
The Jordan Form Problem for C = AB: the Balanced,
Diagonalizable Case

by

Charles R. Johnson 1

Department of Mathematics
College of William and Mary

Williamsburg, VA, 23187

YuLin Zhang 2

Centro de Matemática
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Abstract We consider a key case in the fundamental and substantial prob-
lem of the possible Jordan canonical forms of A, B,C ∈Mn(F ) when C =
AB. If A ∈ M2k(F ) (respectively B, C ∈ M2k(F ) ) is diagonalizable with
two distinct eigenvalues a1, a2 (respectively b1, b2, and c1, c2), each with
multiplicity k, and when C = AB, all possibilities for a1, a2, b1, b2, c1, c2

are characterized. The possibilities are much more restrictive than the ob-
vious determinant condition: (a1a2b1b2)k = (c1c2)k allows. This is then
used to settle the general, two eigenvalue per matrix, diagonalizable case
of the Jordan form problem for C = AB.
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1 Introduction

We are interested in the fundamental problem of determining for each nonsingular
n−by−n complex matrix C, what Jordan forms may occur for the n−by−n
matrices A and B such that AB = C. This depends only upon the similarity
class of C, and, as the problem may be posed in a variety of ways about the triple
A,B,C, we call this the three-matrix, product, Jordan form problem.
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An important partial result was observed by Sourour [6] when C is not scalar:
the spectra α1, α2, ..., αn of A and β1, β2, ..., βn of B are arbitrary, subject only to
the determinantal condition

α1α2 · · ·αnβ1β2 · · · βn = γ1γ2 · · · γn

in which γ1, γ2, ..., γn are the eigenvalues of C. No information was given about the
Jordan structure of A and B (when their spectra include multiple eigenvalues),
relative to that of C. In earlier work [4], see also [5], we showed that A and
B could always be taken to be nonderogatory. In addition to the determinant
condition, we have also shown that there is a geometric multiplicity constraint
on the spectra of A,B and C. Let gX(λ) be the geometric multiplicity of the
eigenvalue λ in the n−by−n matrix X. We then have [3]:

gA(α) + gB(β)− n ≤ gAB(αβ).

for n−by−n matrices A and B over a field. Thus, if A and B have eigenvalues
with high geometric multiplicity, the product of the two eigenvalues must ap-
pear in AB. This explains the nonscalar requirement in Sourour’s theorem. It
has been shown [3] that the geometric multiplicity constraint, together with the
determinant condition, is necessary and sufficient for our problem when n < 4.
Thus, n = 4 is the starting point for the present work, in which we find that there
are additional constraints on the three matrix, Jordan form problem.

One major barrier to resolution of the 4−by−4 case has been a key special
case of the general diagonalizable case: if A,B and C each have two distinct
eigenvalues of multiplicity two each (A : a1, a2; B : b1, b2; and C : c1, c2) what, if
any, restrictions are there in addition to the determinant restriction:

(a1a2b1b2)
2 = (c1c2)

2

This question has proven surprisingly subtle.

Here, we generalize, and completely settle the above balanced, diagonalizable
case. The general problem that we settle here may be described as follows. For
which a1, a2, a1 6= a2, b1, b2, b1 6= b2 and c1, c2, c1 6= c2 do their exist diagonalizable
n−by−n, n = 2k, matrices A with eigenvalues a1 and a2, each with multiplicity
k, B with eigenvalues b1 and b2, each with multiplicity k, and C with eigenvalues
c1 and c2, each with multiplicity k, such that AB = C? We call this problem Pk.
Of course, the determinant condition

(a1a2b1b2)
k = (c1c2)

k,
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which is sufficient for k = 1, is present, but for larger k we find that this con-
dition is far too weak. We note that when two of the three matrices have just
two eigenvalues and the multiplicities are not equal (which includes the case in
which n is odd), the general problem reduces to a smaller one, because of the
geometric multiplicity constraint. Thus, this balanced, even case is central; the
geometric multiplicity constraint is vacuously satisfied, leaving only the determi-
nant constraint. In fact, the diagonalizable case of this problem tends to present
the greatest difficulty. We also note that, because of diagonalizability, the ques-
tion makes sense over a general field, and indeed, the present work is independent
of the field in which the eigenvalues lay. Once the balanced diagonalizable case
is settled (see section 5), we are able to completely understand the general, two-
eigenvalue-per-matrix diagonalizable case (see section 6). The understanding of
these cases with few eigenvalues of high geometric multiplicity is our primary
contribution to the problem.

