations were presented in Chapter 1. In this work, 

the FBA simulation was performed using the OptFlux tool (Rocha I et al., 2010) defining the 

maximization of biomass formation (µ) as the objective function. The predicted amino acid 

biosynthetic fluxes (raa) were then included in the dynamic model that was used for simulations 

using the Systems Biology Toolbox 2 (Schmidt H and Jirstrand M, 2006) implemented in 

MATLAB (version 2009b, The Mathworks, Inc). The ODE model is presented in Appendix A. 
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Figure 3.1. Proposed modelling approach that combines Flux Balance Analysis (FBA) with 

the genome-scale metabolic model of E. coli iJR904 (Reed JL et al., 2003) and dynamic 

rate equations for the intracellular pools: amino acids (aa), biomass, recombinant protein 

(PR) and ppGpp (G4P).  

The amino acid reactions (raa) are depicted as boundary reactions linking the stoichiometric model and the dynamic 

model.  

 

Variables considered in this model are presented in Table 3.1. 

Table 3.1. Variables included in the model. 

Model variables Units 

Biomass (X) gX.L-1 

Carbon source (S) gS.L-1 

Recombinant protein (PR) gPR.gX-1 

Amino acids (aa) gaa.gX-1 

ppGpp (G4P) pmolG4P.gX-1 

Amino acid reactions (raa) gaa.gX-1.h-1 

Biomass-associated stoichiometric coefficients (γaa) gaa.gX-1 

Recombinant protein-associated stoichiometric coefficients (φaa) gaa.gPR-1 



Chapter 3 101 

 

Differential mass balance equations for amino acid biosynthesis reaction rates were based on the 

previously developed model by Bentley and Kompala (Bentley WE and Kompala DS, 1989): 

( ) ( )PRDPRaaaaaa rrr
dt
aad

−−×−= φγµ][
 

(1) 

Changes in the intracellular amino acids pool were calculated by subtracting the term associated 

with the consumption of a specific amino acid (aa) for biomass formation (µ×γaa) and the term 

associated with the consumption of that amino acid for recombinant protein polymerization 

(φaa×rPR) and its degradation (φaa×rPRD), to the amino acid synthesis flux (raa). The stoichiometric 

coefficients (γaa and φaa) describe the mass requirements of that amino acid for the production of 

the biomass-associated proteins and recombinant AcGFP1 protein (given in Table 3.2). The raa 

term represents the reaction fluxes for each amino acid pool predicted by the FBA approach, 

which were also designated as boundary reactions. Amino acid biosynthesis fluxes were 

calculated by subtracting fluxes that account for the consumption of a particular amino acid (e.g. 

glutamate is often used as a precursor in other reactions) from those that lead to the production 

of that amino acid (in Table 3.3 the values of these fluxes are given for a wild-type strain under 

the conditions detailed in (Reed JL et al., 2003)). All rates are specific for biomass concentration, 

i.e., they are expressed per grams of biomass. 
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Table 3.2. Stoichiometric coefficients of amino acids in the reactions leading to biomass (X) 

and recombinant protein (PR) formation, calculated on the basis of the amino acids 

composition based on (Neidhardt FC et al., 1990) and on AcGFP data, respectively. 

Amino acid (aa) γaa (g.gX
-1) φaa(g.gPR

-1) 

A-Ala 0.0434 0.0366 

R-Arg 0.0489 0.0417 

N-Asn 0.0302 0.0678 

D-Asp 0.0305 0.0774 

C-Cys 0.0105 0.0083 

Q-Gln 0.0365 0.0350 

E-Glu 0.0368 0.0755 

G-Gly 0.0437 0.0642 

H-His 0.0140 0.0849 

I-Ile 0.0362 0.0673 

L-Leu 0.0561 0.0808 

K-Lys 0.0476 0.0900 

M-Met 0.0218 0.0408 

F-Phe 0.0290 0.0735 

P-Pro 0.0242 0.0433 

S-Ser 0.0215 0.0611 

T-Thr 0.0287 0.0693 

W-Trp 0.0110 0.0070 

Y-Tyr 0.0237 0.0744 

V-Val 0.0470 0.0601 
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Table 3.3. Amino acid biosynthesis reactions based on the metabolic model of E. coli 

iJR904 (Reed JL et al., 2003) and their flux, calculated for a wild-type strain. 

Amino acid Producing reactions Consuming reactions 
Overall synthesis flux 

(g.gX
-1.h-1) 

A-Ala rALATA_L rALAR rVPAMT rUAMAS  0.0400 

R-Arg rARGSL  0.0451 

N-Asn rASNS2  0.0279 

D-Asp 
rASPTA 

 

rASNS2 

rARGSS 

rASPO3 

rASP1DC 

rADSS 

rPRASCS 

rASPCT 

rASPK 
0.0281 

C-Cys rCYSS rPPNCL2 rSHSL1   0.0097 

Q-Gln 
rGLNS 

 

rGF6PTA 

rADCS 

rIG3PS 

rGMPS2 

rGLUPRT 

rPRFGS 

rCTPS2 

rANS 
0.0337 

E-Glu 
rGF6PTA 

rADCS 

rGLUDy 

rIG3PS 

rGMPS2 

rGLUPRT 

rPRFGS 

rCTPS2 

rANS 

rALATA_L 

rASPTA 

rUNK3 

rACGS 

rACOTA 

rGLU5K 

rGLUR 

rDHFS 

rGLNS 

rPSERT 

rHSTPT 

rSDPTA 

rTYRTA 

rPHETA1 

rILETA 

rLEUTAi 

0.0339 

G-Gly rGHMT2 rPRAGSr 0.0760 

H-His rHISTD  0.0129 

I-Ile rILETA  0.0333 

L-Leu rLEUTAi  0.0517 

K-Lys rDAPDC  0.0439 

M-Met rUNK3 rMETS  rMETAT 0.0201 

F-Phe rPHETA1  0.0268 

P-Pro rP5CR  0.0223 

S-Ser rPSP_L rSERAT rGHMT2 rPSSA_EC  0.0198 

T-Thr rTHRAr rTHRD_L 0.0264 

W-Trp rTRPAS2  0.0102 

Y-Tyr rTYRTA  0.0219 

V-Val rVPAMT  0.0434 
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This model describes cellular growth and recombinant protein production in a batch fermentation 

mode with constant volume, where the only available carbon source is glucose and maintenance 

coefficients were not considered. The specific growth rate (µ) for the recombinant bacteria was 

estimated as a function of the substrate concentration (S) based on the Monod equation: 

SK
S

s +
×= 0µµ  

(2) 

where µ0 is referred to the maximum specific growth rate of the wild-type cells predicted by the 

FBA simulation and Ks is the Monod affinity constant corresponding to an approximated value 

from recombinant E. coli growth measurements. The mass balance equations for biomass (X) 

and substrate (S) concentrations were defined as: 

X
dt
dX

×= µ  (3) 

SXY
X

dt
dS

/

×−= µ
 

(4) 

where YX/S is the biomass yield on substrate for recombinant E. coli cells. 

The recombinant protein formation was induced at time 0 and the rates of synthesis  and 

degradation are described using the following expressions based on (Palaiomylitou MA et al., 

2002): 

PRK
PRKr

t
ePR +
×=  

(5) 

PRKr PRDPRD *=
 

(6) 

where PR is the recombinant protein concentration, Ke is the maximal rate of protein synthesis, 

incorporating the rate constants for transcription and translation and Kt is the saturation 

constant, which depends on the host-plasmid system used. For protein degradation, the protein 
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denaturation rate constant (KPRD) is given independently of the growth rate. The mass balance 

equation for the recombinant protein concentration was given by the protein synthesis rate and 

an empirical function of the intracellular recombinant protein concentration: 

PRDPR rr
dt

dPR
−=  (7) 

At last, the model describes the accumulation of ppGpp or G4P in response to the shortage of 

any amino acid pool (eqs. 8 to 11). The intracellular concentration of ppGpp is given by the rates 

of degradation (rG4PD) and synthesis (rG4P). The ppGpp synthesis rate was defined as a function 

of the intracellular levels of amino acids given by f(aa) and the parameter KG4P. 

PDGPG rr
dt

PdG
44

4
−=  (8) 

PGKr PDGPDG 444 ×=
 

(9) 

( )aafKr PGPG ×= 44
 

(10) 

( ) aaEeaaf ×−×= 412.0
 

(11) 

The terms KG4P and KG4PD refer to parameters for the synthesis and degradation of ppGpp. The 

accumulation of ppGpp was empirically described as an exponential function that defines a 

relation f between the stimulus (i.e., levels of aa) and the expected value of the response (i.e., 

levels of ppGpp or G4P) (Torok I and Kari C, 1980).  

All model parameters are given in Table 3.4. 
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Table 3.4. Model parameters. 

Parameter Value References 

µ0 (h-1) 0.36 Inferred from experimental data 

Ks (g L-1) 0.05 (Harcum SW, 2002) 

YX/S (gX gS
-1) 0.40 Inferred from experimental data 

Ke (gPR gX
-1 h-1) 4.09 Adapted from (Bentley WE and Kompala DS, 1989; Palaiomylitou MA et al., 2002) 

Kt (gPR gX
-1) 5.39 Adapted from (Bentley WE and Kompala DS, 1989; Palaiomylitou MA et al., 2002) 

KPRD (h
-1) 0.04 Adapted from (Bentley WE and Kompala DS, 1989; Palaiomylitou MA et al., 2002) 

KG4P (h-1) 0.2 Adapted from (Dedhia N et al., 1997; Torok I and Kari C, 1980) 

KG4PD (h
-1) 0.002 Adapted from (Dedhia N et al., 1997; Torok I and Kari C, 1980) 

 

3.4 Simulation results 

This model can be used to estimate amino acid shortages caused by recombinant processes and 

the consequent activation of the ppGpp synthesis. The systematic evaluation of the deprivation of 

amino acids during the translation process gives a preliminary recognition of potential metabolic 

bottlenecks that ultimately lead to the activation of the stringent response. The stoichiometric 

coefficients associated with biomass and recombinant protein formation requirements were 

fundamental to estimate the mass balance dynamics for each amino acid pool. Information on 

these parameters and kinetic data on the synthesis of biomass (µ) and recombinant protein (rPR) 

formation, allowed estimating the evolution over time of the intracellular amino acid levels. To 

simulate the stringent response, a function determining the relation of ppGpp accumulation and 

decreasing levels of amino acids, as well as an expression (or event) defining the delay on the 

formation of biomass and recombinant protein were implemented in the computation.  

 

3.4.1 Amino acids deprivation 

In this model, the abundance of amino acids was estimated over time (eq. 1) to detect at what 

extent the withdrawn of amino acids for biomass and recombinant protein formation exceeds the 

biosynthetic capacities of E. coli cells. To illustrate the impact of recombinant protein production, 

the concentration of amino acids was allowed to become negative in this exercise (although, 
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clearly, this has no biological meaning). As shown in Figure 3.2, it is clear that the deprivation of 

most amino acids would be extensive, if cells were not capable to counteract these events.  

 

 

Figure 3.2. Dynamics of the intracellular concentrations of amino acids.  

Dashed lines indicate those amino acid pools that seem not to be deprived over time. Concentrations below zero 

indicate that amino acids consumption exceeds the synthesis rate.  

 

3.4.2 ppGpp biosynthesis 

To simulate the triggering of the stringent response caused by the deprivation of amino acids 

shown above, the dynamics of ppGpp was included in the simulation (eqs 8 to 11). In Figure 3.3, 

the cellular response to perturbations in the amino acids pools is demonstrated by the increasing 

levels of ppGpp (G4P) when histidine (H) reached concentration levels close to zero. The 

synthesis of this signalling molecule is described as a function of the first amino acid to be 

depleted in the intracellular pool (eq. 10 and 11). In these particular conditions, histidine (H) was 

the first amino acid to reach levels close to zero, determining the exponential increase in ppGpp 
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levels. At high levels, the concentration of the ppGpp regulator is controlled by the degradation 

rate (eq. 9) of the SpoT enzyme. 

 

 

Figure 3.3. Intracellular pool concentrations of amino acids and ppGpp (G4P).  

The arrow indicates when histidine (H) concentration level falls to zero. 

 

To illustrate the impact of the ppGpp accumulation in the biomass and recombinant protein 

formation, an event was defined, i.e. an expression to simulate discrete state changes when a 

given condition is fulfilled. A simple syntax expression was used to determine that when the 

histidine (H) pool falls below zero, the parameters for the degradation of ppGpp (KG4PD), 

maximum specific growth rate (µ0) and the transcription and translation rate saturation constant 

(Kt) were set to 0.02, 0.2 and 100, respectively (Eq. 12). 

event = lt(H,0.0),KG4PD,0.02, µ0,0.2, Kt,100 (12) 
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The results of the addition of this event are shown in Figure 3.4.  

 

 

Figure 3.4. Intracellular concentrations of histidine (H), ppGpp (G4P), recombinant protein 

(PR), and biomass (X) accumulation during the recombinant bioprocess simulation.  

Basal levels for ppGpp are maintained until the amino acid histidine (H) drops to zero. At that point, the biomass 

formation and the recombinant protein production are stalled (see eq. 12). 

 

3.5 Discussion 

Our current understanding on the behaviour of recombinant systems is based on empirical 

descriptions that disregard the involvement of cellular events, like stress-responsive mechanisms. 

As observed in most cellular systems, in particular in recombinant E. coli cells (Sanden AM et al., 

2003; Tedin K and Bremer H, 1992), stimulus-responses (e.g. amino acid shortages) are 

fundamental to sense and react to metabolic perturbations.  
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The proposed model aims at providing a systematic approach capable to predict amino acid 

shortages based on the biosynthetic capabilities of the E. coli metabolism when induced to 

produce recombinant proteins. A combined modelling approach based on the FBA simulation of 

the E. coli metabolic network and a kinetics-based dynamic method to simulate the behaviour of 

the intracellular amino acids pools during the recombinant bioprocess were implemented. The 

definition of amino acid biosynthetic reactions as boundary reactions was central to follow the 

dynamics of amino acids concentrations, which may constitute metabolic bottlenecks during 

recombinant bioprocess. The existence of one or more bottlenecks is expected to affect most 

cellular processes, including the synthesis of recombinant products, if cells are deprived of 

mechanisms capable to circumvent and respond to such events.  

The accumulation of ppGpp during recombinant bioprocesses has been pointed as a 

consequence of amino acid shortages due to the overexpression of recombinant proteins. As the 

amino acids composition of these proteins is frequently different from the average composition of 

biomass proteins, the unbalanced drainage of these biosynthetic resources is often indicated as 

the major cause for the commonly observed amino acid shortages. In the proposed model, 

stoichiometric coefficients determining the amount of amino acids that are drained from the 

intracellular pools toward biomass and recombinant protein formation, establish the basis for 

estimating possible metabolic bottlenecks in recombinant process. The dynamic equations for 

the amino acid intracellular pools describe the time evolution of their concentrations and, once 

one amino acid reaches concentration levels close to zero, the model estimates the accumulation 

of ppGpp above its basal levels. This stimulus-response model integrates an expression that 

outlines the production of ppGpp as a negative exponential function of the intracellular 

concentration of amino acids. When cells sense the depletion of amino acids, the activity of the 

RelA enzyme is sharply increased. Normally, it is the ratio of aminoacylated transfer RNAs 

(tRNAs) to free tRNAs that triggers the synthesis of ppGpp. Yet, to simplify the model 

representation, we did not include this ratio as the triggering factor for the stringent response, 

given that the limiting substrate in any tRNA charging reaction is its specific amino acid. The 

depletion of the amino acids results, logically, in the increase of free tRNAs that will bind to the 

ribosome and induce the accumulation of ppGpp. The pleiotropic effects of this global regulator 

have been described (Chang DE et al., 2002; Durfee T et al., 2008; Traxler MF et al., 2006), but 

the most significant in recombinant bioprocesses are growth and protein synthesis decline. Thus, 
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the kinetic parameters used to describe these reaction rates were changed to reproduce such 

effects.  

The possibility to predict such dynamic phenomena provides an important advantage when 

designing recombinant fermentation processes. The optimization of cultivation processes to 

produce recombinant proteins is still a difficult task. Despite the advances in novel expression 

systems, it is acknowledged that culture control procedures have a significant impact in the 

productivity of the bioprocess. And thus, it is fundamental to achieve a finer balance between the 

expression levels of the desired protein, along with the tight control of the culture performance. In 

order to predict the process dynamics that hinders the productivity of the recombinant process, 

the development of systematic modelling approaches capable to describe these systems is 

central. Most of the modelling strategies used for optimization and control of bioprocesses are 

based on empirical models that do not sufficiently reflect these dynamic processes. The design of 

optimal recombinant cultivation processes should, however, consider the complexity behind 

these cellular processes to enhance protein productivity.  

 

3.6 Future work 

Studies in the E. coli stringent response have been disclosing the complexity of the mechanisms 

underlying this stress response. The role of ppGpp in microbial cells has been expanded from the 

coordination of cellular activities to cope with amino acid starvation, to many other cellular 

processes, like the coordination of processes associated with pathogenesis, virulence, 

sporulation, etc (Chatterji D and Ojha AK, 2001; Wu J and Xie J, 2009).  

The representation of the dynamics of the overall processes leading to the ppGpp activity and 

subsequent coordinated activities is still complex, but the development of modelling approaches 

capable to describe at least some parts of the system, is hoped to bring major advances. The 

proposed modelling scheme, combining a large scale stoichiometric network simulated by FBA 

and kinetic-based equations, shows some advantages when describing the dynamic behaviour of 

several metabolic variables with limited information on kinetic parameters. However, it is still 

limited to the early stages of the stringent response and transcriptional, translational and post-
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transcriptional events were not included. The inclusion of regulatory information that, finally, will 

reflect alterations in the metabolic flux distributions, is foreseen. Some approaches have already 

been described, like the implementation of Boolean logic rules (Covert MW et al., 2001), 

structure-oriented analyses based on network topology (Stelling J et al., 2002) or the 

representation of dynamic descriptions for metabolic reactions and gene regulation (Varner JD, 

2000). Whilst the dynamic mathematical modelling offers detailed descriptions of the system’s 

behaviour, the lack of data and unknown kinetic parameter values, limits its application. 