2 Preliminary Calculations

Let n = 2k and let

A =

[
a1I 0
0 a2I

]
, B =

[
b1I 0
0 b2I

]
, and C =

[
c1I 0
0 c2I

]

in which each I is k−by−k, ai, bi, ci 6= 0, i = 1, 2; a1 6= a2, b1 6= b2 and c1 6= c2.
We wish to understand for which a1, a2, b1, b2, c1, c2 there exist invertible

M =

[
M11 M12

M21 M22

]
, N =

[
N11 N12

N21 N22

]

such that Mij, Nij are k−by−k, i, j = 1, 2 and

(M−1AM)(NBN−1) = C (0)

Equivalently,

AMNB = MCN (0′)

or 
a1b1(M11N11 +M12N21) = c1M11N11 + c2M12N21

a1b2(M11N12 +M12N22) = c1M11N12 + c2M12N22

a2b1(M21N11 +M22N21) = c1M21N11 + c2M22N21

a2b2(M21N12 +M22N22) = c1M21N12 + c2M22N22
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or


(a1b1 − c1)M11N11 = (c2 − a1b1)M12N21 (1)
(a1b2 − c1)M11N12 = (c2 − a1b2)M12N22 (2)
(a2b1 − c1)M21N11 = (c2 − a2b1)M22N21 (3)
(a2b2 − c1)M21N12 = (c2 − a2b2)M22N22 (4)

or 
x1M11N11 = y3M12N21 (1′)
y2M11N12 = x4M12N22 (2′)
y4M21N11 = x2M22N21 (3′)
x3M21N12 = y1M22N22 (4′)

with x1 = (a1b1 − c1), x2 = (c2 − a2b1), x3 = (a2b2 − c1), x4 = (c2 − a1b2),
y1 = (c2 − a2b2), y2 = (a1b2 − c1), y3 = (c2 − a1b1), y4 = (a2b1 − c1).

Proposition 1 . If xi = 0, then yj 6= 0, for j 6= i and if yi = 0, then xj 6= 0, for
j 6= i.

Proof. Without loss of generality, suppose that x1 = y2 = 0. Then it would follow
that b1 = b2. This is contrary to the hypothesis that B is nonscalar. All other
cases are similar. 2

Proposition 2 . If AMNB = MCN , M,N nonsingular, then (a1a2b1b2)
k =

(c1c2)
k.

Proof. This follows from equating determinants. 2

3 The Case in Which xi, yi are Nonzero, i =

1, 2, 3, 4

We first consider the case in which all 8 of xi, yj are nonzero and give a complete
solution to our problem (Pk) in this event.

Lemma 3. If x1, y2, y3, x4, 6= 0 (resp., y1, x2, x3, y4 6= 0, x1, x2, y3, y4 6= 0,
y1, y2, x3, x4 6= 0), then M11 and M12 (resp., M21 and M22, N11 and N21, N12

and N22) are nonsingular.
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Proof. Consider, for example, the unparenthetical claim. The other three
are similar. Suppose that M11 is singular and that u 6= 0 is a left null vector for
M11. Then, from (1′) and (2′) we have

uTM12[N21 N22] = 0.

But, since [N21 N22] has full row rank because N is nonsingular, it follows that
that uTM12 = 0. However, this would mean that,

uT [M11 M12] = 0,

contradicting the assumption that [M11 M12] must have full row rank because
M is nonsingular. We conclude that M11 is nonsingular. The proof for M12 is
similar. 2

Corollary 4 . If all 8 of yi, xi, i = 1, 2, ..., 4, are nonzero, then all 8 blocks Mij,
Nij are nonsingular, i, j = 1, ..., 4.

Proposition 5 . Equations (1′)− (4′) may be rewritten as

M11[x1N11 y2N12] = M12[y3N21 x4N22]

and
M21[y4N11 x3N12] = M22[x2N21 y1N22].