However, the combination of mathematical approaches that integrate stoichiometry, kinetics and 

gene regulation seems a promising strategy to analyse large scale models.  
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3.8 Appendix A 

********** MODEL NAME 
Stringent response in recombinant E. coli systems  
********** MODEL NOTES 
 
********** MODEL STATES 
d/dt(Sg) = -miu*X/Yxs                      
d/dt(X) = miu*X                            
d/dt(PR) = rPR-rPRD                        
d/dt(G4P) = rG4P-rG4PD                     
d/dt(A) = rA-(miu*gamaA)-fiA*(rPR-rPRD)    
d/dt(R) = rR-(miu*gamaR)-fiR*(rPR-rPRD)    
d/dt(N) = rN-(miu*gamaN)-fiN*(rPR-rPRD)    
d/dt(D) = rD-(miu*gamaD)-fiD*(rPR-rPRD)    
d/dt(C) = rC-(miu*gamaC)-fiC*(rPR-rPRD)    
d/dt(Q) = rQ-(miu*gamaQ)-fiQ*(rPR-rPRD)    
d/dt(E) = rE-(miu*gamaE)-fiE*(rPR-rPRD)    
d/dt(G) = rG-(miu*gamaG)-fiG*(rPR-rPRD)    
d/dt(H) = rH-(miu*gamaH)-fiH*(rPR-rPRD)    
d/dt(I) = rI-(miu*gamaI)-fiI*(rPR-rPRD)    
d/dt(L) = rL-(miu*gamaL)-fiL*(rPR-rPRD)    
d/dt(K) = rK-(miu*gamaK)-fiK*(rPR-rPRD)    
d/dt(M) = rM-(miu*gamaM)-fiM*(rPR-rPRD)    
d/dt(F) = rF-(miu*gamaF)-fiF*(rPR-rPRD)    
d/dt(P) = rP-(miu*gamaP)-fiP*(rPR-rPRD)    
d/dt(S) = rS-(miu*gamaS)-fiS*(rPR-rPRD)    
d/dt(T) = rT-(miu*gamaT)-fiT*(rPR-rPRD)    
d/dt(W) = rW-(miu*gamaW)-fiW*(rPR-rPRD)    
d/dt(Y) = rY-(miu*gamaY)-fiY*(rPR-rPRD)    
d/dt(V) = rV-(miu*gamaV)-fiV*(rPR-rPRD)    
                                           
Sg(0) = 10                                 
X(0) = 0.20000000000000001                 
PR(0) = 0.002                              
G4P(0) = 1.0000000000000001e-005           
A(0) = 0.00023729999999999999              
R(0) = 0.000232                            
N(0) = 0.00022000000000000001              
D(0) = 0.00059409999999999997              
C(0) = 8.0699999999999996e-005             
Q(0) = 0.0002433                           
E(0) = 0.00024499999999999999              
G(0) = 0.00020000000000000001              
H(0) = 0.0001033                           
I(0) = 0.00021829999999999999              
L(0) = 0.0003057                           
K(0) = 0.00022389999999999999              
M(0) = 4.9700000000000002e-005             
F(0) = 0.00022000000000000001              
P(0) = 0.0001917                           
S(0) = 0.00024499999999999999              
T(0) = 0.0013844                           
W(0) = 0.000136                            
Y(0) = 0.00042230000000000002              
V(0) = 0.000234 
 
********** MODEL PARAMETERS 
miuwt = 0.36000000000000004                
ks = 0.05                                    
Yxs = 0.4                                  
ke = 4.0999999999999988                    
kt = 5.3999999999999995                    
kPRD = 0.050000000000000002                
kg4p = 0.20000000000000001                 
kg4pd = 0.002 
 
********** MODEL VARIABLES 
rA = 0.04004199                            
rR = 0.04507818                            
rN = 0.02786916                            
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rD = 0.02807896                            
rC = 0.00970541                            
rQ = 0.03365008                            
rE = 0.03388203                            
rG = 0.0759915                             
rH = 0.0128619                             
rI = 0.03333426                            
rL = 0.05169129                            
rK = 0.0438803                             
rM = 0.0200554                             
rF = 0.0267729                             
rP = 0.02226515                            
rS = 0.019845                              
rT = 0.02644061                            
rW = 0.01015716                            
rY = 0.02185937                            
rV = 0.04336254                            
fiA = 0.036580604000000003                 
fiR = 0.041718328999999998                 
fiN = 0.067817974000000003                 
fiD = 0.077442646000000004                 
fiC = 0.0082888630000000005                
fiQ = 0.035005034999999997                 
fiE = 0.075524562000000003                 
fiG = 0.064221565999999994                 
fiH = 0.084943724999999998                 
fiI = 0.067304200999999994                 
fiL = 0.080765041999999995                 
fiK = 0.090012946999999996                 
fiM = 0.040827790000000003                 
fiF = 0.073469471999999994                 
fiP = 0.043328150000000003                 
fiS = 0.061138931000000001                 
fiT = 0.069290788000000006                 
fiW = 0.0069873060000000004                
fiY = 0.074394262000000003                 
fiV = 0.060111386000000003                 
gamaA = 0.0434                             
gamaR = 0.0489                             
gamaN = 0.0302                             
gamaD = 0.0305                             
gamaC = 0.0105                             
gamaQ = 0.0365                             
gamaE = 0.0368                             
gamaG = 0.0437                             
gamaH = 0.0140                             
gamaI = 0.0362                             
gamaL = 0.0561                             
gamaK = 0.0476                             
gamaM = 0.0218                             
gamaF = 0.0290                             
gamaP = 0.0242                             
gamaS = 0.0215                             
gamaT = 0.0287                             
gamaW = 0.0110                             
gamaY = 0.0237                             
gamaV = 0.0470 
 
********** MODEL REACTIONS 
miu = miuwt*Sg/(ks+Sg)                     
rPR = ke*PR/(kt+PR)                        
rPRD = kPRD*PR                             
rG4P = kg4p*f(H)                           
rG4PD = kg4pd*G4P 
 
********** MODEL FUNCTIONS 
f(x) = 0.2*exp(-10000*x) 
 
********** MODEL EVENTS 
event = lt(H,0.0),kg4pd,0.02,miuWT,0.2,kt,100 
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4.1 Abstract  

The bacterial stringent response was found to be triggered by the 

ribosome-associated RelA enzyme in response to nutrient deprivation 

conditions. Here a metabolic profiling analysis of E. coli W3110 and 

the isogenic ∆relA mutant cells is proposed to characterize the activity 

of this enzyme under different growth conditions. Metabolic profiles 

evaluated by gas chromatography–mass spectrometry (GC-MS) 

revealed that there were significant differences in metabolic activities 

between E. coli strains and predominantly among different growth 

conditions. Major differences were detected in the relative 

concentration levels of most metabolites when cells were grown at a 

dilution rate of 0.1 h-1, for which higher levels were obtained, though 

the accumulation of fatty acids was more significant at a dilution rate of 

0.05 h-1. These metabolic differences were less pronounced in the 

∆relA mutant cells, denoting that RelA must be involved in such 

metabolic activities. This suggests that under nutrient limiting 

conditions the RelA-dependent stringent response promotes key 

changes in the E. coli metabolism. 
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4.2 Introduction 

Under low nutrient conditions cells engage a multitude of cellular processes allowing for survival 

until growth can restart. Typically, the coordination of these cellular responses involves the global 

regulator guanosine-3',5'-bis-pyrophosphate (ppGpp), a core molecule that triggers the stringent 

response (Chatterji D and Ojha AK, 2001; Haseltin WA and Block R, 1973; Jain V et al., 2006; 

Magnusson LU et al., 2005). In E. coli, the stringent control mediated by ppGpp is a key 

regulatory process governing gene transcription, but also protein translation, enzyme activation 

and growth arrest (Artsimovitch I et al., 2004; Dennis PP et al., 2004; Paul BJ et al., 2004). This 

phenomenon is mainly triggered by the activation of the ribosome-associated enzyme encoded by 

the relA gene, which catalyzes the conversion of cellular GTP to ppGpp (Torok I and Kari C, 

1980). Although the synthesis of ppGpp has been mainly associated with the activity of the RelA 

enzyme in response to amino acid starvation, studies indicate that ppGpp also accumulates 

during carbon starvation (Traxler MF et al., 2006). A second ppGpp synthetase, SpoT, has been 

described to be involved in the ppGpp accumulation during carbon starvation, but its activity was 

shown to be much weaker than the RelA enzyme (Xiao H et al., 1991). Hypotheses indicate that 

these two phenomena might be strictly related and the exhaustion of carbon often results in the 

rapid limitation of amino acids availability (Traxler MF et al., 2006). Thus, it is expected that RelA, 

directly or indirectly, interferes in the definition of cellular responses to carbon starvation 

conditions. Otherwise, in the absence of the relA gene, bacterial cells would respond just as the 

wild-type strain to such environmental conditions. To dissect the role of the RelA enzyme in the E. 

coli responses to nutrient-limited growth conditions, a metabolomics approach was applied in this 

study. The intracellular metabolite profiles measured by gas chromatography–mass spectrometry 

(GC-MS) were exploited to characterize the main metabolic differences when cells are grown at 

different dilution rates.  

So far, studies have been focused on the gene expression profiling to investigate the RelA activity 

in response to environmental growth perturbations. For instance, changes in the transcriptome 

during glucose-lactose diauxic conditions were investigated in the wild-type E. coli and ∆relA 

mutant cells (Traxler MF et al., 2006), revealing that cells lacking the relA gene show a delayed 

diauxie and a deficient induction of RpoS and Crp regulons. Other studies (Durfee T et al., 2008; 

Haddadin FT et al., 2009) evaluated gene expression profiles of E. coli cells after treatment with 
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“artificial” inducers that mimic amino starvation (e.g. serine hydroxymate) leading to the 

induction of the stringent response. Results of this study showed that ∆relA mutant 

transcriptional responses are consistent with the “relaxed” phenotype of double null mutant 

(∆relA/∆spoT) and fail to adapt their physiology to the new conditions.  

In general, gene expression patterns revealed that the accumulation of ppGpp can occur either 

during carbon or amino acid starvation conditions in wild-type strains and that the RelA is 

involved in cellular adaptation responses to both conditions. From transcriptome data, some 

common features were observed, like the downregulation of the translational apparatus, including 

rRNAs, tRNAs and ribosomal genes and induction of the RpoS-dependent general stress 

response. As a result, stringent response promotes the rapid decay of cellular growth, since the 

translational apparatus is significantly reduced, and invokes a manifold of cellular survival 

mechanisms that limits most processes for cell division and reproduction. 

It has been proposed (Dedhia N et al., 1997) that E. coli strains with relaxed phenotypes (e.g., 

∆relA mutants) can be quite useful as host strains in the synthesis of recombinant proteins. In 

fact, some successful applications of ppGpp-defective strains in recombinant bioprocesses have 

been reported (Dedhia N et al., 1997; Sanden AM et al., 2003), showing that these recombinant 

systems can limit ppGpp accumulation, thus reducing growth arrest and productivity losses. 

However, our understanding on the ppGpp effects in the organization of the metabolic network 

under nutrient-limiting conditions is still incomplete. Some studies have used microarrays to 

profile the ppGpp effects on gene expression and then infer metabolic alterations (Chang DE et 

al., 2002; Durfee T et al., 2008), but the unbiased determination of metabolite levels can bring 

better insights to unveil the mechanism of stringent response in the metabolism. For that reason 

our goals in this study are twofold: to investigate the metabolic behaviour of E. coli W3110 strains 

at different growth conditions; and to elucidate how the relA gene mutation affects these 

metabolic behaviours.  
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4.3 Material and Methods 

4.3.1 Bacterial strains and growth conditions 

E. coli K12 W3110 (F-, LAM-, IN[rrnD-rrnE]1, rph-1) and the isogenic mutant ∆relA (obtained 

from M. Cashel (Xiao H et al., 1991)) were grown under controlled conditions in a chemostat 

culture at 37ºC, pH 7 and dissolved oxygen above 30%. The minimal medium consisted of 5 g.kg-

1 of glucose, 6 g.kg-1 of Na2HPO4, 3 g.kg-1 of KH2PO4, 0.5 g.kg-1 of NaCl, 1 g.kg-1 of NH4Cl, 0.015 

g.kg-1 of CaCl2, 0.12 g.kg-1 of MgSO4.7H2O, 0.34 g.kg-1 of thiamine, 2 mL.kg-1 of trace-element 

solution (described elsewhere (Rocha I and Ferreira EC, 2002)) and 2 mL.kg-1 of vitamins solution 

(described elsewhere (Rocha I and Ferreira EC, 2002)). The minimal medium supplemented with 

20 mg.kg-1 of L-isoleucine was used to grow the W3110 strain, while the same medium with 

further addition of 20 mg L-1 L-valine and 25 mg L-1 kanamycin was used to grow the ∆relA 

mutant strain.  

Chemostat cultivations were operated in a 3 L fermentor (BioFlo 3000, New Brunswick Scientific, 

USA) with a working volume of 1.5 L. The described minimal medium was continuously fed, at 

least for five residence times, at a given dilution rate (0.05, 0.1 and 0.2 h−1), and the working 

volume was kept constant by withdrawing the culture broth through level control. Steady-state 

conditions were verified by constant optical density and glucose measurements. The pH of the 

culture was maintained at 7.0 by adding 2.0 M NaOH and 2.0 M HCl. Dissolved oxygen was 

maintained above 30% saturation through a cascade mode controlling the agitation speed and 

airflow.  

 

4.3.2 Analytical techniques 

Biomass was determined by measuring culture turbidity (OD600nm) and cell dry weight (CDW). In 

order to determine CDW, 10 mL of broth were filtered with 0.2 µm filters and the filtrate was 

dried in the microwave to a constant weight. For glucose and acetate analysis, culture broth was 

centrifuged at 8000 rpm for 15 min to remove the cell debris and the supernatant was collected. 

The glucose concentration in the culture broth was determined by the dinitrosalicylic acid (DNS) 
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colorimetric method (Miller GL, 1959). The concentrations of acetic acid in the culture broth were 

determined with an enzymatic test kit (R-Biopharm AG, Germany).  

 

4.3.2.1 Quenching and metabolite extraction 

For metabolomics analysis, samples (50 mL) were taken quickly from the fermentor and 

immediately quenched, to halt cellular metabolism, in 200 mL of glycerol/saline solution (60%, 

v/v) at -23 °C, followed by quick homogenization. Samples were centrifuged at 10,000 rpm for 

20 min at -20 ºC using a refrigerated centrifuge. The supernatants were discarded and the cell 

pellets were resuspended in 2 mL of cold glycerol/saline solution (50%, v/v) at -23 ºC, followed 

by a second centrifugation at 8,000 rpm for 30 min at -20 ºC. The supernatants were again 

discarded and the cell pellets were dissolved in 2.5 mL of cold methanol/water solution (50%, 

v/v) at -30 ºC and stored at -80ºC for subsequent intracellular metabolite extraction. For that, 

samples were subjected to three freeze–thaw cycles with 1 min of vigorous mixing using a vortex 

between each cycle. After the third cycle, samples were centrifuged at 8,000 rpm for 30 min at -

20 ºC and the supernatants were collected and stored at -80 ºC. The extracted pellet was then 

resuspended in another 2.5 ml of cold methanol/water solution (50%, v/v) and centrifuged at 

8,000 rpm for 30 min at -20 ºC. The supernatant was collected and pooled with the first one and 

kept at -80 ºC and, afterwards lyophilized. 

 

4.3.2.2 Derivatization and GC-MS analysis 

For GC-MS analysis samples were further treated as follows. The dried intracellular metabolite 

extracts were resuspended in 200 µL of sodium hydroxide (1 M) and derivatized using the methyl 

chloroformate (MCF) method (Smart KF et al., 2010). The derivatized samples were then 

analyzed with a GC-MS systems - GC7890 coupled to a MSD5975 (Agilent Technologies, Inc., 

Santa Clara, CA, USA) equipped with a ZB-1701 GC capillary column, 30m x 250mm id x 0.15 

mm (film thickness) with a 5 m guard column (Phenomenex, Inc., Torrance, CA, USA) at a 

constant flow rate of 1.0 mL/min of helium. The oven temperature was initially held at 45ºC for 

2 min. Thereafter the temperature is raised with a gradient of 9ºC/min until 180ºC. This 
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temperature (180ºC) is held for 5 min. Then the temperature is raised with a gradient of 

40ºC/min until 220ºC. The temperature is again held for 5 min. Then the temperature is raised 

with a gradient of 40ºC/min until 240ºC and this temperature is held for 11.5 min. Finally the 

temperature is raised with a gradient of 40ºC/min until 280ºC, which is held for 2 min. The 

temperature of the inlet is 290ºC, the interface temperature 250ºC, and the quadrupole 

temperature 200ºC. Sample (1 µL) was injected onto the column under pulsed splitless mode 

(1.8 bars until 1 min, 20 mL/min split flow after 1.01 min) and the detector was set with a scan 

interval of 1.47 seconds and m/z range of 38-650.  

 

4.3.3 Statistical analysis 

Data from GC-MS analyses were deconvoluted using the AMDIS spectral deconvolution software 

(Stein SE, 1999) to identify the compounds through matching with a library constructed by using 

analytical chemical standards. Peak intensity values corresponding to each identified compound 

were corrected for the recovery of the internal standard (D-4-alanine) and normalized with respect 

to biomass concentration. The corrected and normalized peak intensity values were thereafter 

transformed into Z-scores, by subtracting the average peak intensity corresponding to a 

metabolite k among all the n samples (including replicates) in the set of experiments, from the 

peak intensity value (IMK) of that metabolite in one sample, and dividing that result by the standard 

deviation (SDM1..Mn) of all measured n peak intensities, according to: 

( )
nMkMk

n

SD
ImeanI

kscoreZ MkMkMk

...1

1...,
−

=−  

Further data processing and statistical analysis were performed with MATLAB (version 2009b, 

The Mathworks, Inc) and MultiExperiment Viewer (MeV) (Saeed AI et al., 2003). The 

nonparametric two-way method, Mack-Skillings test, was used for testing the null hypothesis (H0) 

of no differences among experiments and to look for the main differences between metabolic 

profiles that are related to either of the two factors: strain (Factor A) and dilution rate (Factor B). 

As exemplified by Table 4.1, this two factor design allows the combination of one or more 

observations for each factor with an uneven number of replicates per observation. p-values were 
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calculated to determine if the null hypothesis, which establishes that metabolic profiles are not 

affected neither by factors A and/or B, is rejected. Thus, metabolites with p-value lower than 

0.01 show statistically significant differences (with 99% of confidence) in their relative 

concentration between different experimental conditions when considering factors A or B. 

 

Table 4.1. Mack-Skillings test for two factor design.  

The design matrix captures the disproportionate number of replicates (either 3 or 4) in the group of experiments 

performed in this study. 

 
Factor B 

0.05 0.1 0.2 

Factor A 
W3110 4 3 4 

∆relA 3 3 4 

 

Hierarchical clustering (HCL) was used to cluster samples and metabolites that showed 

significant changes according to the Mack-Skillings test. The construction of hierarchical trees 

was based on the Pearson correlation metrics. Pearson's correlation coefficients (r) were also 

used to evaluate the degree of association between the metabolite profiles produced by the 

W3110 and ∆relA E. coli cultures. p-values associated with each Pearson correlation coefficient 

was calculated using a Student's t distribution to test the null hypothesis (H0) of no significant 

correlation between the metabolite profiles from the two cultures, against the alternative 

hypothesis (H1) that establishes a significant correlation between the profiles.  

 

4.4 Results  

This study aimed at evaluating the impact of different dilution rates (0.05, 0.1 and 0.2 h-1) in the 

metabolome in a wild-type and a relaxed strain of E. coli. Assuming that ppGpp accumulates 

under very slow growth conditions and the RelA enzyme is involved in the ppGpp-induced 

response, metabolic patterns of the E. coli W3110 and the isogenic ∆relA mutant were analysed 

to explore the metabolic activities influenced by the ppGpp-induced response.  
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4.4.1 Growth parameters of E. coli W310 wild-type and ∆relA 

cells under different dilution rates 

Chemostat cultures of E. coli W3110 and the isogenic ∆relA mutant were run at different dilution 

rates (0.05, 0.1, and 0.2 h-1) and growth parameters were determined (Table 4.2). It was 

observed that only at higher dilution rates residual concentrations of glucose and acetate were 

detected in the extracellular medium. Biomass yields increased with the dilution rate and the 

mutant strain exhibited a biomass yield slightly higher than that of the W3110 strain in the same 

conditions.  

 

Table 4.2. Growth parameters of the W3110 and ∆relA mutant E. coli strains in aerobic 

glucose-limited continuous culture. 

 W3110 ∆relA mutant 

Dilution rate (h-1) 0.05 0.10 0.20 0.05 0.10 0.20 

Biomass yield (g g-1) 0.36±0.056 0.44±0.15 0.55±0.10 0.46±0.063 0.46±0.064 0.67±0.3 

Biomass (g L-1) 1.8±0.28 2.2±0.34 2.7±0.43 2.3±0.31 2.3±0.32 3.3±0.45 

Glucose (g L-1) (1) 0.029±0.0086 0.040±0.0033 (1) (1) 
0.023±0.0

10 

qGlucose (g g-1 h-1) 0.14±0.021 0.23±0.076 0.36±0.063 0.11±0.015 0.22±0.030 0.30±0.13 

Acetate (g L-1) (1) (1) 0.34 (1) (1) 0.02 

qAcetate (10-3)(g g-1 h-1) - - 25±3.8 - - 1.1±0.15 

(1) Undeterminable traces.  

 

4.4.2 Metabolic profiling of E. coli  

In this work, the E. coli metabolic profiles were determined through the analysis of intracellular 

chemical molecules detected by GC-MS. The chemical derivatization procedure was chosen in 

order to quantify the main amino acids and their precursors generated in the central carbon 

metabolism and fatty acid biosynthesis. The overall list of detected metabolites is presented in 

Table 4.3.  
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Table 4.3. List of the intracellular metabolites detected by GC-MS.  

The metabolites abbreviations are discriminated inside brackets.  

TCA cycle 
Fatty acids and derivatives 

biosynthesis 
Amino acid biosynthesis Others 

2-ketoglutarate 
(akg) 
cis-Aconitate 
(acon-C) 
Citrate (cit) 
Fumarate (fum) 
Malate (mal) 
Succinate (succ) 

Hexanoate (hxa) 
Octanoate (octa) 
Decanoate (dca) 
Tetradecanoate (ttdca) 
10,13-Dimethyltetradecanoate (1013mlt) 
Pentadecanoate (pdca) 
14-Methylpentadecanoate (14mpdca) 
Octadecanoate (ocdca) 
Octadecenoate (ocdcea) 
9-cis,12-cis-Octadecadienoate (ocdcin) 

Aspartate (asp) 
Isoleucine (ile) 
Lysine (lys) 
Threonine (thr) 
Alanine (ala) 
Leucine (leu) 
Valine (val) 
Glycine (gly) 
Serine (ser) 
Glutamate (glu) 
Proline (pro) 
Phenylalanine (phe) 
(2S)-2-isopropylmalate (3c3hmp) 
N-Acetyl-L-glutamate (acglu) 

BenzoateΨ (bnz) 
NADP(H) 
Nicotinate (nac) 
Phosphoenolpyruvate 
(pep) 
5-oxo-D-prolineψ (pyrglu) 
Malonateψ (mlt) 
Itaconateψ (itcon) 
Lactate (lac) 

Ψ Metabolites unknown to be synthesized by E. coli 

 

Metabolomic analysis showed that the metabolite profiles were largely influenced by the growth 

rate conditions and the genetic characteristics of the bacteria (i.e., relA gene deletion). 

Nevertheless, Mack-Skillings test demonstrated that the amount of metabolites whose profiles 

were significantly changed with the dilution rate is greater than the ones that are different among 

the different strains (i.e. E. coli W3110 and ∆relA mutant). As illustrated in Figure 4.1, only 15 

metabolites (20% of the total metabolites detected by GC-MS) changed significantly with the 

alteration of the strain, while 20 metabolites were found to be considerably changing their profile 

with the alteration of the dilution rate.  
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Figure 4.1. Hierarchical tree representing metabolites that were significantly changed (p-

value <0.01) with both experimental factors: strain or dilution rate.  

 

4.4.2.1 The impact of the dilution rate in the E. coli metabolome 

Before analysing the metabolic differences between E. coli W3110 and ∆relA mutant cultures, 

the metabolic states of the non-relaxed cells were examined in detail. This analysis was 

performed in order to verify if the RelA-modulated stringent response is triggered at any of the 

growth conditions evaluated and how this stress response affects E. coli metabolic activities. In 

this analysis, only those metabolites that presented p-values less than 0.01 in the Mack-Skillings 

test were considered.  

Hierarchical clustering (HCL) analysis was used to group metabolites into different clusters that 

congregate those metabolites that behave in a similar manner under different growth conditions 

(Figure 4.2), and that are most likely engaged in similar metabolic processes. The overall trend of 

metabolite profiles was characterized by a maximum accumulation at the dilution rate of 0.1 h-1 

and decreased levels below and above this dilution rate, except for fatty acids (clusters 1 and 2). 

Medium- and long-chain fatty acids (included in clusters 1 and 2, respectively) presented higher 

relative concentrations at lower dilution rates when compared with high dilution rates. This seems 

to indicate that those compounds are associated with key metabolic activities when cells are 

growing at nutrient-limiting conditions and are less required when increasing the availability of 

nutrients.  
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Figure 4.2. Metabolite profiles of the E. coli W3110 strain exhibited under three dilutions 

rates (0.05, 0.1 and 0.2 h-1) were clustered by HCL analysis.  

For abbreviations see Table 4.3. 

 

On the other hand, clusters 4 and 5 grouped most of the TCA metabolites, amino acids, 

including amino acid derivatives like, 5-oxo-D-proline (pyrglu) and (2S)-2-isopropylmalate 

(3c3hmp) and the NAD salvage pathway intermediaries, nicotinate (nac) and NADP(H), 

presenting higher levels at the dilution rate of 0.1 h-1. The third cluster presented slightly higher 

relative metabolite concentrations at the dilution rate 0.05 h-1, compared to the fourth and fifth 

clusters, but the overall metabolic patterns were similar. Most likely, these clusters are at some 

extent linked and biochemical reactions involving these metabolites may be synchronized.  

To understand how these alterations in the relative metabolite concentrations are related with 

changes in biochemical activities, metabolites detected in the E. coli metabolome were 

represented into a metabolic map (Figure 4.3). 
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Figure 4.3. Metabolic map representing the metabolome of the E. coli W3110 according to 

the clusters obtained.  

Grey boxes represent those metabolites that were not detected by the GC-MS analysis and the coloured boxes 

display the sets of metabolites that were clustered according to the HCL analysis (each colour corresponds to a 

cluster, according to Figure 4.2) and that were statistically significant for the dilution rate factor. Non-coloured boxes 

represent those metabolites that were detected by the GC-MS analysis, but were not significantly changed with the 

dilution rate. Red dashed lines indicate enzymatic inhibition activities performed by various metabolites. 

 

As illustrated in Figure 4.3, the strong correlation between medium-chain fatty acids, 

pentadecanoate (pdca) and tetradecanoate (ttdca), seems derived from their proximity in the 

metabolic network (i.e. pentadecanoate is produced via saturated fatty acid elongation cycle that 

uses tetradecanoate as an intermediary). Likewise, amino acids, leucine (leu), isoleucine (ile) and 

valine (val) were also clustered together and are participants in the two pathways that are highly 

correlated. As depicted, the pathway of isoleucine biosynthesis is subject to regulation by valine 

and leucine, whereas the first step in the pathway of valine biosynthesis is also regulated by 
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isoleucine. Although it is not illustrated, several enzymes are simultaneously involved in the 

synthesis of the three amino acids. In addition, amino acids, fumarate (fum) and the NADP(H) 

molecules were also clustered with these metabolites, but not all presented clear metabolic 

associations. For instance, serine (ser) and proline (pro) are not neighbours in the metabolic 

network, but glutamate is a common participant in both biosynthetic pathways (i.e. glutamate is 

the amino donor in the biosynthesis of serine and the biosynthesis of proline involves the 

reduction of L-glutamate). 

 

4.4.2.2 The impact of the ∆relA mutation in the E. coli metabolome 

Having evaluated the metabolic states exhibited by E. coli W3110 cells, the metabolic profiles 

exhibited by the two strains at different dilution rates were compared. Here the aim was to 

determine the key metabolic activities that were influenced by the relA gene mutation under the 

tested growth conditions. Although the relative concentrations of most metabolites were 

significantly changed (see Appendix A), when comparing the metabolite profiles between the two 

E. coli strains, it was found that their trend were similar in some cases. Therefore, pairwise 

correlation coefficients were calculated for each metabolite that was found to be significant by the 

Mack-Skillings test (Figure 4.4). As illustrated, almost half of the metabolites showed poorly 

correlated patterns (i.e. r below 0.8). Moreover, some metabolites revealed to have negatively 

correlated profiles, which means that the intracellular accumulation of these metabolites follows 

an opposite pattern in one of the cultures, e.g. succinate (succ) with r equal to -0.3.  
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Figure 4.4. Representation of the pairwise correlation coefficients (r) determined between 

metabolite profiles generated in the W3110 and ∆relA E. coli cultures.  

Only metabolites that presented significant changes according to the Mack-Skillings test for the strain factor were 

considered. Dashed line delimits the correlation coefficient threshold below which metabolite profiles produced by 

the two strains were considered uncorrelated. 

 

Profiles of those uncorrelated metabolites are then shown in Figure 4.5. In general, relative 

concentrations were significantly different at lower dilutions rates and have a tendency to become 

similar as the dilution rate increases. For example, octadecanoate (ocdca), tetradecanoate 

(ttdca), pentadecanoate (pdca) and 10,13-dimethyltetradecanoate (1013mlt) presented quite 

divergent trends when the dilution rate was lower. In contrast, metabolites like succinate (succ), 

threonine (thr) and lactate (lac) showed particularly asymmetrical metabolic patterns, which 

indicate that metabolite accumulation in E. coli mutant cells was quite different compared to the 

W3110 strain. 

Other interesting differences between strains are represented by five metabolites that, although 

using the Mack-Skillings test were not considered significant, were uniquely detected in the 

W3110 culture at a dilution rate of 0.1 h-1 (see Appendix B): N-acetyl-L-glutamate (acglu), lysine 

(lys), malate (mal), 2-ketoglutarate (akg) and the two inhibitors of the isocitrate lyase, itaconate 

(itcon) and malonate (mlt). It is worth to notice that each one of these metabolites is somehow 
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related to the TCA cycle, in particular the 2-ketoglutarate (akg), itaconate (itcon) and malonate 

(mlt), which are directly linked to the isocitrate node, which is a key metabolic valve that controls 

the carbon flux through the TCA cycle or the glyoxylate shunt depending on the metabolic 

requirements.  

 

 

Figure 4.5. Metabolic profiles of the metabolites that were uncorrelated between E. coli 

strains. 

 

4.5 Discussion 

The growth rate-dependent regulation of the metabolism is fundamental to fine-tune the fuelling 

and biosynthetic reactions, in such a way that cells can rapidly adapt to the existing 

environmental conditions. The effect of nutrient-limiting conditions on the balance of the catabolic 

and anabolic fluxes and energetic efficiency of the E. coli cells has been the focus of previous 

investigations (Farmer IS and Jones CW, 1976; Ko Y-F et al., 1994; Neijssel OM et al., 1990; 

Russell JB and Cook GM, 1995) and it was confirmed that several key metabolic activities are 

systematically activated under those conditions. In this study, it was aimed to analyse this growth 

rate-dependent behaviour and observe how it is affected by the deletion of the relA gene, which 
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encodes a ppGpp synthetase described as a key element for the cellular responses to nutrient 

limiting conditions. 

First, the physiological parameters of E. coli W3110 and the isogenic ∆relA mutant were 

assessed. Apparently, biomass yields are lower as the dilution rate decreases and the biomass 

yields of the mutant strain were consistently higher compared to the E. coli strain W3110, in 

particular at lower dilutions rate (D=0.05 h-1). Indeed, it was expected that at lower dilution rates 

the metabolic and physiological behaviour of these two strains would be different, since it is 

assumed that part of the maintenance energy is spent in cellular processes to counteract 

nutritional limitations, typically through RelA-dependent processes. To understand how these 

cellular processes impact the E. coli metabolism, a metabolic profiling approach was applied to 

study the intracellular metabolome of E. coli W3110 and ∆relA mutant cells growing at three 

different dilution rates.  

It was verified that metabolite pools were strongly affected by the dilution rate and the 

accumulation of most metabolites was higher at a dilution rate of 0.1 h-1, which is in good 

agreement with other studies performed in glucose-limited chemostat experiments (Nanchen A et 

al., 2006; Prasad MR et al., 2005; Sauer U et al., 1999). According to Nanchen et al (Nanchen A 

et al., 2006), at a dilution rate of 0.1 h-1, large flux variations are verified in the metabolic 

network, in particular at the oxaloacetate node where two anaplerotic reactions converge. The 

carbon flux through the glyoxylate cycle (i.e. an anaplerotic pathway that converts isocitrate to 

succinate or to malate via glyoxylate) is maximum at this dilution rate and decreases at higher 

dilution rates (Fischer E and Sauer U, 2003; Nanchen A et al., 2006; Prasad MR et al., 2005). It 

was proposed (Fischer E and Sauer U, 2003; Nanchen A et al., 2008; Sauer U and Eikmanns 

BJ, 2005) that at nutrient starvation conditions the cAMP-mediated catabolite repression of 

enzymes in the glyoxylate cycle is limited and the activity of the competing enzyme, i.e. the 

isocitrate dehydrogenase, is decreased. As such, it is believed that anaplerotic reactions are 

stimulated in hungry E. coli cells and, at higher dilution rates, are restrained as a consequence of 

the increasing glucose concentrations and the catabolite repression.  

This phenomenon has been associated with the stringent response induced by the ppGpp 

accumulation that should require the activity of the RelA enzyme (Ozkan P et al., 2005; Pao CC 

and Dyess BT, 1981; Traxler MF et al., 2006). The levels of this global regulator, ppGpp, 
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increase rapidly when cells are grown in nutrient-deprived conditions, which potentiates the 

expression of several stress response genes, namely the transcriptional regulator cAMP receptor 

protein (Crp) that governs the catabolite repression (Traxler MF et al., 2006). Thus, it was 

expected that ∆relA mutants would be less effective to increase metabolic activities at a dilution 

rate of 0.1h-1. Although it seemed that the catabolite derepression was invoked in both E. coli 

strains, it was clear that it was induced to a much lesser extent in ∆relA mutant cells, as the 

relative concentrations of most metabolites were much lower (see Appendix A). Besides the 

overall relative metabolite concentrations at these conditions, the absence of the isocitrate lyase 

inhibitors is indicative of a less effective ppGpp-induced catabolite derepression of anaplerotic 

activities. It is believed that anaplerotic functions in “less stringent” phenotypes are limited, and 

for that reason enzymatic inhibitors, such as isocitrate lyase inhibitors, are not needed to control 

such metabolic activities. In contrast, these inhibitors were found to be overproduced in the 

W3110 E. coli strain under this particular dilution rate (0.1 h-1), which denotes that they can be 

physiologically determinant for the regulation of enzymes at the metabolic branch-point at 

isocitrate under nutrient-limiting conditions. Although it is only an hypothesis, the failure to induce 

the catabolite derepression of isocitrate lyase (i.e. anaplerotic enzyme) and the concomitant 

absence of isocitrate lyase inhibitors, suggest that “relaxed” phenotypes are less effective to 

stimulate anaplerotic functions under nutrient limiting conditions. 

At dilutions rates lower than 0.1 h-1, the strong dependence of metabolic activities on carbon 

source availability was evidenced by generally lower relative concentrations of most metabolites, 

even when anaplerotic reactions were derepressed. However, a group of metabolites were highly 

accumulated at these conditions (D=0.05 h-1). Fatty acids, like the tetradecanoate (ttdca), 

pentadecanoate (pdca), octadecenoate (ocdcea) and 9-cis,12-cis-octadecadienoate (ocdcin), were 

highly accumulated in the intracellular milieu of the E. coli W3110 cells suggesting the 

involvement of key metabolic changes in the structure of cell membranes. Fatty acids 

biosynthesis was definitely the most significant change occurred at these growth conditions (0.05 

h-1) and represented the utmost opposite metabolic behaviour between the E. coli W3110 and 

∆relA cells. While fatty acids were highly accumulated in starved E. coli W3110 cells, the 

opposite was observed in the ∆relA mutant cells. As such, it is clear that the RelA activity is 

fundamental to define the cellular response during extreme starvation conditions. It is known that 
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fatty acid biosynthetic genes (e.g. fabHDG and fabA) are stringently controlled by the ppGpp and 

the alternative sigma factor, RpoS (Dong T and Schellhorn HE, 2009). Since the activity of RpoS 

is augmented by high levels of ppGpp, it is expected that in the absence of the RelA, the RpoS-

transcriptional control of these genes is reduced. Thus, the accumulation of fatty acids at lower 

dilution rates might be associated with the nutrient starvation responses and apparently is lessen 

in ∆relA mutant cells.  

One of the most reported effects provoked by the stringent response (Chatterji D and Ojha AK, 

2001; Durfee T et al., 2008; Jain V et al., 2006; Jishage M et al., 2002; Magnusson LU et al., 

2005; Mukherjee TK et al., 1998; Traxler MF et al., 2006) is the overexpression of genes coding 

for enzymes that participate in amino acid biosynthetic pathways. Although the curtailment of 

most amino acids was not observed in the intracellular milieu, ∆relA mutant cells showed some 

changes in metabolic profiles related with the biosynthesis of amino acids. For example, it was 

identified that lysine (lys) and N-acetyl-L-glutamate (acglu) were not detected in E. coli ∆relA 

mutant at a dilution rate of 0.1 h-1, but relative concentration levels of these amino acids were 

determined in the E. coli W3110 strain. The only common feature between these metabolites is 

the connectivity to glutamate, one of the most required amino donors in the metabolism, whose 

relative concentration levels were found to be much lower in the E. coli ∆relA mutant strain. 

Furthermore, 2-ketoglutarate (akg), the metabolic precursor of glutamate, was also undetected in 

this mutant strain at the same conditions, which indicates the relative concentrations of these 

metabolites were severely reduced in mutant cells. This may suggest that E. coli ∆relA mutant 

cells present a “relaxed” phenotype that may have led to important shortages in certain 

metabolites.  