From the above proposition, we can see that if M12N21 6= 0, then x1 = 0
implies y3 = 0; if M12N22 6= 0, then y2 = 0 implies x4 = 0; if M22N21 6= 0, then
y4 = 0 implies x2 = 0 and if M22N22 6= 0, then x3 = 0 implies y1 = 0. Since
x1 = 0 and y3 = 0 (resp., y2 = 0 and x4 = 0; y4 = 0 and x2 = 0; x3 = 0 and
y1 = 0) cannot occur according to proposition 1, we have

Lemma 6. If all 8 blocks Mij, Nij, i, j = 1, ..., 4, are nonsingular, then all 8
parameters xi, yi, i = 1, ..., 4, are nonzero.

Theorem 7. All 8 xi, yi, i = 1, ..., 4, are nonzero if and only if all 8 blocks Mij,
Nij are nonsingular, and if all xi, yi are nonzero, then

x1x2x3x4 = y1y2y3y4

which is equivalent to a1b1a2b2 = c1c2.

5



Proof. The first part of this theorem is a consequence of lemma 3 and lemma 6.
In the second part, we first show that

xi 6= 0, yi 6= 0⇒ x1x2x3x4 = y1y2y3y4.

In fact, eliminating M11 and M12 from (1′) and (2′) yields

x1

y3

N11N
−1
21 =

y2

x4

N12N
−1
22 ,

while eliminating M21 and M22 from (3′) and (4′) yields

y4

x2

N11N
−1
21 =

x3

y1

N12N
−1
22 ,

The above two equations give the desired conclusion. The rest is just a direct
calculation, i.e.,

x1x2x3x4 = y1y2y3y4

⇔ (a1b1−c1)(c2−a2b1)(a2b2−c1)(c2−a1b2)−(c2−a2b2)(a1b2−c1)(c2−a1b1)(a2b1−c1) = 0

⇔ (c2 − c1)(b2 − b1)(a2 − a1)(a1a2b1b2 − c1c2) = 0.

According to our hypothesis c2 − c1 = 0 (resp., b2 − b1 = 0, a2 − a1 = 0)
can not happen. So x1x2x3x4 = y1y2y3y4 is equivalent to a1b1a2b2 = c1c2. This
completes the proof of the theorem. 2

Note that a1b1a2b2 = c1c2 is stronger than (a1b1a2b2)
k = (c1c2)

k; [(a1b1a2b2)
k−1+

(a1b1a2b2)
k−2(c1c2) + · · ·+ (c1c2)

k−1] = 0 is not possible. Note also that if xi and
yi = 0, then a1b1a2b2 = c1c2 also holds.

Theorem 8. If a1b1a2b2 = c1c2, then there do exist invertible M and N satisfying
(0).

Proof. Our purpose is to find the nonsingular M and N , such that the (0) is
verified. To do this we just let M11 = M12 = M22 = N21 = N22 = I. Then, by

solving matrix equations (1′) − (4′), we get that M21 =
x1x2

y3y4

I, N12 =
x4

y2

I and

N11 =
y3

x1

I. So M =

 I I
x1x2

y3y4

I I

, and N =

 y3

x1

I
x4

y2

I

I I

. We need prove that
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x1x2

y3y4

6= 1, and
y3

x1

6= x4

y2

to make sure that M and N are nonsingular. In fact,

x1x2

y3y4

= 1 means b1(c2−c1)(a2−a1) = 0, and
y3

x1

=
x4

y2

gives a1(c2−c1)(b1−b2) = 0,

which are contradictions to our hypothesis. So M and N are nonsingular and
verify (0), the proof is complete. 2

Now, we may state the characterization for the case of this section.

Corollary 9 . If aibj 6= ck (all i, j, k), i.e, no eigenvalue of C is a product of an
eigenvalue from A and from B, then there is an invertible solution M and N to
problem Pk if and only if a1b1a2b2 = c1c2.

4 The Case in Which at Least One of xi, yi is

Zero

Suppose now that not all xi and yj are nonzero. Only a few combinations of 0′s
are possible. If an xi and a yj are 0, it can be only one of each and they must
have the same index, according to proposition 1. In this event, a1b1a2b2 = c1c2,
and there is a solution to Pk, as in the prior section. If just one of xi, yj is 0, by
symmetry we may suppose it is x1; the other seven yield the same result with a
similar argument.

Lemma 10. It is not possible that exactly one of x1, x2, x3, x4, y1, y2, y3 and y4

is 0.

Proof. If x1 = 0, y3 6= 0, then M12N21 = 0. If M12N21 = 0, at least one of them is
rank deficient. But, by lemma 3, it follows from (3′) and (4′) that M21 and M22 are
nonsingular, and then from a right null space argument that N11, N21, N12, and
N22 are nonsingular (If, say, N21 were singular, N11 and N21 would have the same
right null space from (3′), because M21 and M22 are nonsingular, contradicting
the nonsingularity of N). Thus M12 = 0. But, from (2′), M11 would have to be
0, as N12 and N22 are nonsingular. This would contradict the nonsingularity of
M , completing the proof of the lemma. 2

Lemma 11. It is not possible that two x′s or two y′s are zero and all others
nonzero.
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Proof. When x1 = 0, x2 = 0 or x1 = 0, x4 = 0, the argument is similar to lemma
10. When x1 = 0, x3 = 0, the equations (1′)− (4′) become



M12N21 = 0 (5)
M22N22 = 0 (6)

M12N22 = (
y2

x4

)M11N12

M22N21 = (
y4

x2

)M21N11

and

MN =

[
M11 M12

M21 M22

] [
N11 N12

N21 N22

]
=

[
M11N11 αM11N12

βM21N11 M21N12

]
,

where α = 1 +
y2

x4

, β = 1 +
y4

x2

. Then M11,M21, N11, N12 must be nonsingular or

MN would be singular. Since M12N22 = (
y2

x4

)M11N12 and M22N21 = (
y4

x2

)M21N11,

then M12,M22, N21, N22 are also nonsingular, it would contradict equations (5)
and (6). So, when two of x′s or y′s are zero, there is no solution to Pk. 2

Lemma 12. If three x′s or y′s are zero, then the fourth one must be zero.

Proof. Without loss of generality, suppose that x1, x2, x3 = 0. Then
M12N21 = 0 (i)
M21N11 = 0 (ii)
M22N22 = 0 (iii)

and

MN =

[
M11N11 αM11N12

M22N21 M21N12

]
.

From the first block row and last block column of MN , we see that M11 and N12

are nonsingular. Since M12N22 = (
y2

x4

)M11N12, then M12 and N22 are nonsingular.

From (iii), N22 nonsingular means M22 = 0, and by (i), M12 nonsingular means
N21 = 0. Then, the (1, 2) position of MN is 0. In this event, N11,M21 cannot be
singular or MN would be singular. Since this would contradict (ii), the proof is
complete. 2

Lemma 13. If the four x′s or the four y′s are zero, then each of the 8 blocks
Mij, Nij has rank k/2.
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Proof. Assume that the four x′s are zero. Then we have that
M12N21 = 0
M11N12 = 0
M21N11 = 0
M22N22 = 0

that implies


r(M12) + r(N21) ≤ k (1′′)
r(M11) + r(N12) ≤ k (2′′)
r(M21) + r(N11) ≤ k (3′′)
r(M22) + r(N22) ≤ k (4′′)

From the nonsingularity of M and N , we have that
r(M11) + r(M12) ≥ k (5′′)
r(M11) + r(M21) ≥ k (6′′)
r(M21) + r(M22) ≥ k (7′′)
r(M12) + r(M22) ≥ k (8′′)

and


r(N11) + r(N12) ≥ k (9′′)
r(N11) + r(N21) ≥ k (10′′)
r(N21) + r(N22) ≥ k (11′′)
r(N12) + r(N22) ≥ k (12′′)

Without loss of generality, from (5′′), we suppose that r(M11) > k/2, then
from (2′′), r(N12) < k/2. But from (9′′) and (12′′), we have r(N11), r(N22) > k/2.
Then (3′′) and (4′′) oblige r(M21), r(M22) < k/2, it is contradicting to (7′′). So
the equality must be hold. By solving linear equations (1′′) to (12′′), we have that
all 8 blocks has the same rank, which is k/2. When the four y′s are zero, the
arguments are similar, completing the proof. 2