 

4.6 Conclusions 

Even with detailed knowledge about the overall metabolic reactions and their regulation, the 

interpretation of metabolic patterns is still not a trivial task. Analytical limitations in the detection 

of the whole set of metabolites within the cellular milieu, are still a problem to fully characterize 

the metabolic system. For example, key metabolic nodes like the isocitrate (icit), oxaloacetate 
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(oaa) or glyoxylate (glx), would be helpful in the verification if anaplerotic functions were indeed 

activated under catabolite derepression. However, it was possible to unveil crucial metabolic 

alterations in response to different nutrient-limiting conditions, and more importantly to confirm 

that the RelA activity is fundamental in the coordination of several cellular responses, like 

anaplerosis and fatty acid biosynthesis. These two metabolic activities were associated with the 

most remarkable differences between the two E. coli strains and exposed some limitations that 

“less stringent” phenotypes might exhibit. Nevertheless, there are no evidences suggesting that 

the relA mutation leads to impaired metabolic performances and are entirely devoid of survival 

mechanisms. In fact, it was observed that biomass yields were higher in ∆relA mutant cells. It 

can be hypothesized that ppGpp synthesized by SpoT guarantees the most basic responses to 

maintain cell growth and survival and the activity of RelA would be involved in the reorganization 

of the global network that operates in response to several environmental perturbations entailing a 

multitude of cellular processes, namely cellular metabolism.  
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4.8 Appendix A 

Z-scores of metabolites that presented significant changes according to the strain factor. R-values 

indicate the correlation between the relative concentrations of these metabolites in the two 

cultures: E. coli W310 (WT) and E. coli ∆relA (RelA). 
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4.9 Appendix B 

Relative concentrations of metabolites that were undetected in chemostat cultures, except in the 

E. coli W3110 grown at a dilution rate of 0.1 h-1. 
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4.10 Appendix C 

Relative concentrations of metabolites detected by GC/MS analysis. 
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NADP(H) 0.082 0.085 0.064 0.099 0.363 0.406 0.458 0.1 0.084 0.081 0.106 0.147 0.13 0.152 0.229 0.215 0.184 0.072 0.087 0.091 0.101
bnz 0.449 0.352 0.271 0.371 0.339 0.284 0.406 0.42 0.62 0.411 0.481 0.906 0.377 0.897 0.405 0.331 0.357 0.586 0.335 0.603 0.22
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5.1. ABSTRACT  

The expression of foreign DNA in bacterial cells has been explored by 

using recombinant plasmids. The impact of the expression and 

maintenance of these plasmids in cells is often associated with the 

metabolic burden phenomenon, which consists in the additional 

drainage of cellular resources that often leads to metabolic imbalances. 

We observed that Escherichia coli growth yields and metabolic changes 

were significant in cells harbouring the plasmid pTRC-AcGFP1. The GC-

MS metabolome analysis showed that the intracellular amino acid pool 

was significantly lower, except for unsaturated long-chain fatty acids. 

Less pronounced changes were observed when cells were induced to 

express the recombinant protein, but the expression levels were not 

considerable. However, significant changes in the relative 

concentrations of fatty acids were verified. Some amino acids and TCA 

metabolites levels were also altered. 

Here we demonstrated that metabolic profiling represents a useful 

method to observe metabolic imbalances caused by plasmids 

maintenance and expression. Alterations in the metabolic state of host 

cells harbouring plasmids are significant and might impair important 

cellular functions. 

  



Chapter 5 147 

 

 
 

5.2. INTRODUCTION 

Recombinant DNA technology offers today the ability to produce foreign proteins in several 

microorganisms, such as the bacterium Escherichia coli. The introduction of a plasmid into 

bacterial cells to express genes from other sources can perturb the host cellular functions at 

many levels. The adjustment of most metabolic activities, to cope with the additional biosynthetic 

requirements, and the consequent adaptation of the transcriptional regulation, to fine-tune the 

levels of catabolic enzymes, interfere with the physiology of the host cell. Most notably, drastic 

changes in the specific growth rate can occur when the recombinant protein synthesis is 

induced. This physiological perturbation is often associated with the metabolic burden that has 

been defined as “the portion of host cell’s resources – either in the form of energy such as ATP 

or GTP, or raw materials such as nucleotides and amino acids – that is required to maintain and 

express foreign DNA in the cell” (Hoffmann F and Rinas U, 2004). Cellular growth and expression 

of foreign gene products in recombinant cells compete for the use of intracellular resources, such 

as amino acids, nucleic acids and metabolic energy. To overproduce these recombinant proteins, 

cellular resources are extensively consumed and a shortage of even one of these resources can 

cause alterations in the cellular metabolism, a condition known as starvation. Since protein 

synthesis, or more specifically the polymerization of amino acids, is the biggest energy-

consuming process in the cell, with more than 50% of the ATP consumption for biosynthetic 

purposes (Stouthamer AH, 1973), energy generation may become critical in recombinant-protein 

overproducing cells.  

Besides metabolic burden, several other consequences of the production of heterologous 

proteins have been referred, like the triggering of various stress responses. The transcription of 

various stress-encoded proteins might be stimulated when cells are exposed to sudden disturbing 

conditions, like the abnormal protein synthesis (Bukau B, 1993; Harcum SW and Bentley WE, 

1999) or the accumulation of inclusion bodies (Ho JGS and Middelberg APJ, 2004; Jurgen B et 

al., 2000; Panda AK et al., 1999), as well as the shortage of biosynthetic precursors, such as 

amino acids (Andersson L et al., 1996; Harcum SW and Bentley WE, 1999). In the last case, if 

the composition of the recombinant protein considerably differs from the average composition of 

E. coli proteins, then, at some point, the intracellular pool of certain amino acids might get 

depleted and the ratio of charged to uncharged tRNAs decreases. This increases the possibility of 
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an unchaged tRNA binding to a translating ribosome, which induces the activity of the RelA 

enzyme (Haseltin WA and Block R, 1973). RelA synthesizes an unusual nucleotide, ppGpp, which 

in a process called stringent response, reprograms gene expression towards the transcription of 

genes involved in amino acids biosynthesis and stress proteins and inhibits the majority of stable 

RNAs (rRNA and tRNA) (Chatterji D and Ojha AK, 2001; Irr J and Gallant J, 1969; Jain V et al., 

2006; Magnusson LU et al., 2005; Srivatsan A and Wang JD, 2008). It also interferes with the 

control of plasmid DNA replication (Potrykus K et al., 2000), although the molecular mechanisms 

of this ppGpp-mediated inhibition of replication remains unclear (Herman A et al., 1994; Wegrzyn 

G, 1999). Thus, the overall alteration in metabolism is the result of a series of cellular processes 

triggered to respond to the metabolic load imposed by the production of heterologous proteins, 

which ultimately leads to the arrest of cellular growth and to the reduction of the recombinant 

protein productivity (Bentley WE et al., 1990).  

In this study, the isogenic mutant ∆relA of E. coli W3110 was chosen as the host cell to study the 

impact of the metabolic burden caused by plasmid DNA maintenance and expression without the 

interference of other subsequently elicited cellular processes. Mutants in the relA gene do not 

contain functional RelA (ppGpp synthetase I), which will limit the ppGpp-induced responses, 

namely the transcriptional activation of stress-regulons associated with cellular mechanisms to 

survive starvation conditions. As detailed above, regulatory responses induced by the ppGpp-

stringent control might be a common problem during recombinant protein overproduction 

(Dedhia N et al., 1997; Sanden AM et al., 2003) and the use of relaxed mutants (∆relA) may 

overcome some of these issues and isolate the metabolic burden phenomenon.  

To better understand and control recombinant cultures, it is important to have a more profound 

knowledge of how the cell couples energy generation and carbon supply in the catabolic 

pathways with the anabolic requirements at different growth rates under producing and non-

producing conditions. Continuous cultivation has been demonstrated (Kim E et al., 1992; 

Maresova H et al., 2001; Vaiphei ST et al., 2009; Zhang WH et al., 2004) to be a useful 

bioprocess tool to study the kinetics of recombinant cultures and to identify the primary 

metabolic bottlenecks associated with the recombinant protein expression. Thus, continuous 

cultivation of the host strain (E. coli W3110 ∆relA) and plasmid-bearing cells (E. coli W3110 

∆relA/pTRC-AcGFP1) were performed in a glucose-limited chemostat at a dilution rate of 0.2 h-1. 
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We aimed to investigate the metabolic profiles at steady-state conditions to evaluate the effects of 

plasmid DNA maintenance and recombinant protein expression in the absence of stress 

responses. A GC/MS-based metabolomics approach to measure the intracellular levels of 

metabolites associated with central metabolic pathways, such as amino and fatty acids, was 

applied.  

 

5.3. EXPERIMENTAL PROCEDURES 

5.3.1. BACTERIAL STRAINS AND GROWTH CONDITIONS 

The ∆relA251 mutant E. coli strain (obtained from M. Cashel (Xiao H et al., 1991)) was 

transformed with the cloned pTRC-HisA vector (Invitrogen Corporation and Applied Biosystems 

Inc, USA) carrying a gfp gene amplified from the pAcGFP1 plasmid for the green fluorescent 

protein AcGFP1, a derivative of GFP from Aequorea coerulescens (Clontech, Takara Bio 

Company, USA). The pTRC-AcGFP1 contains a trc promoter for high-level expression of the fusion 

protein and an ampicillin resistance gene for propagation and selection in E. coli.  

Three different experiments were performed in a minimal medium consisting of 5 g.kg-1 of 

glucose, 6 g.kg-1 of Na2HPO4, 3 g.kg-1 of KH2PO4, 0.5 g.kg-1 of NaCl, 1 g.kg-1 of NH4Cl, 0.015 g.kg-1 

of CaCl2, 0.12 g.kg-1 of MgSO4.7H2O, 0.34 g.kg-1 of thiamine, 2 mL.kg-1 of trace-element solution 

(described elsewhere (Rocha I and Ferreira EC, 2002)) and 2 mL.kg-1 of vitamins solution 

(described elsewhere (Rocha I and Ferreira EC, 2002)). The minimal medium was further 

supplemented with 20 mg.kg-1 of L-isoleucine, 20 mg.kg-1 of L-valine, 100 mg kg-1 of ampicillin 

and 25 mg kg-1 of kanamycin. The first experiment was conducted with the strain E. coli W3110 

(∆relA), while E. coli W3110 (∆relA)/pTRC-AcGFP1) was used in the second and the third one. In 

this last one, induction of AcGFP1 production was performed with 1.5 mM IPTG (isopropyl b-D-

thiogalactoside) when the culture optical density (OD600nm) reached a constant value. 

Chemostat cultivations were operated at 37°C in a 3 L fermenter (BioFlo 3000, New Brunswick 

Scientific, USA) with a working volume of 1.5 L. The described minimal medium was 

continuously fed into the vessel, at least for five residence times, at a dilution rate of 0.2 h−1, and 
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the working volume was kept constant by withdrawing the culture broth through a level control 

system. The pH of the culture was maintained at 7.0 by adding 2.0M NaOH and 2.0M HCl. 

Dissolved oxygen was maintained above 30% saturation through a cascade mode, controlling the 

agitation speed and airflow.  

 

5.3.2. ANALYTICAL TECHNIQUES 

Biomass was determined by measuring culture turbidity (OD600nm) and cell dry weight (CDW). In 

order to determine CDW, 10 mL of broth were filtered by 0.2 µm filters and the filtrate was dried 

in the microwave to a constant weight. For glucose and acetate analysis, culture broth was 

centrifuged at 8000 rpm for 15 min to remove the cell debris and the supernatant was collected. 

The glucose concentration in the culture broth was determined by the dinitrosalicylic acid (DNS) 

colorimetric method (Miller GL, 1959). The concentrations of acetic acid in the culture broth were 

determined with an enzymatic test kit (R-Biopharm AG, Germany).  

The expression level of AcGFP1 was determined by fluorescence measurements at a 2104 

EnVision® Multilabel Reader (PerkinElmer, USA) with excitation and emission wavelengths of 

475 and 505 nm, respectively, and a bandwidth of 8 nm. His-Tag purification of the AcGFP1 was 

performed with HiTrap columns (GE Healthcare Bio-Sciences AB, Sweden) and the concentration 

was determined by the Bradford method using BSA as standard. Plasmids from cell samples 

were isolated using the Illustra™ plasmid Prep Mini Spin Kit (GE Healthcare UK Limited, UK) and 

quantified by a Quant-it assay (Invitrogen Corporation and Applied Biosystems Inc, USA). 

 

5.3.2.1. QUENCHING AND METABOLITE EXTRACTION 

For metabolomics analysis, samples (50 mL) were taken quickly from the fermentor and 

immediately quenched, to halt cellular metabolism, in 200 mL of glycerol/saline solution (60%, 

v/v) at -23 °C, followed by quick homogenization. Samples were centrifuged at 10,000 rpm for 

20 min at -20 ºC using a refrigerated centrifuge. The supernatants were discarded and the cell 

pellets were resuspended in 2 mL of cold glycerol/saline solution (50%, v/v) at -23 ºC, followed 
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by a second centrifugation at 8,000 rpm for 30 min at -20 ºC. The supernatants were again 

discarded and the cell pellets were dissolved in 2.5 mL of cold methanol/water solution (50%, 

v/v) at -30 ºC and stored at -80ºC for subsequent intracellular metabolite extraction. For that, 

samples were subjected to three freeze–thaw cycles with 1 min of vigorous mixing using a vortex 

between each cycle. After the third cycle, samples were centrifuged at 8,000 rpm for 30 min at -

20 ºC and the supernatants were collected and stored at -80 ºC. The extracted pellet was then 

resuspended in another 2.5 ml of cold methanol/water solution (50%, v/v) and centrifuged at 

8,000 rpm for 30 min at -20 ºC. The supernatant was collected and pooled with the first one and 

kept at -80 ºC and, afterwards lyophilized. 

 

5.3.2.2. DERIVATIZATION AND GC-MS ANALYSIS 

For GC-MS analysis samples were further treated as follows. The dried intracellular metabolite 

extracts were resuspended in 200 µL of sodium hydroxide (1 M) and derivatized using the methyl 

chloroformate (MCF) method (Villas-Boas SG et al., 2003). The derivatized samples were then 

analyzed with a GC-MS systems - GC7890 coupled to MSD5975 (Agilent Technologies, Inc., 

Santa Clara, CA, USA) equipped with a ZB-1701 GC capillary column, 30m x 250mm id x 0.15 

mm (film thickness) with a 5 m guard column (Phenomenex, Inc., Torrance, CA, USA) at a 

constant flow rate of 1.0 mL/min of helium. The oven temperature was initially held at 45ºC for 

2 min. Thereafter the temperature is raised with a gradient of 9ºC/min until 180ºC. This 

temperature (180ºC) is held for 5 min. Then the temperature is raised with a gradient of 

40ºC/min until 220ºC. The temperature is again held for 5 min. Then the temperature is raised 

with a gradient of 40ºC/min until 240ºC and this temperature is held for 11.5 min. Finally the 

temperature is raised with a gradient of 40ºC/min until 280ºC, which is held for 2 min. The 

temperature of the inlet is 290ºC, the interface temperature 250ºC, and the quadrupole 

temperature 200ºC. Sample (1 µL) was injected onto the column under pulsed splitless mode 

(1.8 bars until 1 min, 20mL/min split flow after 1.01min) and the detector was set with a scan 

interval of 1.47 seconds and m/z range of 38-650. The mass fragmentation spectrum was 

analysed in The Automated Mass Spectral Deconvolution and Identification System (AMDIS) 
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(Stein SE, 1999) to identify the compounds through matching with a library constructed by using 

analytical chemical standards. 

 

5.3.3. STATISTICAL ANALYSIS 

The mass fragmentation spectrum was analysed using the Automated Mass Spectral 

Deconvolution and Identification System (AMDIS) (Stein SE, 1999) to identify the compounds 

through matching with a library constructed using analytical chemical standards. The peak 

intensity values from the AMDIS analysis were refined and corrected and normalized for the 

recovery of the internal standard (D-4-alanine) and the corresponding biomass concentration. 

Values were then transformed into Z-scores, by subtracting the average peak intensity 

corresponding to a metabolite k among all the n samples (including replicates) in the set of 

experiments, from the peak intensity value (IMK) of that metabolite in one sample, and dividing that 

result by the standard deviation (SDM1..Mn) of all measured n peak intensities, according to: 

( )
nMkMk

n

SD
ImeanI

kscoreZ MkMkMk

...1

1...,
−

=−  

Data analysis was carried out in MATLAB 7.1 (Mathworks, USA). Normality of the data and 

homogeneity of variance were studied using Kolmogorov-Smirnov (KS) and Levene’s tests, 

respectively. One-way ANOVA was applied to compare the means of the relative metabolite 

concentrations, where each sample was representing a particular experimental condition: 

(A) Chemostat cultivation of E. coli W3110 (∆relA) grown at a dilution rate of 0.2 h-1; 

(B) Chemostat cultivation of E. coli W3110 (∆relA)/pTRC-AcGFP1 grown at a dilution rate of 

0.2 h-1; 

(C) Chemostat cultivation of E. coli W3110 (∆relA)/pTRC-AcGFP1 grown at a dilution rate of 

0.2 h-1 and IPTG-induced to express AcGFP1. 
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5.4. RESULTS 

5.4.1. PHYSIOLOGICAL PARAMETERS 

Three aerobic glucose-limited continuous steady-state cultures were performed with the E. coli 

W3110 (∆relA) strain and the plasmid-bearing E. coli W3110 (∆relA)/pTRC-AcGFP1 strain. 

Initially, cells were grown in a batch mode and then the culture was fed at the rate of 300 mL.h-1 

to achieve the desired dilution rate of 0.2 h-1. When the cultivation system reached a steady state 

(i.e., when OD600 becomes constant) samples were collected to determine the cell dry weight 

(CDW), AcGFP1 protein, pTRC-AcGFP1 plasmid, glucose and acetate concentrations. Steady-state 

parameters determined for each culture are summarized in Table 5.1. 

 

Table 5.1. Comparison of the physiological parameters of E. coli W3110 (∆relA) strains 

during glucose-limited chemostats using a dilution rate of 0.2h-1.  

The three E. coli cultures are identified as: (A) W3110 (∆relA) host cells; (B) W3110 (∆relA) harbouring the pTRC-

AcGFP1 plasmid; and W3110 (∆relA)/pTRC-AcGFP1 induced with IPTG 1.5 mM. 

 Strains 

 
 W3110 (∆relA)/pTCR-AcGFP1 

(A) W3110 (∆relA) (B) Non IPTG-induced (C) IPTG-induced 

Dilution rate (h-1) 0.2 0.2 0.2 

CDW (g.L-1) 3.33±0.45 2.69±0.46 2.29±0.39 

YX/G (g.g-1) 0.67±0.30 0.54±0.19 0.46±0.12 

Glucose (g.L-1) 0.023±0.01 0.031±0.0093 0.059±0.011 

qG (g.g-1.h-1) 0.3±0.13 0.37±0.13 0.43±0.11 

AcGFP1 (g.L-1) - - 0.18±0.02 

qAcGFP1 (×10-6) (g.g-1.h-1) - - 15.78±3.21 

Plasmid (mg.L-1) - 21.7±0.28 38.4±1.67 

Acetate (g.L-1) 0.020 0.18±0.0077 0.52±0.024 

qA (×10-3) (g.g-1.h-1) 1.08±0.15 13.15±2.31 45.86±8.14 

CDW, cell dry weight; qG, specific glucose consumption rate (the maintenance coefficient was not considered); qA, 

specific acetate consumption rate; qAcGFP1, specific AcGFP1 production rate; YX/G, mass yield coefficient of 

biomass/glucose. 
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It was observed that:  

− biomass concentration of E. coli host cells is higher than of the plasmid-bearing strain 

(W3110 (∆relA)/pTCR-AcGFP1);  

− the specific glucose consumption rate (qG) increased for plasmid-bearing and producing 

cells;  

− acetate accumulation increased approximately fifty times in the AcGFP1 producing 

culture;  

− intracellular concentration of the pAcGFP1 is higher when cells are induced to express 

the recombinant protein. 