Note that when the four x′s are zero, then c1 = a1b1 = a2b2, and c2 = a2b1 =
a1b2. So c1c2 = a1a2b

2
1 = a1a2b

2
2, which means b1 = −b2, also c1c2 = a2

1b1b2 =
a2

2b1b2, which means a1 = −a2 and c21 = a1a2b1b2 = c22, which means c1 = −c2.
Then, we have the follow theorem

Theorem 14. When the four x′s (or the four y′s) are zero, the problem Pk has
a solution if and only if k is even and a1a2b1b2 = −c1c2, a2 = −a1, b2 = −b1 and
c2 = −c1.

Proof. When k is odd, lemma 13 shows that no solution is possible. If k is
even, the above calculation shows that the conditions on the a′s, b′s and c′s are
necessary, while lemma 13 again shows the necessity of k even. In this event, the
choice of

M =


0 0 I 0
0 I 0 0
I 0 0 0
0 0 0 I

 N =


0 0 I 0
I 0 0 0
0 0 0 I
0 I 0 0
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verifies that there is a solution and complete the proof. 2

Thus, all cases in which at least one of xi, yi is zero have been covered, and
we state the general result in the next section.

5 General Balanced, Even Case

The general solution to problem Pk may now be stated as

Theorem 15. There is a solution to problem Pk if and only if either a1a2b1b2 =
c1c2, or, when k is even, a1a2b1b2 = −c1c2 and a2 = −a1, b2 = −b1 and c2 = −c1.

Proof. A consequence of theorem 8 and theorem 14. 2

Corollary 16 . If k is odd, then, there is a solution to problem Pk if and only if
a1a2b1b2 = c1c2.

6 The General Two-Eigenvalue, Diagonalizable

Case

We now turn our attention to the general “two-eigenvalue, diagonalizable case”:
each of our three matrices has precisely two distinct eigenvalues and is diagonal-
izable. (If one had only one eigenvalue, then a certain matrix would have to be
a multiple of the inverse of another, and the analysis would be straightforward.)
The balanced case, analyzed above, will be crucial, as we will see that every
situation may be reduced to it. Since the balanced case has been analyzed, we
consider here only non-balanced situations (and apply the balanced result when
appropriate). In such situations, the geometric multiplicity constraint will always
apply, and, when it does, an eigenvector argument will imply the reduction.

We suppose, now, that

Ã =

[
a1Ip 0

0 a2In−p

]
, B̃ =

[
b1Iq 0

0 b2In−q

]
, and C̃ =

[
c1Ir 0

0 c2In−r

]
,

and again ask, problem P = P (a1, p, a2, b1, q, b2, c1, r, c2, n), when there are ma-
trices A similar to Ã, B similar to B̃ and C similar to C̃ such that AB = C? In
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this event, we say that problem P is feasible. Note that, because of similarity,
we may assume the numbers a1, a2 (resp., b1, b2 or c1, c2) are in an order of our
choice. By convention, we take them so that p ≥ n− p, q ≥ n− q and r ≥ n− r.
Because the problem AB = C is equivalent to C−1A = B−1 or BTAT = CT , etc,
we may also suppose that p, q, and r are in any relative order we like. Often, we
take them so that p ≥ q ≥ r. It is convenient to array the data of our problem
as a diagram:

A B C
a1(p) b1(q) c1(r)

a2(n− p) b2(n− q) c2(n− r)
If we assume that p ≥ q ≥ r ≥ n− r, with not all equalities, we must then have
p+ q > n and also (unless p = q) p+ (n− q) = n+ (p− q) > n. In these events,
the geometric multiplicity constraint applies, and we must have

a1b1 = c1 or c2; a1b2 = c1 or c2.

If a1b1 = ci and p > q, then a1b2 = c3−i, else b1 = b2, which is not allowed by the
distinctness assumption.