 

5.4.2. EFFECTS OF PLASMID AND ACGFP1 BIOSYNTHESIS ON THE E. 

COLI METABOLISM 

To analyse effects of plasmid DNA maintenance and recombinant protein production on the 

metabolism of E. coli, intracellular metabolites were extracted and analysed by GC-MS. In the 

present study, fatty acids and the main amino acids and their precursors generated in the central 

carbon metabolism were measured in order to evaluate the main metabolic changes imposed by 

the recombinant bioprocess in the host cell. Metabolite profiles corresponding to each chemostat 

culture are depicted in Figure 5.1.  
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Figure 5.1. Comparison of metabolite profiles during chemostat cultures with a dilution rate 

of 0.2h-1 with the following E. coli strains: (A) W3110 (∆relA) host cells; (B) W3110 (∆relA) 

harbouring the pTRC-AcGFP1 plasmid; and (C) W3110 (∆relA)/pTRC-AcGFP1 induced with 

IPTG 1.5 mM.  

Metabolite relative concentrations were normalized into Z-scores and are shown as the average of three 

measurements with the standard deviations. Metabolites that presented significant changes (p-values≤0.05) between 

experiments A/B and B/C are indicated with (∗) and (¥), respectively. Abbreviations: Fatty acids – 14mpdca, 14-

methylpentadecanoate; dca, decanoate; hxa, hexanoate; ocdca, octadecanoate; ocdcea, octadecenoate; octa, 

octanoate; pdca, pentadecanoate; ttdca, tetradecanoate. Amino acids – asp, aspartate; glu, glutamate; gly, glycine; 

ile, isoleucine; leu, leucine; phe, phenylalanine; pro, proline; val, valine. Others – acon-C, cis-aconitate; bnz, 

benzoate; cit, citrate; fum, fumarate; lac, lactate; succ, succinate. 



156 Mapping metabolic-induced changes in recombinant E. coli 

 

To investigate the differences between the three experiments (A, B and C), a one-way ANOVA 

analysis was performed (Figure 5.2). Normality (KS test) and homogeneity of variances (Levene’s 

test) were tested before using ANOVA and both tests returned that the null hypotheses (i.e., data 

come from normal distributions with the same variance) cannot be rejected at the 5% significance 

level (p-values were 0.37 and 0.17, respectively). 

 

 

Figure 5.2. One-way ANOVA analysis (p-value of 5.2E-13). 

 

It was found that metabolic profiles from cells harbouring the recombinant plasmid (B and C) and 

host cells (A) show a significant difference (p-value less than 0.05). However, differences between 

the IPTG induced culture (C) and non-induced were not significant. It can be inferred that plasmid 

burden overlaps the extent of the metabolic load imposed by the expression of the recombinant 

protein. To further investigate these metabolic changes, the intracellular metabolite pools 

produced in culture A were compared to culture B to evaluate the impact of the plasmid 

maintenance in the host cell, and metabolite pools from culture B were compared to culture C to 

determine the solely impact of the expression of the recombinant protein in the cellular 

metabolism.  
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Figure 5.3. Metabolic map illustrating the metabolic changes between the metabolite 

profiles analysed by GC/MS.  

Alterations in the intracellular metabolite concentrations are depicted by a green arrow pointed up, if the ratio of 

metabolite levels of culture B to culture A (first arrow) and culture C to culture B (second arrow) are superior to 1, 

and a red arrow pointed down, if ratios are less than 1. Metabolites that presented significant changes (p-

values≤0.05) between experiments A/B and B/C are indicated with (∗) and (¥), respectively. Acetate was also 

represented as an extracellular metabolite (acex). Abbreviations: g6p, glucose-6-phosphate; 3pg, 3-phospho-D-

glycerate; pep, phosphoenolpyruvate; pyr, pyruvate; accoa, acetyl-CoA; ac, acetate; icit, isocitrate; akg, α-

ketoglutarate; glx, glyoxylate; mal-L, L-malate; oaa, oxaloacetate. For other abbreviations see Figure 5.1. 

 

As illustrated in Figure 5.3, most of the metabolite pools were significantly decreased for the cells 

harbouring the pTRC-AcGFP1 plasmid, except for unsaturated long-chain fatty acids. However, 

when comparing metabolite pools from cultures B and C, it appears that some metabolites 

presented higher levels when cells are induced to express the recombinant protein. Though these 

changes were not significant (p-values higher than 0.05), which poses some uncertainties 
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regarding these variations, differences in the amino acid pools provide important information 

about the metabolic load associated with the protein biosynthetic process. As shown, only two of 

the detected amino acids (aspartate and glycine) presented lower levels when cells were 

producing the recombinant protein, which may indicate that amino acid pools are increased to 

balance the additional biosynthetic requirements. Fatty acids levels were also significantly 

changed when cells were induced with IPTG. For example, octanoate and pentadecanoate 

presented significant lower levels in the protein producing culture. A detailed inspection of Figure 

5.1 reveals that, although not significant, most fatty acids presented lower levels during 

recombinant protein production. 

 

5.5. DISCUSSION 

Continuous culture in a chemostat is a practical way to study the state of host cells during the 

production of recombinant proteins under defined growth conditions. The physiological effects of 

the plasmid burden on the metabolism and the maximum biosynthetic capacity of the host cells 

can be evaluated during a continuous growth for many generations, which present some 

advantages compared to other cultivation modes (Maresova H et al., 2001; Zhang WH et al., 

2004).  

In the present investigation, the estimated physiological parameters, such as qG, qA and qAcGFP1, 

revealed that culture performance by cells harbouring the pAcGFP1 plasmid is quite different 

from the chemostat culture with host cells. Besides the higher qG, the accumulation of the 

metabolic by-product acetate in the plasmid-bearing cultures was significant. It has been 

described (Holms H, 1996; Majewski RA and Domach MM, 1990) that when increasing the 

consumption of glucose, carbon flux through the glycolysis pathway exceeds the TCA capabilities 

and acetyl-CoA is over-accumulated, resulting in the excretion of acetate. Indeed, it is expected 

that to cope with the additional biosynthetic requirements, cells enhance their ability to uptake 

the carbon source (e.g. glucose). As a consequence, glucose overflow leads to the accumulation 

of certain metabolic by-products, like acetate, that are afterwards excreted to the extracellular 

medium. This not only represents a diversion of carbon that might otherwise have been used for 

biomass or recombinant protein synthesis, but, at certain levels a toxicity agent for cells. 
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Reduction of the growth yields and protein expression has been indicated as a result of this 

metabolic state. In fact, biomass concentration decreased from 3.33±0.45 g.L-1 in the host E. coli 

culture (A) to 2.69±0.46 g.L-1 and 2.29±0.39 g.L-1 in non-induced (B) and IPTG-induced (C) 

plasmid-bearing chemostat cultures, respectively. Moreover, acetate levels in the IPTG-induced 

culture reached toxic levels (0.52±0.02 g.L-1), which may be deleterious for cells. The specific 

acetate production rate (qA) increased almost 45 times compared to the culture with host cells.  

This metabolic imbalance was also observed in the metabolite profiles of plasmid-bearing 

chemostat cultures. Metabolic profiling demonstrated that most metabolites from the host cell 

culture (A) presented significantly different levels from those analysed in the plasmid-bearing 

cultures (B and C). These differences were stronger in the amino acids pool, where aspartate, 

isoleucine, leucine, phenylalanine, proline and valine presented lower levels for the plasmid-

bearing culture (between 20-70% less). It seems that either amino acid biosynthesis decreased, 

or the drainage of metabolic resources for plasmid maintenance was superior to their synthesis. 

Plasmids are non-essential DNA molecules, which require additional intracellular resources and 

energy to be maintained in host cells, including for DNA replication and expression of resistance 

gene products (e.g. proteins encoded by an antibiotic resistance marker gene). Several studies 

(Flores S et al., 2004; Ozkan P et al., 2005; Wang ZJ et al., 2006) indicate that the presence of 

plasmids significantly influences various metabolic pathways in the host cells, e.g. glycolysis and 

the pentose phosphate (PP) pathway. On another study, however, TCA enzymatic activities at a 

dilution rate of 0.2 h-1 did not change significantly between plasmid-bearing and non-bearing 

cultures (Wang ZJ et al., 2006). Nevertheless, in the present experiments, the level of TCA 

intermediaries in cultures harbouring the pAcGFP1 plasmid decreased, and more significantly for 

citrate, cis-aconitate and succinate. This might be associated with the drainage of amino acid 

precursors to fulfil the extra requirement for the expression of resistance gene products, which 

are not completely replenished by anaplerotic reactions.  

By combining metabolic flux analyses and DNA microarrays, another study found that the 

phosphotransferase system for glucose uptake and glycolytic and PP pathway genes were up-

regulated in a plasmid-bearing culture when compared with host cells (Wang ZJ et al., 2006). 

These pathways are involved in the generation of NADPH for biosynthetic pathways, recruiting 

essential metabolites for nucleic acids, amino acids and vitamins, and the generation of 
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ingredients of the cell lipopolysaccharide layer (Wang ZJ et al., 2006). Therefore, to supply cells 

for the additional biosynthetic processes, metabolic fluxes through these pathways are probably 

up-regulated. The increased carbon uptake is channelled to the glycolysis and PP pathway and, 

although no experimental data was obtained in our study to confirm this, metabolome data 

indicate that plasmid-induced changes up-regulate certain metabolic enzymes in recombinant 

cells, which could in turn lead to the atypical increase of flux in some pathways. As the glycolytic 

activity increases, the TCA capacity to consume the excess of acetyl-CoA is insufficient and 

acetate is accumulated as a by-product. This is in a good agreement with the experimental 

results that confirmed the increase in qG and qA for plasmid-bearing cultures and the 

simultaneous failure to increase the level of TCA metabolites, most likely because TCA 

intermediates are being consumed for the synthesis of amino acids. 

It is evident that plasmid burden causes the shortage of certain biosynthetic products, namely 

amino acids, generating a metabolic imbalance that might also be responsible for the 

accumulation of some by-products. Yet, it was expected that the metabolism of the bacteria 

would be even more largely affected by the expression of the AcGFP1 under the control of a high-

level expression promoter. The plasmid concentration almost doubled compared with the non-

induced culture, which would represent an increase in the amino acids required for the 

production of the Lac repressor and β-lactamase enzyme, and nucleotides and energy for the 

plasmid DNA replication. In fact, besides cellular resources needed for the synthesis of AcGFP1, 

plasmid maintenance would increase the metabolic load in the IPTG-induced culture. However, 

the observed metabolite profiles did not reflect this phenomenon and only three metabolites, 

benzoate, octanoate and pentadecanoate presented significant different levels between the ITPG-

induced and non-induced cultures. Most fatty acids were characterized by a small decrease when 

cells were induced to produce the recombinant protein, but there are no indications that fatty 

acids biosynthesis is affected during recombinant processes. The increase in some amino acids 

and TCA metabolites levels were not significant, and thus, it is suggested that the increase in qG 

was a consequence of metabolic requisites to replenish precursors for plasmid replication and 

expression, and small differences in metabolite levels resulted from the metabolic unbalance 

caused by these recombinant processes. This study demonstrates that plasmid burden is of 
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major importance when expressing foreign proteins in bacterial cells and, thus strategies to 

enhance recombinant cultivations must consider this as critical. 
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5.7. APPENDIX A 

Relative concentrations of metabolites measured by GC/MS in triplicate samples from chemostat 

cultures: (A) W3110 (∆relA) host cells; (B) W3110 (∆relA) harbouring the pTRC-AcGFP1 plasmid; 

and (C) W3110 (∆relA)/pTRC-AcGFP1 induced with IPTG 1.5 mM. 

 

  

A1 A2 A3 B1 B2 B3 C1 C2 C3
14mpdca 0.186429 0.185507 0.136943 5.283406 5.47573 5.255288 2.041313 1.687848 2.564628
acon-C 0.038408 0.030225 0.025485 0.010684 0.011733 0.00967 0.01763 0.011852 0.023088
asp 0.565733 0.557056 0.514258 0.368158 0.377643 0.319164 0.389346 0.161777 0.418649
bnz 0.114883 0.070905 0.085612 0.055245 0.047175 0.044189 0.026036 0.028837 0.025808
cit 0.337218 0.251821 0.23983 0 0 0 0.146447 0.078008 0.211557
dca 0.102219 0.100025 0.115247 0.124137 0.073598 0.061794 0.027894 0.034146 0.034248
fum 0.301198 0.169623 0.157737 0.060372 0.032003 0.03859 0.021242 0.013923 0.014997
glu 0.736768 0.489133 0.414076 0.188132 0.215817 0.187001 0.334468 0.167956 0.372613
gly 0.360081 0.000339 0.271089 0.200151 0.205155 0.165167 0.190983 0.140309 0.194851
hxa 0.661241 0.571264 0.718048 0.472048 0.436159 0.493936 0.504508 0.564231 0.465243
ile 0.126371 0.153941 0.142446 0.117106 0.087624 0.146101 0.143367 0.081522 0.134098
lac 1.64279 0.925121 0.954811 0.693951 0.578771 0.61849 0.610835 0.676584 0.495655
leu 0.264534 0.298567 0.297116 0.216668 0.191265 0.250048 0.282915 0.17038 0.25006
ocdca 0.289862 0.279734 0.283674 2.376452 2.457453 2.250954 2.364764 2.189778 2.956353
ocdcea 1.313383 1.174697 1.321075 0.625673 0.640545 0.658477 0.90643 0.688921 1.421259
octa 0.888126 0.680638 0.705869 0.73251 0.684583 0.649707 0.533402 0.520965 0.522719
pdca 0.182145 0.084711 0.200047 0.178676 0.193723 0.191308 0.035338 0.027714 0.045461
phe 0.068627 0.081695 0.075779 0.038283 0.042032 0.048652 0.174938 0.102329 0.199001
pro 0.353901 0.312707 0.274698 0.111703 0.099403 0.108202 0.141432 0.098132 0.124664
succ 0.877927 0.668273 0.448312 0.140408 0.089389 0.089135 0.251111 0.247176 0.436227
ttdca 0.676711 0.902067 0.711598 0.780771 0.822851 0.735005 0.430089 0.278018 0.852923
val 0.341881 0.3304 0.32463 0.226384 0.167964 0.18704 0.290087 0.18373 0.284151
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6.1 ABSTRACT 

Metabolic footprinting has become a valuable analytical approach for 

the characterization of phenotypes and the distinction of specific 

metabolic states resulting from environmental and/or genetic 

alterations. The metabolic impact of heterologous protein production in 

Escherichia coli cells is of particular interest, since there are numerous 

cellular stresses triggered during this process that limit the overall 

productivity. Because the knowledge on the metabolic responses in 

recombinant bioprocesses is still scarce, metabolic footprinting can 

provide relevant information on the intrinsic metabolic adjustments. 

Thus, the metabolic footprints generated by Escherichia coli W3110 

and the ∆relA mutant strain during recombinant fed-batch 

fermentations at different experimental conditions, were measured and 

interpreted. The IPTG-induction of the heterologous protein expression 

resulted in the rapid accumulation of inhibitors of the glyoxylate shunt 

in the culture broth, suggesting the clearance of this anaplerotic route 

to replenish the TCA intermediaries withdrawn for the additional 

formation of heterologous protein. Nutritional shifts were also critical in 

the recombinant cellular metabolism, indicating that cells employ 

diverse strategies to counteract imbalances in the cellular metabolism, 

including the secretion of certain metabolites that are, most likely, used 

as a metabolic relief to survival processes.  
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6.2 INTRODUCTION 

The optimization of bioprocesses using recombinant microorganisms is still restrained by the 

lack of information available on the metabolic responses induced by various stress conditions 

(Gnoth S et al., 2008). Significant knowledge could be gained from a comprehensive analysis 

of the metabolic footprint (i.e. extracellular metabolite profiling) by inspecting key metabolic 

changes and understanding their relation with environmental conditions (Allen J et al., 2003; 

Allen J et al., 2004; Kell DB et al., 2005; Kell DB et al., 2003; Pope GA et al., 2007; Villas-

Boas SG et al., 2006; Villas-Boas SG et al., 2008).  

Some work has been published addressing various metabolic responses during the 

production of heterologous proteins in E. coli (Chou CP, 2007). Experimental studies showed 

that the host cell metabolism undergoes a severe metabolic burden, resulting in rapid 

exhaustion of essential precursors and cellular energy (Aldor IS et al., 2005). Typically, 

strong expression systems are employed to assure the production of large amounts of 

heterologous proteins by the host, which uses a large quantity of metabolic and energy 

resources in order to maintain and express the foreign DNA (Seo JH et al., 2003). 

Heterologous protein production is also believed to diminish flow in the TCA cycle through 

the withdrawal of intermediates that serve as precursors for amino acid biosynthesis (Jurgen 

B et al., 2000). Moreover, the difference usually observed in amino acid composition of 

foreign proteins and the average composition of the host proteins contributes to this 

metabolic imbalance (Bentley WE et al., 1990; Bonomo J and Gill RT, 2005; Glick BR, 1995; 

Harcum SW, 2002). 

Stringent response has been associated with the stress phenomenon caused by the depletion 

of certain metabolic resources, namely amino acids (Harcum SW and Bentley WE, 1999). 

The increased level of free tRNA molecules, due to the lack of amino acids, triggers this 

stress response that is characterized by the arrest of the ribosomal translation process and 

the rapid RelA-mediated accumulation of ppGpp (Jain V et al., 2006). This nucleotide has 

been found (Chatterji D et al., 1998; Toulokhonov II et al., 2001; Wu J and Xie J, 2009) to 

bind directly to the RNA polymerase, adjusting the transcriptional activity from the expression 

of genes required for rapid growth, to stress-related genes and amino acid biosynthetic 
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operons (Durfee T et al., 2008; Magnusson LU et al., 2005; Roberts JW, 2009; Srivatsan A 

and Wang JD, 2008). The regulatory mechanisms of this ppGpp-induced stress response are 

known in some detail (Artsimovitch I et al., 2004; Chatterji D and Ojha AK, 2001; Jishage M 

et al., 2002), but the impact of this response on the cellular metabolism has been less 

studied. Knowledge on how these responses take place and how to dodge them is of great 

importance, since E. coli has become one of the most used microbial systems to produce 

heterologous proteins. 

Here, we aimed at investigate the physiological and metabolic changes in E. coli cultures 

during the production of heterologous proteins by performing a metabolic footprinting 

analysis. Furthermore, the focus of the study was not only to evaluate the changes of the 

extracellular metabolite pools during heterologous protein production, but also to assess the 

effect of removing a gene closely related to the initiation of the stringent response (relA) on 

the cellular behaviour. Thus, the W3110 and the isogenic mutant (ΔrelA) E. coli strains were 

grown and induced to produce a heterologous protein (AcGFP1) at different nutritional 

conditions in a controlled fed-batch mode.  

 

6.3 EXPERIMENTAL PROCEDURES 

6.3.1 MICROBIAL STRAINS 

Escherichia coli strains W3110 (F-, LAM-, IN[rrnD-rrnE]1, rph-1) and the isogenic mutant 

containing the ΔrelA251::kan allele (obtained from M. Cashel, National Institute of Health, 

USA) were transformed with the cloned pTRC-HisA-AcGFP1 plasmid encoding the expression 

of the recombinant AcGFP1 protein. The gfp gene was amplified from the pAcGFP1 plasmid 

(Clontech, Takara Bio Company, USA) that encodes for the green fluorescent protein 

AcGFP1, a derivative of AcGFP from Aequorea coerulescens. The PCR product was then 

cloned into the pTRC-HisA vector (Invitrogen Corporation and Applied Biosystems Inc, USA) 

that contains a trc promoter for high-level expression of the fusion protein and an ampicillin 

resistance gene for propagation and selection in E. coli. 
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6.3.2 GROWTH CONDITIONS 

Precultures were prepared in 500-mL shaking flasks filled with 300 mL of minimal medium 

consisting of 5 g.kg-1 of glucose, 6 g.kg-1 of Na2HPO4, 3 g.kg-1 of KH2PO4, 0.5 g.kg-1 of NaCl, 1 

g.kg-1 of NH4Cl, 0.015 g.kg-1 of CaCl2, 0.12 g.kg-1 of MgSO4.7H2O, 0.34 g.kg-1 of thiamine, 2 

mL.kg-1 of trace-element solution (described elsewhere(Rocha I and Ferreira EC, 2002)) and 

2 mL.kg-1 of vitamins solution (described elsewhere(Rocha I and Ferreira EC, 2002)). The 

minimal medium containing additional 20 mg.kg-1 of L-isoleucine and 100 mg kg-1 of 

ampicillin was used to grow the recombinant wild-type strain, while this same medium with 

further addition of 20 mg.kg-1 L-valine and 25 mg.kg-1 kanamycin was used to grow the ΔrelA 

mutant strain. Cells were thereafter washed and transferred to a 5-L fermenter (Biostat MD, 

Sartorius) with a working volume of 2 L containing the same minimal medium, except 

glucose. The fed-batch operation was started immediately after inoculation at 37?C, pH 7 

and dissolved oxygen (DO) above 30%. The feed media used contained 50 g.kg-1 of glucose, 

10 g.kg-1 of NH4Cl, 4 g.kg-1 of MgSO4.7H2O and the additional requirements for amino acids 

and antibiotics as described before. The induction of AcGFP1 production was performed with 

1.5 mM IPTG (isopropyl b-D-thiogalactoside) when the microbial culture reached an OD600nm of 

2.3. Fermentation conditions were monitored and controlled via a computer control system. 

A closed-loop feeding control algorithm was employed to maintain a constant specific growth 

rate (µ) in the fed-batch culture (Rocha I et al., 2008). The algorithm is based on a Monod 

kinetic model using glucose as the only growth-limiting substrate. The model combines terms 

for cell growth (X.µ), glucose consumption (YX/S.Sf) and the online measurement of culture 

medium weight (WR) to control the feeding profile, represented by: 

f
S

X

R

SY
WXF
.
..µ

=

 

The biomass concentration (X) was initially measured by optical density and estimated at 

each acquisition time (every 3 minutes). The predicted growth yields on glucose (YX/S) were 

set to 0.35 and 0.2, when the specific growth rates were set to 0.1 and 0.2 h-1, respectively. 

The fed-batch experiments were at first conducted at µ = 0.1 h-1, corresponding to the pre-

induction (A) and the post-induction (B) phases. Afterwards µ was changed to 0.2 h-1, which 
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was kept during almost 4 hours, corresponding to a nutritional upshift phase (phase C). 

When the feeding was ceased (glucose limitation phase or phase D), growth was followed 

until the OD600nm dropped. 

 

6.3.3 SAMPLING AND ANALYTICAL PROCEDURES 

Cell growth was monitored by measuring optical density (OD600nm) and cell dry weight. In order 

to determine cell dry weight, 10 mL of broth were centrifuged at 10000 g for 20 min at 4ºC, 

washed twice with deionised water and dried at 105 °C to constant weight. The expression 

level of AcGFP1 was determined by fluorescence measurements at a Jasco FP-6200 

spectrofluorometer with excitation and emission wavelengths of 475 and 505 nm, 

respectively, a bandwidth of 10 nm and a high sensitivity response in 0.1 seconds. His-Tag 

purification of the AcGFP1 was performed with HiTrap columns (GE Healthcare Bio-Sciences 

AB, Sweden) and the concentration was determined by the Bradford method using BSA as 

standard. For further analysis, culture samples were centrifuged (15 min, 3000 rpm, 4°C) 

and the resulting supernatants were immediately filtered and collected. Afterwards the 

samples were stored at -20°C for subsequent analysis and lyophilisation. Glucose and 

acetate were analysed by HPLC with a refractive index detector (Jasco, Canada) and a 

Chrompack organic acids column (Varian, USA) at 35ºC. The mobile phase consisted in a 

0.01N solution of H2SO4 at a flow rate of 0.6 mL/min.  

 

6.3.3.1 Derivatization and GC-MS analysis 

One millilitre of the extracellular samples was lyophilized in triplicate. The lyophilized 

samples were then derivatized using the methyl chloroformate (MCF) method (Villas-Boas SG 

et al., 2003) and analyzed with a GC-MS system - GC7890 coupled to an MSD5975 - (Agilent 

Technologies, Inc., Santa Clara, CA, USA) equipped with a ZB-1701 GC capillary column, 30 

m x 250 mm id x 0.15 mm (film thickness) with 5 m guard column (Phenomenex, Inc., 

Torrance, CA, USA), at a constant flow rate of 1.0 mL/min of helium. Samples (1 µL) were 

injected onto the column under a pulsed splitless mode (1.8 bars until 1 min, 2 0mL/min 
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split flow after 1.01 min) and the detector was set with a scan interval of 1.47 seconds and 

m/z range of 38-650. The oven temperature was initially held at 45ºC for 2 minutes. 

Thereafter, the temperature was raised with a gradient of 9ºC/min until 180ºC and held at 

this value for 5 minutes. The temperature was raised again at a gradient of 40ºC/min in 

three steps: until 220ºC (held for 5 min), 240ºC (held for 11.5 min) and finally 280ºC (held 

for 2 min). The temperature of the inlet was 290ºC, the interface temperature 250ºC, and 

the quadrupole temperature 200ºC.  

 

6.3.4 DATA PROCESSING AND STATISTICAL ANALYSIS 

The mass fragmentation spectrum was analysed using the Automated Mass Spectral 

Deconvolution and Identification System (AMDIS) (Stein SE, 1999) to identify the compounds 

through matching with a library constructed by using analytical chemical standards. The 

peak intensity values from the AMDIS analysis were refined and corrected for the recovery of 

the internal standard (D-4-alanine) and normalized with the corresponding biomass 

concentration. The corrected and normalized peak intensity values were thereafter 

transformed into Z-scores for each dataset, which corresponds to a single fermentation. Z-

score values were calculated by subtracting the average peak intensity among all the n 

samples (including replicates) of a fermentation from the peak intensity values (IMK) 

corresponding to each metabolite k, and dividing that result by the standard deviation 

(SDM1..Mn) of all measured n peak intensities, according to: 

( )
nMkMk
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=−  

Further data processing and statistical analysis were performed with MATLAB (version 

2009b, The Mathworks, Inc) and MultiExperiment Viewer (MeV) (Saeed AI et al., 2003). 

Hierarchical clustering (HCL) was used to cluster the samples and metabolites based on the 

Pearson correlation metrics and principal component analysis (PCA) was used to visualize 

whether samples could be discriminated based on their metabolic footprints. Component 

coefficients were computed to expose the metabolites that contributed the most to 
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discriminate between sample clusters determined by the HCL analysis, i.e to characterize the 

metabolic shifts, sample clusters defined by HCL were used to determine which metabolites 

suffered the highest alterations. Pearson's correlation coefficients (r) were computed to 

evaluate the degree of association between the metabolite profiles produced by the W3110 

and ∆relA E. coli cultures. p-values associated with each Pearson correlation coefficient was 

calculated using a Student's t distribution to test the null hypothesis (H0) of no significant 

correlation between the metabolite profiles from the two cultures, against the alternative 

hypothesis (H1) that establishes a significant correlation between the profiles. The p-value for 

Pearson's correlation coefficient is based on the test statistic, s, with n-2 degrees of 

freedom: 

21
2

r
nrs
−

−×
=  

 

6.4 RESULTS 

6.4.1 FED-BATCH FERMENTATIONS OF W3110 AND ΔRELA E. COLI 

CELLS 

To elucidate the physiological responses of the W3110 and ΔrelA mutant E. coli strains 

during recombinant fed-batch fermentation, cells were grown aerobically with a closed-loop 

feeding control to maintain a quasi-steady state growth. Fed-batch cultures were started with 

a low specific growth rate setpoint (between 0.09 and 0.16 h-1) and growth characteristics 

were determined prior and after IPTG induction (phases A and B, respectively). Then, the 

glucose feeding rate was increased to maintain the specific growth rate around 0.2 h-1 (phase 

C) to evaluate the impact of nutritional upshift on the E. coli cultures during heterologous 

protein production. Nutrient limitation by ceasing the glucose feeding (phase D) was finally 

examined in these E. coli cultures until growth arrested. 
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Figure 6.1. Growth curves for the W3110 [pTRC-His-AcGFP1] E. coli and the isogenic 

derivative ∆relA251::kan strains cultured in fed-batch fermentations with closed-loop 

feeding control.  

Phases: A- prior to induction; B- after IPTG induction; C- after growth upshift; and D- after nutrient downshift. 

 

In Figure 6.1, biomass, glucose, acetate and AcGFP1 concentrations are depicted for each 

fed-batch culture. Table 6.1 shows the growth parameters determined at each experimental 

condition. As demonstrated, prior to IPTG induction the specific growth rates were similar for 

both strains (around 0.16 h-1), but after IPTG induction the growth of the wild-type strain was 

significantly reduced (0.092 h-1) while the ΔrelA mutant had a specific growth rate of 0.13 h-1. 

In contrast, the AcGFP1 production increased after IPTG induction to a maximum of around 

7×10-3 g.g-1DW.h-1 for both cultures. Upon the nutritional upshift (phase C), both strains 

increased their growth rates and the AcGFP1 production rates. The maximum AcGFP1 

production was determined to be close to 20×10-3 g.g-1DW.h-1 in both cultures. At these 

conditions acetate accumulation was detected in both cultures at rates below 90×10-3 g.g-

1DW.h-1. When the glucose feeding was stopped (phase D) acetate was consumed and growth 

was arrested. However, AcGFP1 production continued until the carbon sources (i.e. glucose 

and acetate) were completely depleted from the medium. 
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Table 6.1. Growth parameters of the fed-batch cultures of the W3110 and ∆relA E. coli 

strains. 

 

Ph
as

es
 

Specific growth 
rate set point  

(h-1) 

Expected 
biomass yield  

(gDW.g-

1substrate) 

Specific rates (g.g-1DW.h-1) 

Biomass 
yield  
(gDW.g-

1substrate) 

µ YX/S μ 
qAcGFP1 
(×10-3) 

qGluc qAc YX/S 

W
31

10
 s

tr
ai

n A 0.1 0.35 0.16±0.020 0.60±0.12 0.30±0.067 - 0.59±0.038 

B 0.1 0.35 0.092±0.023 6.8±4.5 0.29±0.052 - 0.36±0.065 

C 0.2 0.2 0.17±0.023 19±6.0 0.64±0.11 0.089±0.0074 0.26±0.068 

D - - - 5.3±5.8 0.24±0.043 -0.49±0.27 0.31±0.069a
 

Δr
el

A 
m

ut
an

t 
st

ra
in

 

A 0.1 0.35 0.16±0.019 0.60±0.45 0.21±0.016 - 0.62±0.059 

B 0.1 0.35 0.13±0.026 6.9±3.8 0.25±0.036 - 0.48±0.022 

C 0.2 0.2 0.20±0.030 17±1.8 0.56±0.089 0.084±0.0072 0.36±0.010 

D - - - 14±2.1 0.47±0.14 -0.92±0.23 0.04±0.049a
 

 

Specific growth rates (μ), AcGFP1 production (qAcGFP1), glucose uptake (qGluc) and acetate formation (qAc).  
aThese parameters were calculated for biomass growth under acetate consumption. 

 

6.4.2 METABOLIC FOOTPRINT ANALYSIS 

Gas chromatography–mass spectrometry (GC-MS) has been widely used in the analysis of a 

large number of compounds such as amino acids, sugars, and organic acids. In this work, a 

GC-MS-based analytical plataform established by Villas-Bôas’ group (Smart KF et al., 2010) 

was used to detect amino and nonamino organic acids secreted by E. coli cells during fed-

batch cultures. Samples harvested at different time points in the fermentation growth phases 

were analyzed and the relative concentrations for each detected metabolite were determined. 

Analytical data was further examined to address any changes in the metabolic footprints 

resulting from the alteration of culture conditions and to verify if the relA gene mutation could 

actually influence the metabolic behaviour of this recombinant E. coli strain.  

A wide variety of metabolites was detected in the extracellular medium, including fatty, amino 

and organic acids (see Figure 6.2) that ultimately resulted from the metabolic activities of 

cells at the various tested conditions. These metabolites were found to be mainly involved in 

the central carbon metabolism, including the tricarboxylic acid cycle (TCA cycle), the 

biosynthesis of amino and fatty acids as well as other energy generating metabolic reactions.  
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Figure 6.2. Schematic diagram of the E. coli metabolic map involving the metabolites 

secreted into the extracellular medium during recombinant fed-batch cultivations.  

The accumulation (or assimilation) of metabolites was evaluated along four phases: the pre-IPTG induction phase 

(A), the post-IPTG induction phase (B), the post-nutrient upshift phase (C) and the glucose limitation phase (D). 

Graphs represent the relative concentration levels of each metabolite in the metabolic footprint along the 

fermentation process for the W3110 strain (dark line) and the ΔrelA mutant (light gray line) cultures. Bold dashed 

lines connecting metabolites and biochemical reactions indicate known inhibitory effects on those reaction-

associated enzymes. Grey boxes represented in the metabolic map indicate other metabolites that participate in the 

metabolism, but were not detected in these experiments. The dashed square lists the detected metabolites with 

unknown biosynthetic reactions in E. coli.  
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However, we detected metabolites such as itaconate, malonate, 2-phenylglycine and 

benzoate that could not be linked directly to any known metabolic pathway of E. coli, 

according to public databases, such as KEGG (Kanehisa M and Goto S, 2000) and EcoCyc 

(Keseler IM et al., 2009), and genome-scale metabolic models, like iAF1260 model of E. coli 

K12 (Feist AM et al., 2007). However, these metabolites are known to participate in 

metabolic reactions of other organisms (Kim YS, 2002; Willke T and Vorlop KD, 2001). 

Therefore, resemblances between enzyme-coding genes from other organisms that produce 

these metabolites with the E. coli genome were investigated, but it was not possible to 

establish with confidence their participation as reactants/products in E. coli reactions. Yet, 

itaconate and malonate have been described as in vitro inhibitors of a key enzyme of the E. 

coli anaplerotic metabolism, i.e.; isocitrate lyase, the first enzyme of the glyoxylate cycle 

(Hoyt JC et al., 1988), indicating that at least these metabolites are likely to be produced 

during E coli growth.  

Principal components analysis (PCA) was performed to investigate whether the samples from 

different fermentation phases could be distinguished based on their metabolic footprints 

profiles and to determine the significant metabolic differences between the W3110 and ΔrelA 

mutant E. coli strains (Figure 6.3).  
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Figure 6.3. Principal component analysis (PCA) 2-dimensional projection of samples from 

fed-batch cultures of E. coli grown at different conditions based on mass fragment profiles 

of extracellular metabolites analysed by GC-MS.  

Each sample is represented by a letter that designates the cultivation phase: samples withdrawn during the pre-

induction phase [A] represented by squares, the post-induction phase [B] by circles, after growth upshift [C] by 

diamonds and after nutrient downshift [D] by triangles; and a number that indicates the sampling sequence in each 

cultivation phase. Samples from the W3110 culture are represented by opened symbols, whereas the ∆relA mutant 

culture samples are depicted by full symbols.  

 

As represented in Figure 6.2, the relative accumulation of metabolites varies during the fed-

batch experiments as the culturing conditions are changed. Some of these variations were 

different in the two recombinant cultures, indicating that the W3110 and ΔrelA mutant E. coli 

strains might respond differently to those experimental conditions. Accordingly, metabolites 

that presented similar profiles are expected to participate in metabolic activities that were 

stimulated in both E. coli cultures. Table 6.2 shows the Pearson's correlation coefficients (r) 

with p-values using a Student's t distribution for testing the hypothesis of no correlation 

against the alternative, which considers the existence of significant correlations between the 

metabolite profiles produced by the W3110 and ΔrelA mutant strains at similar experimental 

conditions.  
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Table 6.2. Correlations between metabolite profiles of two E. coli strains, W3110 and ∆relA 

mutant, during fed-batch fermentation phases: (A) pre-induction phase; (B) IPTG post-

induction phase; (C) growth upshift phase; and (D) nutrient downshift phase.  

Pearson correlation coefficients (r) are given with their p-values. Underlined p-values indicate metabolite profiles that 

are significantly correlated with a 95% confidence level. See metabolite abbreviations in Figure 6.2.  

 A B C D 
 r p-value r p-value r p-value r p-value 

2paac -0.805 0.100 0.182 0.770 0.938 0.062 0.969 0.031 
3c3hmp     (b) 0.338 0.662 
4hbz   (b) (b) 0.280 0.720 
acglu       (a) 
acon-C   0.810 0.097 0.677 0.323 0.190 0.810 
asn       0.515 0.485 
asp   (b) 0.678 0.322 -0.086 0.914 
bnz 0.349 0.565 0.748 0.811 0.860 0.140 -0.353 0.647 
cbm 0.839 0.075 0.972 0.576 0.006 0.424 -0.236 0.764 
cit (a) (a) 0.941 0.059 -0.046 0.954 
fum 0.484 0.409 -0.089 0.887 0.301 0.699 0.063 0.937 
glu   0.766 0.131 0.845 0.155 0.576 0.424 
gly     0.989 0.864 0.011 0.424 
ile       (a) 
itcon   0.983 -0.607 0.003 0.393 -0.418 0.582 
lac   (a) 0.696 0.304 0.829 0.171 
leu       0.954 
mal 

0.046 
(b)     0.120 0.880 

mlt   0.656 0.229 -0.290 0.710 -0.876 0.124 
ocdca -0.342 0.573 0.161 0.795 0.958 0.539 0.042 0.461 
ocdcea       (a) 
phe       (a) 
succ 0.710 0.179 -0.035 0.956 0.834 0.166 0.551 0.449 
ttdca       (a) 
a Undetected in the W3110 culture.  
b Undetected in the ∆relA mutant culture.  

 

PCA analysis (Figure 6.3), on the other hand, shows that the metabolic footprints from the 

pre-induction phase (phase A) are identical for both cultures, but during the production of 

heterologous protein, especially during fermentation phases B to D, these strains behaved 

very differently. When looking at the Pearson correlation coefficients it is evident that during 

fermentation phases B to D the amount of metabolites that did not present significant 

correlated profiles is large. Only a few metabolites were found to be significantly correlated to 

each other. For example, in the last phase only 2-phenylglycine (2paac) and leucine (leu) 
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profiles were significantly correlated with 95% of confidence. The other seventeen 

metabolites detected in both cultures, at these conditions, presented profiles that were not 

considered significantly correlated. In fact, some of these metabolites presented negative 

correlations, evidencing opposing tendencies regarding their accumulation in the extracellular 

medium. Moreover, some metabolites were only detected in one of the fed-batch cultures, 

which indicates that E. coli strains were at different metabolic states. For example, the 

accumulation of isoleucine (ile), phenylalanine (phe), acetyl-L-glutamate (acglu), 

octadecenoate (ocdcea) and tetradecanoate (ttdca) was only detected in the fed-batch culture 

with the ΔrelA mutant strain during the last fermentation phase.  