Using the following lemma, when the geometric multiplicity constraint ap-
plies, the problem P may be reduced to a smaller one and the above diagram ma-
nipulated accordingly, perhaps with constraints on the data accumulated along
the way.

Lemma 17. If the problem P is feasible for p+ q > n (respectively p > q), then
one of the problems P (a1, p−1, a2, b1, q−1, b2, c1, r−1, c2, n−1) (resp., P (a1, p−
1, a2, b1, q, b2, c1, r−1, c2, n−1)) or P (a1, p−1, a2, b1, q−1, b2, c1, r, c2, n−1) (resp.,
P (a1, p− 1, a2, b1, q, b2, c1, r, c2, n− 1)) is feasible.

Proof. It is suffices to prove the un-parenthetical claim; the parenthetical
claim is similar. The two parts of the claim only differ with regard to whether
the geometric match is a1b1 = c1 or a1b1 = c2.

Since p + q > n the eigenspaces for a1 in A and b1 in B intersect; let u be
a normalized vector lying in each. As in the proof of Schur’s theorem [1], let U
be a unitary matrix whose first column is u. Now, let Ã = U∗AU , B̃ = U∗BU ,
and C̃ = U∗CU , so that from the assumption AB = C in the feasibility of P , we
have ÃB̃ = C̃. But

Ã =

[
a1 ∗
0 A′

]
and B̃ =

[
b1 ∗
0 B′

]
,
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so that

C̃ =

[
ci ∗
0 C ′

]
, i = 1 or 2.

It follows that A′B′ = C ′, that A′ has eigenvalues a1 (multiplicity p − 1) and
a2 (multiplicity n − p), that B′ has eigenvalues b1 (multiplicity q − 1) and b2
(multiplicity n − q), and that C ′ has eigenvalues c1 and c2 (with one of the
multiplicities decreased by one), with, via a simply Jordan form argument, each of
A′, B′ and C ′ diagonalizable. Of course, by the geometric multiplicity constraint,
a1b1 must be one of the eigenvalues of C, but, a priori, we do not know which one.
The existence of A′ B′ and C ′ shows that one of the indicated smaller problems
is feasible, as a consequence of the feasibility of the larger one. 2

We note that the smaller problem in lemma 17 may, in general, be feasible
in more ways than the larger one.

Using lemma 17, every two eigenvalue situation may be reduced to a (unique)
balanced one via, perhaps several, applications of the lemma. The accumulation
of restrictions en route, together with the restrictions of the resulting balanced
problem, will give the totality of conditions for feasibility of the original prob-
lem. It will be helpful to determine the outcome in a few key situations before
describing the general case. This also is useful for describing the method. We
also note, in each situation to follow, once necessary conditions are accumulated,
via reduction based upon lemma 17, their sufficiency follows from the simple fact
that the conditions may be satisfied by diagonal matrices A,B and C (unlike the
balanced cases). We omit the details; see examples in the next section.

It is straightforward to reduce the general case to a “semi-balanced” one, i.e.,
one in which n = 2p is even and two of the three matrices have equal multiplicities
for the two eigenvalues. In this event, we may take the data to be

A B C
a1(p) b1(p) c1(r)
a2(p) b2(p) c2(n− r)

in which n = 2p and r > p. Since r+p > n, the geometric multiplicity constraint
gives that c1 must be the product of one of the a′is and one of the b′is. By
symmetry, we may (by renumbering, if necessary) assume c1 = a1b1. Then,
applying the reduction r − p times we obtain the diagram:
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A B C
a1(2p− r) b1(2p− r) c1(p)
a2(p) b2(p) c2(2p− r)

.

Now, the geometric multiplicity constraint implies that a2b2 = c1, as well and
application of the reduction another r − p times yields the balanced, diagram:

A B C
a1(2p− r) b1(2p− r) c1(2p− r)
a2(2p− r) b2(2p− r) c2(2p− r)

.

Now, we may apply theorem 15 with k = 2p− r, and, since the parity of 2p− r
is that of r, we use r as the parameter. According to the theorem, if r is odd, we
must have

a1a2b1b2 = c1c2.