Although the distinct metabolic states between the ΔrelA mutant and W3110 strain may result 

from changes associated with the genetic perturbation (i.e. relA gene mutation), we cannot ignore 

the intrinsic metabolic variability that is common to most metabolic systems. As reported 

previously (Steuer R et al., 2003), intrinsic metabolic fluctuations may arise because organisms 

are never in the same exact metabolic stage, even when growing in the same conditions, and 

small differences in enzyme concentrations may also affect metabolite concentrations. Thus, to 

better understand these differences, the metabolic footprints from each culture were further 

examined by clustering analysis (Figures 6.4 and 6.5). 
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Figure 6.4. Analysis of the metabolic footprint profiles obtained from fed-batch aerobic 

culture of E. coli W3110.  

(a) Hierarchical clustering (HCL) distinguished four data classes (vertical clusters), corresponding to extracellular 

samples taken during each fermentation phase, and several metabolite clusters (horizontal clusters) that 

characterized the metabolic footprint profiles during the recombinant fed-batch cultivation. (b) Principal component 

analysis (PCA) was performed to determine the most significant metabolic changes in the extracellular medium when 

growth conditions were changed: (I) induction of the heterologous protein expression; (II) nutritional upshift; and (III) 

glucose downshift. Principal component coefficients (represented by metabolite vectors) depicted metabolites that 

contributed the most to discriminate between sample clusters defined by the vertical clusters in the HCL analysis. 
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Figure 6.5. Analysis of the metabolic footprint profiles obtained from fed-batch aerobic 

culture of E.coli ∆relA mutant strain.  

(a) Hierarchical clustering (HCL) distinguished four sample clusters (vertical clusters) and several metabolite clusters 

(horizontal clusters). Here, sample clusters did not correspond to each fermentation phases, but illustrate data 

classes that are characterized by different metabolic states defined by the metabolite footprints detected during the 

recombinant fed-batch cultivation. (b) Principal component analysis (PCA) was performed to determine the most 

significant metabolic changes in the extracellular samples classified in each sample cluster. Principal component 

coefficients (represented by metabolite vectors) depicted metabolites that contributed the most to discriminate 

between sample clusters. 
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Hierarchical clustering (HCL) was used to evaluate the metabolic footprints produced by cells 

during the fed-batch fermentations. As shown in Figure 6.4a, for W3310, samples from the 

same fermentation phase were clustered together, which indicates that those samples have 

similar metabolite profiles. Metabolite clusters evidenced the association between metabolite 

patterns generated along the fermentation process. The starting hypothesis is that 

metabolites that show a similar variation are related, a relation that conveys information 

about their proximity or function within the metabolic map. For example, the metabolite 

profiles of citrate (cit), aspartate (asp), 4-hydroxybenzoate (4hbz), cis-aconitate (acon-C) and 

itaconate (itcon) were custered at these experimental conditions, meaning that in the W3110 

E. coli culture these metabolites follow a same pattern. 

Similarly, samples from the recombinant ΔrelA mutant grouped into four major clusters 

(Figure 6.5a). However, in this particular case, samples were clustered differently. Samples 

from phase A clustered together, but samples taken immediately after IPTG induction 

(triplicate samples from B-1 to B-3) clustered together with samples from phase A. The 

following samples from phase B (i.e. samples B-4 and B-5) clustered separatedly. This 

indicates that changes in the metabolic footprint profiles were not immediate after the IPTG 

induction, as observed in the W3110 culture. Only in the late stage of this fermentation 

phase that changes in metabolite profile were detectable. Samples taken immediately after 

nutrient downshift (triplicate samples D-1 and D-2) clustered with samples from phase C, 

which indicates that these samples have metabolic profiles more similar to samples from 

phase C than from to those from phase D. This can be due to the fact that, at this sampling 

time, cells were still consuming the excess of glucose accumulated during phase C (see 

Figure 6.1). The other samples from phase D clustered separatedly. In this fed-batch culture, 

metabolites were not clustered in the same groups as observed in the W3110 E. coli culture, 

which reflect the existence of important differences in the metabolic footprints produced by 

the ΔrelA mutant cells. For example, the 4-hydroxybenzoate (4hbz) is, at these conditions, 

clustered with asparagine (asn), 2-isopropylmalate (2paac) and tetradecanoate (ttdca).  

Besides the observed differences between the metabolic footprints produced at particular 

growth conditions, differences between the set of metabolic variables that better 

characterized each phase (i.e. principal component coefficients represented by vectors) were 
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also explored. Thus, in the next subsections details are exposed on the key metabolites 

involved in the alteration of the metabolic footprints when cells were: (I) induced to express 

the heterologous protein; (II) submitted to nutritional upshift; and (III) submitted to glucose-

limited conditions. 

I - Impact of the IPTG induction on the metabolic footprint. Figure 6.4b shows that the 

metabolites with the highest positive coefficients in PC2 (malonate (mlt), itaconate (itcon) 

and cis-aconitate (acon-C)) had their levels increased after IPTG induction in the E. coli 

W3110 culture. Similarly, these metabolites also presented high positive coefficients in 

PC1of samples from ∆relA mutant culture (Figure 6.5b). In addition, itaconate and cis-

aconitate were clustered using a Pearson correlation metrics, as represented in the HCL 

diagrams (Figure 6.4a and Figure 6.5a) presenting a strong association between their levels 

along both fed-batch fermentations.  

II - The impact of the nutrient upshift on the metabolic footprint. Figure 6.4b shows 

that glycine (gly), succinate (succ), lactate (lac), citrate (cit), aspartate (asp), 4-

hydroxybenzoate (4hbz), cis-aconitate (acon-C) and itaconate (itcon) are the most significant 

variables that explain the differences projected in PC1 (positive coefficients), which are the 

differences between growth phases B and C of the E. coli W3110 culture. In fact, as 

illustrated in Figure 6.4a they were grouped in the same metabolite cluster and represent 

those that were highly accumulated after the nutrient upshift. Similarly, positive coefficients 

for PC1 and negative for PC2 of the ∆relA mutant culture (Figure 6.5b) exposed these 

metabolites as the most relevant variables characterizing the samples after nutrient upshift, 

except for the hydroxybenzote (4hbz) and itaconate (itcon).  

III – The impact of the glucose limitation on the metabolic footprint. In the W3110 E. 

coli culture (Figure 6.4b), negative coefficients projected in the PC1, corresponding to 

leucine (leu), asparagine (asn), 2-isopropylmalate (3c3hmp) and glutamate (glu), showed the 

largest differences after nutrient downshift. These metabolites were also clustered by HCL 

(Figure 6.4a). The principal coefficients of metabolic footprints from the ∆relA mutant culture 

(Figure 6.5b) depicted glycine (gly), succinate (succ) and lactate (lac) as adjacent vectors 

corresponding to metabolites that were immediately assimilated after glucose limitation.  
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6.5 DISCUSSION 

The metabolic footprint analysis is supported on the basis that cells can secrete metabolites 

to the extracellular medium during growth and/or in response to environmental changes 

(Arana I et al., 2004; Lin HY et al., 2004; Srinivasan S et al., 1998). Furthermore, cells may 

activate a variety of efflux transporters that work like metabolic relief valves or defensive 

support to survive an antagonistic environment (Van Dyk TK et al., 2004). In the first case, 

an increase in extracellular metabolites would be associated with an increase in the 

intracellular concentration of those compounds, while in the second case there would be a 

gradient that has to be maintained by the cells to achieve specific purposes. In general, the 

variety and level of the secreted metabolites reflect the metabolic state of the cell and, 

therefore, may be considered the closest indicator of the phenotype (Fiehn O, 2002; Kell DB 

et al., 2005; Raamsdonk LM et al., 2001; Villas-Boas SG et al., 2005). Considering this, and 

the fact that the metabolic impact of recombinant protein expression in the host cells is still 

not well-understood, the metabolic footprints of the recombinant W3110 and ΔrelA mutant E. 

coli cells grown at different experimental conditions were analysed.  

The metabolic responses of E. coli cells were evaluated by measuring some physiological 

parameters, such as the cellular growth and acetate formation (Figure 6.1 and Table 6.1). 

Results corroborated previous works (Bentley WE et al., 1990; Bonomo J and Gill RT, 2005; 

Harcum SW, 2002), indicating that the decrease on the cellular growth is the major 

consequence of the metabolic burden on the recombinant host cells due to higher demands 

of energy and amino acids. The drainage of energy and biosynthetic precursors associated to 

the expression of foreign proteins imposes severe changes in the metabolic activity of cells 

and, as a result, reduces the cellular growth. As shown, upon IPTG induction, the specific 

growth rate of the W3110 and ∆relA mutant E. coli strains decreased 50% and 32%, 

respectively. The ∆relA mutant strain seems to be less affected, which can be explained by 

the failure to stimulate the RelA-dependent stringent response, a stress response that has 

been proposed (Andersson L et al., 1996; Haddadin FT and Harcum SW, 2005; Harcum SW 

and Bentley WE, 1999) to occur when there is a lack of intracellular amino acids associated 

with the additional requirements for the production of recombinant products. Ultimately, this 
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stress response may induce a decrease of cellular growth and protein production. When 

increasing the nutrient availability, cells can generate sufficient metabolic and energetic 

resources for the formation of the heterologous protein, as well as for growth-associated 

processes, and as a result no physiological differences between cultures were observed. 

However, it was expected that at nutrient deprived conditions (phase D), the physiological 

responses of the two strains would be, at some extent, distinct. Besides the substrate uptake 

rates, the estimated physiological parameters did not show significant differences between 

the W3110 and ΔrelA mutant E. coli cultures. Cellular growth was rapidly arrested and 

formation of the heterologous protein decreased to similar levels, which did not allow to 

deduce any fundamental alterations in the cellular metabolism caused by the single gene 

mutation. Nevertheless, the analysis of extracellular metabolites was invaluable to determine 

the main consequences on the physiology of E. coli cells derived from the relA mutation and 

the experimental conditions.  

As previously reported (Arana I et al., 2004; Lin HY et al., 2004), E. coli cells secrete 

metabolites according to the adjustments needed in the cellular metabolism to cope with 

different physiological demands. A small, but considerable number of metabolites 

characterized the metabolic footprints produced during the fed-batch processes and their 

level fluctuations were inspected to estimate their relationship with the intracellular metabolic 

changes. Metabolic footprints allowed not only to discriminate between samples withdrawn at 

different fermentation phases, but also to disclose the main metabolic changes that were not 

evidenced by the physiological characterization of the fed-batch cultures. As illustrated in 

Figure 6.4a, samples from the W3110 E. coli fed-batch culture were discriminated according 

to the fermentation phases, which defined clusters with characteristic metabolic properties. 

In contrast, samples from the ΔrelA mutant E. coli culture (Figure 6.5a) were not equally 

clustered. When cells were induced to express the heterologous protein (I) or submitted to 

glucose-limiting conditions (III), the metabolic footprints observed before and immediately 

after these experimental shifts were equivalent. Samples taken immediately after IPTG 

induction (i.e. samples from B-1 to B-3) were clustered with samples from phase A and 

samples withdrawn after ceasing the glucose feeding (i.e. samples D-1 and D-2) were 

clustered with samples from phase C, indicating that the metabolic changes were more 
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significant at the late stage of this fermentation phase. Nevertheless, it is noteworthy that, 

when cells were submitted to nutritional upshift, there were clear metabolic changes in the 

footprints that established a separate cluster (i.e. samples from phase C were clearly isolated 

from the previous phase). 

Metabolites were clustered according to their relative concentration profiles measured along 

the fermentation phases and revealed the existence of some correlations between 

metabolites. Although most metabolites presented unrelated profiles, some were consistently 

grouped in both experiments. For example, glycine (gly), cis-aconitate (acon-C), citrate (cit), 

aspartate (asp) and itaconate (itcon) were clustered together in both HCL analyses, which 

indicates that these metabolites can be, at some degree, interrelated. Indeed, citrate and cis-

aconitate are neighbours on the metabolic network (i.e. cis-aconitate is an intermediate in 

the enzymatic isomerization of citrate to isocitrate in the TCA cycle) and itaconate and cis-

aconitate are both enzymatic inhibitors of the first enzymatic reaction of the glyoxylate shunt 

(i.e. isocitrate lyase). Nevertheless, it should be emphasized that metabolite correlations that 

were consistent between the W3110 and ∆relA mutant experiments, should be examined 

with care. Metabolite correlations that arise from changes that influence a large number of 

cellular functions (e.g. RelA-dependent responses) are the hardest to interpret in terms of the 

underlying biochemical network. Therefore, to further understand these observed 

“associations” between the metabolite levels and to investigate their changes according to 

the environmental conditions (e.g. IPTG induction), metabolic footprints from each culture 

were independently analysed. 

Regarding IPTG induction of heterologous protein expression in the W3110 E. coli fed-batch 

culture, a set of metabolites were depicted as key elements characterizing the metabolic 

changes associated with this experimental transition. Three carboxylic acids (malonate, 

itaconate and cis-aconitate) were secreted into the culture broth (Figure 6.4b) suggesting 

that they were released from the cells to prevent any inhibitory effects on the activity of the 

isocitrate lyase. As mentioned before, cis-aconitate and itaconate, as well as malonate (Hoyt 

JC et al., 1988), are inhibitors of this enzyme, controlling the activity of the first reaction of 

the glyoxylate shunt that was reported (Wittmann C et al., 2007) as serving an anaplerotic 

function in the cell during heterologous protein production. Since several TCA intermediates 
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are withdrawn from the TCA cycle as amino acid precursors and need to be replenish, these 

anaplerotic reactions are central to balance the intracellular levels of TCA metabolites, 

fulfilling this way the additional biosynthetic requirements associated with the formation of 

the heterologous protein. This could be a plausible assumption, given that induced 

recombinant cells undergo severe metabolic burden counteracted by the activation of 

anaplerotic reactions, and the simultaneous secretion of the abovementioned inhibitors may 

indicate a key point at which the metabolic regulation has changed.  

The ∆relA mutant strain response to the IPTG induction was also manifested by the 

accumulation of the same enzymatic inhibitors: malonate, cis-aconitate and itaconate (see 

Figure 6.5b). Yet, HCL analysis showed that the metabolic footprints produced immediately 

after IPTG induction did not discriminate these samples from the previous fermentation 

phase. Moreover, the metabolic footprints generated after IPTG induction were distinct when 

compared with the W3110 culture and those differences were sufficient to distinguish 

samples from the two strains (Figure 6.3). Also, most metabolites did not present significant 

correlated patterns (i.e. p-values below 0.05) between the two cultures during phase B and 

others showed to have a negative correlation, such as succinate and fumarate (Table 6.2). 

Although some of the changes on the metabolite levels could be associated with the intrinsic 

variability of this kind of experiments, the overall metabolic patterns and the accumulation of 

certain metabolites only detected in the ∆relA mutant culture (e.g. acetyl-L-glutamate (acglu)) 

may result from changes on the cellular metabolism that were not equivalent in the two E. 

coli cultures.  

Despite the extensive knowledge on basic aspects such as the changes of growth rates with 

nutrient concentrations (Ferenci T, 1999; Hua Q et al., 2004; Lendenmann U and Egli T, 

1998; Marr AG, 1991; Tweeddale H et al., 1998), information on the effects of the 

nutritional upshift during recombinant processes on the metabolic footprint is still scarce. In 

general, studies are focused in the secretion of acetate, not only because it retards growth 

and inhibits protein formation, but also because it represents a deviation of carbon that 

might otherwise be used to generate energy and precursors for biosynthetic purposes 

(Eiteman MA and Altman E, 2006; Suarez DC and Kilikian BV, 2000; Van de Walle M and 

Shiloach J, 1998). In this study, a glucose feeding upshift was applied to increase the 
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specific growth rate during heterologous protein production and the metabolic footprints were 

analysed. Numerous metabolites were immediately accumulated in the extracellular medium 

of the W3110 culture after glucose availability increased, such as glycine (gly), 4-

hydroxibenzoate (4hbz), lactate (lac), citrate (cit), cis-aconitate (acon-C), itaconate (itcon), 

succinate (succ), fumarate (fum) and aspartate (asp) (Figure 6.4b). The increasing metabolic 

activity associated with a high rate of glucose consumption resulted in the accumulation of 

most intracellular metabolites, including TCA intermediaries, amino acids and amino acid 

precursors. Moreover, acetate was also accumulated during this fermentation phase resulted 

from the glucose overflow metabolism. It was reported (Majewski RA and Domach MM, 

1990) that in the presence of excess glucose, the carbon flux through glycolysis exceeds the 

capacity of the TCA cycle and acetate is accumulated. The same set of metabolites, except 

the 4-hydroxibenzoate and itaconate, were also accumulated during the ∆relA fermentation 

process at these conditions, which indicate that metabolic adjustments induced by the 

nutrient upshift resulted in similar alterations in the metabolic footprints from both strains. 

Although some metabolite patterns revealed significant differences (Figure 6.3), in general, 

these were less significant than in any other phase. The accumulation of lactate at these 

conditions was found intriguing. Since the conversion of pyruvate to lactate in E. coli is 

usually exclusively induced at anaerobic conditions (Clark DP, 1989; Tarmy EM and Kaplan 

NO, 1968), the presence of this by-product implies that the internal accumulation of pyruvate 

due to the metabolism overflow overrides any other mechanism known to control the activity 

of the lactate dehydrogenase (LdhA) enzyme under aerobic conditions (Jiang GR et al., 2001) 

or, for some reason, local oxygen deficiencies during the E. coli fed-batch process have 

triggered the ArcAB system and other genes involved in the mixed acid fermentation pathway 

(Xu B et al., 1999). The latest assumption seems improbable, as good mixing conditions and 

dissolved oxygen values above 30% were maintained inside the reactor. 

Finally, the metabolic responses to nutritional stress associated with the restriction of 

glucose feeding during recombinant E. coli processes were also evaluated. It is remarkable 

the amount of metabolites found to be secreted after glucose downshift. Besides the 

decreasing levels of metabolites that can serve as carbon sources for E. coli (e.g. acetate), 

the accumulation of unexpected metabolites, like amino acids (e.g. leucine (leu), asparagine 
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(asn), L-glutamate (glu) and aspartate (asp)) and amino acid derivatives (e.g. 2-

isopropylmalate (3c3hmp)), indicate that the cells accumulated these biosynthetic precursors 

as a consequence of the reduced activity of the protein translation machinery, as estimated 

by the experimental AcGFP1 formation rates (Table 6.1). It is acknowledged that under 

nutrient starvation E. coli cells entail complex protective processes that ultimately manage 

the cellular metabolism to sustain cellular maintenance and viability (Matin A, 1991; 

Neubauer P et al., 1995; Nystrom T, 1999). Apparently the RelA-dependent response is 

involved in these metabolic readjustments, as the metabolic footprints exhibited by the wild-

type and ∆relA mutant E. coli cultures were divergent (Figure 6.3). Major differences were 

found in the citrate (cit), fumarate (fum), malate (mal) and aspartate (asp) profiles, which 

indicate that the fine-tuning of the TCA fluxes after glucose depletion and subsequent acetate 

assimilation were differently coordinated. Furthermore, when comparing the metabolite 

patterns of both strains after nutrient downshift, we found that acetate utilization by E. coli 

cells has a strong effect on the accumulation of several metabolites, especially in the ∆relA 

mutant strain. Metabolites such as phenylalanine (phe), isoleucine (ile), leucine (leu), acetyl-

L-glutamate (acglu) and octadecenoate (ocdcea) were accumulated in the medium of the 

∆relA mutant culture shortly after acetate consumption has started (data shown in Appendix 

A). Under these conditions, acetate is converted to acetyl coenzyme A (accoA) at the expense 

of ATP which, in turn, is mainly catabolised via glyoxylate cycle that serves as anaplerotic 

reactions (Brown TD et al., 1977). This shift in the utilization of carbon sources involves the 

activation of various cellular processes, including the synthesis of new catabolic enzymes 

and the activation of substrate-specific transport systems. It seems that the metabolic 

imbalance caused by these metabolic activities coupled with the additional formation of 

heterologous protein is the basis for the accumulation of several metabolites, including 

amino acids, that was more critical in the ∆relA strain. During glucose starvation the 

translational apparatus, as well as cellular growth, are limited via transcriptional control of 

several growth-associated genes, like ribosomal operons. The ppGpp-stringent control has 

been related to this cellular response to nutritional deprivation that redirect the RNA 

polymerase transcriptional activity from stable RNA (ribosomal and transfer RNA) synthesis to 

stress-related genes, in particular genes that have protective functions. In the absence of the 

RelA activity, the ppGpp accumulation is limited and the translational apparatus stays 
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unaffected. This seems to be the main cause for the only slight reduction of heterologous 

protein production rate in the ∆relA mutant. However, while protein production seems to be 

unaffected by nutrient starvation, bacterial growth was arrested in this strain, probably by 

action of responses mediated by other stress proteins. These facts apparently generated an 

imbalance in the mutant strain’s metabolism (probably due to differences in amino acid 

composition between heterologous and average E. coli proteins) that was evidenced by the 

accumulation of some amino and fatty acids. For example, the synthesis of fatty acids is 

known to be inhibited during glucose starvation, which did not seem to happen in the mutant 

strain. However, since these compounds had not been used for biomass production, there 

was an accumulation of octadecenoate (ocdcea) and tetradecanoate (ttdca) in the ∆relA 

mutant strain. Moreover, isoleucine (ile), acetyl-L-glutamate (acglu) and phenylalanine (phe) 

were also accumulated at these conditions by the ∆relA mutant strain. It seems evident that 

the failure to accumulate ppGpp at these conditions allowed a continuous production of 

heterologous protein (although slightly reduced) resulting in an unbalanced drainage of 

precursors. Some metabolites were gradually replenished while others (less required for the 

production of AcGFP1) were over-accumulated. The fact that most metabolic resources were 

probably redirected to the formation of AcGFP1, may explain the higher protein synthesis 

rate and lower biomass yield observed for the ∆relA mutant strain when compared to the 

W3110 strain. It is clear that the relA mutation influences the natural cellular responses to 

nutritional downshifts, which can delay, or even suppress, E. coli survival and resistance.  

 

6.6 CONCLUSIONS 

Although the characterization of metabolites in E. coli culture broths has been performed 

using various detection methods, such analyses are mostly confined to specific metabolites 

and have not been done in a global scale. For example, the secretion of acetate during 

aerobic E. coli fermentations is regularly measured, because it is considered a major 

obstacle to enhanced heterologous protein production. However, the present work reveals 

that the complexity of the generated metabolic footprints at different culture conditions is 

much higher than what has been admitted. As demonstrated, E. coli secretes a vast array of 
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metabolites that participate in a wide range of metabolic pathways. Although the metabolism 

in E. coli has been studied more intensively than in any other bacterium, only recently it has 

become clear that targeted studies do not provide an accurate picture of the cellular 

metabolism. A typical metabolomic approach is expected to generate new knowledge from 

the comprehensive analysis of the metabolome and the distinctive metabolic patterns 

produced at different environmental and genetic conditions.  

Metabolic footprints resulted from the IPTG-induction of heterologous protein expression have 

shown that there is a rapid accumulation of unexpected metabolites in the culture broth. The 

secretion of the isocitrate lyase inhibitors suggest that the anaplerotic glyoxylate shunt was 

activated to replenish the TCA intermediaries engaged in the additional formation of 

heterologous protein. Moreover, the detection of compounds unknown to participate in E. coli 

metabolism reinforces the importance of unbiased analytical approaches in research. 

When cells are exposed to conditions of nutrient-excess, the uncoupling of maximum glucose 

uptake rates and the TCA fluxes results in a metabolic overflow with consequent 

accumulation of metabolites. Not only acetate and lactate were secreted at these conditions, 

but also TCA intermediaries (e.g. fumarate, succinate, citrate and cis-aconitate) and some 

amino acids (e.g. aspartate and glycine). Assuming that the demand for metabolic resources 

for cellular growth and heterologous protein production is exceeded, the secretion of these 

metabolites can be understood as a metabolic relief required to avoid adverse effects from 

the imbalanced cellular metabolism (Kell DB et al., 2005).  

At nutrient-limited conditions (i.e. when glucose feeding was discontinued), some of these 

metabolites (e.g. acetate) were assimilated by the cells as carbon and energy sources. These 

metabolic activities coupled with the additional formation of heterologous protein may have 

resulted into severe rearrangements in the cellular metabolism that led to the secretion of 

amino acids like: phenylalanine, asparagine, isoleucine and leucine and the acetyl-L-

glutamate. Once again, these metabolic imbalances were more pronounced in the ∆relA 

strain, which fails to trigger RelA-dependent processes to respond to nutrient deprivation. 

The metabolic flexibility exposed by the alterations in the metabolic footprints, evidenced that 

cells entail diverse cellular mechanisms to sense and rapidly counteract the adverse 
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environmental conditions. This stringent behaviour was prevalent in the W3110 strain, while 

the ∆relA strain showed some difficulties to cope immediately with the metabolic imbalances 

caused by the formation of heterologous protein. However, at nutrient-excess conditions, 

when none of cellular processes dependent on the activity of RelA are triggered, the 

metabolic behaviour of both strains was not significantly divergent. It is evident that, although 

some disadvantages might have been indicated concerning the metabolic behaviour of the 

∆relA strain (e.g. failure to manage metabolic imbalances), the enhanced production rate of 

heterologous protein represents a major benefit.  

Metabolic footprinting, more than most other analytical strategies, is a rapid and non-invasive 

analysis, representing a powerful approach for the characterization of phenotypes and the 

distinction of specific metabolic states due to environmental or genetic alterations. 

Nevertheless, metabolic footprints are just a shallow representation of the metabolic state of 

cells and the full understanding of the underlying mechanisms controlling these metabolic 

imbalances caused by the heterologous protein production, require further inspection of key 

metabolites (e.g. metabolites that are important nodes in the metabolic network) or the 

combination with other experimental strategies (e.g. gene expression  and proteomics). 
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6.8 APPENDIX A 

Details on the accumulation of several metabolites that occurred immediately after the acetate 

consumption by the ∆relA mutant strain. 
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6.9 APPENDIX B 

Relative concentrations of metabolites measured by GC/MS during during fed-batch fermentation 

phases: (A) pre-induction phase; (B) IPTG post-induction phase; (C) growth upshift phase; and (D) 

nutrient downshift phase. 

  

A-1 A-2 A-3 A-4 A-5 B-1 B-2 B-3 B-4 B-5 C-1 C-2 C-3 C-4 D-1 D-2 D-3
RelA 82.10 75.10 65.67 67.59 52.79 37.11 30.71 31.03 28.26 29.51 13.58 5.47 6.55 5.20 6.61 14.86 18.65

W3110 0.00 0.00 49.69 43.87 44.11 26.69 26.49 31.71 27.22 18.53 12.96 7.65 6.50 4.41 4.37 10.73 15.37
RelA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.11 10.32

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.93 12.66 11.69 14.58
RelA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 40.49 38.02

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.35 18.77 22.83 24.33 38.82 33.31 34.12 29.50 35.67
RelA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.95

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RelA 0.00 0.00 0.00 0.00 0.00 19.12 18.08 23.79 23.05 28.02 34.88 43.76 53.36 49.32 50.67 43.43 44.07

W3110 0.00 0.00 0.00 0.00 0.00 31.63 35.66 44.77 37.26 43.55 59.27 78.10 87.36 63.29 43.52 34.19 50.55
RelA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.76 12.11

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.23 14.62
RelA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 335.71 399.53 566.06 446.41 452.35

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 147.47 261.84 449.27 611.85 464.45 392.30 385.79 587.31
RelA 99.27 237.23 97.72 82.85 69.65 139.22 111.20 81.75 53.54 85.61 48.21 41.70 36.75 33.40 40.36 25.45 13.45

W3110 106.67 84.15 66.99 46.07 64.69 86.83 91.33 38.06 49.03 31.50 60.48 46.45 22.07 34.67 17.45 10.63 25.02
RelA 6242.49 5025.13 5461.03 5344.66 4218.20 3301.16 2557.74 2212.88 1711.03 1455.14 1382.78 1043.24 813.88 704.99 826.24 585.38 541.48

W3110 4956.60 2926.65 3867.89 2722.77 2705.70 2674.03 2198.67 1847.86 1669.44 1087.78 993.32 1127.34 977.15 701.19 479.61 319.42 657.91
RelA 0.00 0.00 0.00 0.00 78.98 80.51 93.38 77.93 115.41 170.56 328.04 448.05 760.24 790.86 980.42 865.33 812.91

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 662.70 748.55 1267.47 1075.61 814.33 596.28 916.43
RelA 60.78 84.10 61.30 45.39 0.00 43.06 38.16 42.07 32.37 44.99 71.97 75.96 79.21 49.98 57.14 83.07 35.66

W3110 293.16 169.46 130.45 92.17 94.17 104.08 120.45 43.32 46.69 28.32 80.69 199.34 128.11 115.33 46.85 40.18 59.20
RelA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.76 23.82 35.72 46.53 20.70 24.80 21.98 29.85 93.21 72.56

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.21 25.36 20.60 43.76 29.91 33.89 20.53 25.15 59.57 56.84
RelA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.81 21.07 22.24 8.85 0.00

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.12 13.67 20.71 24.11 12.65 6.05 7.25
RelA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.05

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RelA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.51 6.41 5.15 4.70 6.21 4.75 5.70 4.44 4.10

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.30 9.63 9.37 12.52 8.58 9.13 4.75 3.90 7.99
RelA 0.00 0.00 0.00 0.00 0.00 48.06 44.89 44.77 23.15 29.12 331.81 485.40 362.85 314.29 360.00 208.28 0.00

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 360.20 660.66 405.34 546.27 205.78 0.00 0.00
RelA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.03

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.84
RelA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.85

W3110 228.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 37.40 27.88
RelA 0.00 0.00 0.00 0.00 0.00 43.00 43.10 42.08 28.24 35.71 22.92 17.66 17.71 17.59 19.00 16.22 9.90

W3110 0.00 0.00 0.00 0.00 0.00 58.70 59.74 29.47 28.39 22.32 19.24 35.54 17.98 18.93 7.86 6.59 16.54
RelA 35.98 26.64 31.30 0.00 0.00 18.57 11.76 12.19 11.02 8.80 9.79 5.50 4.93 4.97 5.28 9.40 9.97

W3110 0.00 28.70 28.14 29.49 17.32 14.12 11.18 17.61 13.25 13.26 11.12 8.32 6.83 6.41 6.68 7.94 12.01
RelA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.00

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RelA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.08

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RelA 91.13 70.38 62.28 46.94 0.00 48.06 49.37 64.37 31.34 41.08 215.78 320.51 351.03 331.99 453.26 348.24 194.09

W3110 139.98 144.66 99.95 38.27 66.04 63.99 94.94 27.75 41.78 35.10 183.20 460.51 392.42 561.66 262.73 149.03 207.66
RelA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.39 31.05 41.79

W3110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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CHAPTER 7  
 

CONCLUSIONS AND OUTLOOK 

 

 

“...stress emerges when there is a demand-capability imbalance.” 

 

By HI McCubbina and JM Patterson in The Family Stress Process: 
The Double ABCX Model of Adjustment and Adaptation, 

Marriage & Family Review, 1983; 6(1):7-37 

  



204 Conclusions and Outlook 

 

This thesis investigated the extent of metabolic changes induced by recombinant protein 

production in E. coli cells and, more specifically, the influence of the stringent response during 

recombinant bioprocesses. Metabolomics approaches based on a GC/MS method were at the 

core of these studies and supported the identification of potential metabolic bottlenecks that may 

be behind some hindering phenomena during recombinant bioprocesses. 

To capture the metabolic behaviour of E. coli cells when overexpressing recombinant proteins, a 

hybrid modelling approach was developed (see Chapter 3). The main purpose of this modelling 

approach was to estimate, at a systems-level perspective, the degree of metabolic burden 

imposed by recombinant biosynthetic processes and to predict the induction of stress-responsive 

events, in particular the ppGpp-induced stringent response triggered by intracellular amino acids 

shortages. As exemplified, the withdrawn of amino acids for recombinant proteins formation 

normally exceeds the biosynthetic capacities of the E. coli cells, a phenomenon aggravated by the 

differences in the amino acid composition of recombinant and biomass proteins. As reported in 

previous studies, drainage of amino acids may result in the sudden induction of the RelA enzyme 

activity, which synthesizes ppGpp above basal levels (Chatterji D and Ojha AK, 2001; Goldman E 

and Jakubowski H, 1990; Rojiani MV et al., 1989; Wendrich TM et al., 2002). The pleiotropic 

effects of this global regulator have been described (Chang DE et al., 2002; Durfee T et al., 

2008; Traxler MF et al., 2006), but besides inducing amino acid biosynthetic genes there is little 

knowledge about its effects on the overall cellular metabolism.  

Therefore, the RelA activity was studied both in recombinant and non-recombinant cultures 

applying a metabolomics approach. First, it was fundamental to understand the influence of the 

RelA activity in the E. coli metabolism at different growth conditions. Chapter 4 presented a 

metabolic profiling analysis of E. coli W3110 and the isogenic ∆relA mutant cells performed to 

characterize the activity of this enzyme under different growth conditions. Apparently, the relA 

mutation affects the metabolic behaviour of E. coli strains, in particular at lower dilution rates. 

For example, it was observed that E. coli cells lacking the relA gene presented a “relaxed” 

phenotype that may have led to important shortages in certain metabolites (e.g. amino acids). 

Moreover, it was suggested that (directly or indirectly) the RelA enzyme might be involved in the 

synthesis of ppGpp when cells are grown in nutrient-deprived conditions, which potentiates the 

expression of several stress-response genes, namely the transcriptional regulator cAMP receptor 
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protein (Crp) that governs catabolite repression (Traxler MF et al., 2006). This points to the idea 

that RelA-mediated ppGpp synthesis is fundamental for the coordination of several metabolic 

responses to cope with nutritional deprivations. 

After exploring the influence of the relA mutation in the E. coli W3110 cells’ metabolism, it was 

proposed to investigate if this gene mutation can actually bring any productivity advantages 

during recombinant processes, as it has been previously reported (Dedhia N et al., 1997; Sanden 

AM et al., 2003). First, to isolate the impact of recombinant biosynthetic processes from the 

RelA-mediated metabolic responses to potential amino acid shortages, a chemostat culture with 

E. coli W3110 ∆relA [pTRC-His-AcGFP1] was performed (Chapter 5). The metabolic profiles of 

host cells were evaluated to investigate the metabolic impact of biosynthetic activities required to 

maintain the plasmid DNA and recombinant protein expression. It was found that plasmid burden 

did significantly change the metabolic profiles of the host cells. It was also evident that plasmid 

burden caused the shortage of certain biosynthetic products, namely amino acids, generating a 

metabolic imbalance that might also be responsible for the accumulation of some by-products, 

like acetate. Second, to inspect the metabolic rearrangements associated with the relA mutation 

and the simultaneous production of recombinant protein, fed-batch cultures with recombinant E. 

coli W3110 and ∆relA cells were performed (Chapter 6). Although some studies have shown that 

cells that carry a relA mutation are able to produce higher amounts of recombinant protein 

compared to cells with the stringent (relA+) phenotype (Harcum SW and Bentley WE, 1999), those 

did not explore the impact of this mutation in the metabolism of host cells, which may ultimately 

impair cellular survival. A different metabolomic approach, i.e. metabolic footprinting, was 

devised to estimate the metabolic responses engendered by these cells during the recombinant 

bioprocess. The metabolic footprints from recombinant E. coli W3110 and ∆relA cultures were 

compared and it was observed that “relaxed” phenotypes (i.e. ∆relA cells) are less effective to 

stimulate certain metabolic changes, as demonstrated by the delay in the metabolic shift after 

IPTG-induction. Metabolic profiles of chemostat cultures with non-recombinant E. coli W3110 and 

∆relA cells were studied in Chapter 4. It was suggested that “relaxed” phenotypes might be 

inefficient when inducing certain metabolic activities that are required to adjust the cells’ 

metabolism, in particular those that are dependent on the ppGpp-mediated regulation, like 

anaplerotic functions. Moreover, metabolic footprints revealed that metabolic imbalances were 
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less pronounced in the E. coli cells carrying the relA gene. Although the productivity levels were 

higher in the E. coli ∆relA cells, the unexpected accumulation of various metabolites in the 

extracellular medium, most likely due to the inability to cope with metabolic imbalances caused 

by recombinant processes, indicates that this cellular system needs to be fine-tuned during 

recombinant bioprocesses. An option could be the supplementation of the culture medium with 

amino acids, but it must be acknowledged that though it is a straightforward alternative it may 

induce severe metabolic constraints, since the excess of some amino acids can stimulate the 

inhibition of certain amino acid biosynthetic pathways, creating an imbalance in the metabolism. 

Thus, to enhance the productivity of recombinant proteins, it is crucial to reach a finer balance 

between strain improvement strategies and culturing conditions. This is the primary goal of 

biosystems engineering in recombinant bioprocesses to meet the increasing demands of 

industry.  

Altogether, the major outcomes of this thesis contributed significantly to understand the 

metabolic impact caused by the recombinant protein production and the participation of the RelA 

enzyme to mediate a series of metabolic adjustments to cope with such demands. It is expected 

that this information will further contribute to improve the proposed model for the stringent 

response (Chapter 2). Although modelling approaches are still reliant on bioinformatic and 

mathematical developments needed to incorporate omics data and, most importantly to manage 

the complexity of dynamic processes to be modelled, these findings imply that major metabolic 

changes are stimulated during the RelA-mediated stringent response and, most likely, are closely 

related with recombinant-induced metabolic imbalances. Ultimately, it is envisioned to create a 

modelling framework that represents the metabolic behaviour of recombinant cells after ppGpp 

synthesis has been induced. The integration of new dynamic descriptions that represent these 

ppGpp-mediated processes in the metabolic network of E. coli will improve model predictability 

when analysing the behaviour of recombinant systems. As previously stated (Hoppe A et al., 

2007; Ow DS et al., 2009) flux distributions predicted by FBA are hypothetical and strongly 

dependent on the cellular objective, and it has been demonstrated that under certain 

environmental or genetic conditions (e.g. recombinant microorganisms) this approach does not 

provide the best description of the underlying physiological state of the cells. Therefore, the 

extension of FBA with other modelling approaches is foreseen to increase the reliability of FBA 
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results and assess new metabolic bottlenecks that must be considered in such systems. For 

instance, anaplerotic pathways need to be further inspected as they seem to be implicated both 

in responses to metabolic burden caused by recombinant processes and in the stringent 

response. Eventually, fluxomics and proteomics data will expose more details about these 

metabolic activities, providing more detailed models of the E. coli metabolism useful for the 

simulation of recombinant processes. 
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