As we also have a1b1 = a2b2 = c1, we conclude that c1 = c2, which is not allowed.
Thus, for r odd no semi-balanced problem is feasible. However, if r is even, there
is the additional possibility that

a1a2b1b2 = −c1c2, and a1 = −a2, b1 = −b2, c1 = −c2.

This is consistent with the accumulated conditions a1b1 = c1 = a2b2 and gives
the following lemma in the semi-balanced case.

Lemma 18. If r > p and

Ã =

[
a1Ip 0

0 a2Ip

]
, B̃ =

[
b1Ip 0

0 b2Ip

]
, and C̃ =

[
c1Ir 0

0 c2I2p−r

]
,

then there are matrices A similar to Ã, B similar to B̃ and C similar to C̃ such
that AB = C if and only if r is even and a1 = −a2, b1 = −b2, c1 = −c2 and
c1 = aibj for some i ∈ {1, 2} and some j ∈ {1, 2}.

Using lemma 18 and additional manipulation of appropriate diagrams with
lemma 17 and the geometric multiplicity constraint, we may now give three
theorems that along with theorem 15, cover all possible situations in the two-
eigenvalue, diagonalizable case (because of the fact that p, q, r and n− r may be
arranged as needed).

If, for example, all three are equal (p = q = r) and we are unbalanced
(r > n− r), the diagram is:
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A B C
a1(p) b1(p) c1(p)

a2(n− p) b2(n− p) c2(n− p)
and we get a1b1 = c1 from the geometric multiplicity constraint and 2p − n
applications of the reduction gives the (balanced) diagram:

A B C
a1(n− p) b1(n− p) c1(n− p)
a2(n− p) b2(n− p) c2(n− p)

Now, application of theorem 15 yields the conditions in this case.

Theorem 19. If p > n− p and

Ã =

[
a1Ip 0

0 a2In−p

]
, B̃ =

[
b1Ip 0

0 b2In−p

]
, and C̃ =

[
c1Ip 0

0 c2In−p

]
,

then there are matrices A similar to Ã, B similar to B̃ and C similar to C̃ such
that AB = C if and only if either (a) a1b1 = c1 and a2b2 = c2 or (b) n− p is even
and a1b1 = c1, a2 = −a1, b2 = −b1 and c2 = −c1.

Now, if p = q > r ≥ n− r, the diagram

A B C
a1(p) b1(p) c1(r)

a2(n− p) b2(n− p) c2(n− r)
may, upon 2p− n applications of reduction be manipulated to

A B C
a1(n− p) b1(n− p) c1(n+ r − 2p)
a2(n− p) b2(n− p) c2(n− r)

if a1b1 = c1 and n+ r ≥ 2p, or to

A B C
a1(n− p) b1(n− p) c1(r)
a2(n− p) b2(n− p) c2(2(n− p)− r)

if a1b1 = c2 and 2(n− p) ≥ r. Upon application of lemma 18 this gives
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Theorem 20. If p > r ≥ n− r and

Ã =

[
a1Ip 0

0 a2In−p

]
, B̃ =

[
b1Ip 0

0 b2In−p

]
, and C̃ =

[
c1Ir 0

0 c2In−r

]
,

then there are matrices A similar to Ã, B similar to B̃ and C similar to C̃ such
that AB = C if and only if a2 = −a1, b2 = −b1, c2 = −c1 and either i) c1 = a1b1,
n+ r ≥ 2p and n− r is even or ii) c1 = a2b1, 2(n− p) ≥ r, and r is even.

We finally turn our attention to the generic two eigenvalue case of P in which
no equalities occur: with p > q > r ≥ n− r and the diagram is

A B C
a1(p) b1(q) c1(r)

a2(n− p) b2(n− q) c2(n− r)

For the first step of reduction there are now two possibilities (for satisfaction of
the geometric multiplicity constraint), depending upon whether a1b1 = c1 or c2.
In the former case, the diagram reduces to

A B C
a1(n− q) b1(n− p) c1(n+ r − (p+ q)
a2(n− p) b2(n− q) c2(n− r)

This means that we must have n + r ≥ p + q, and, if this inequality is satisfied
with equality, we would revert to a case of one eigenvalue in C (so that the new
B would be a multiple of A−1). Since 2(n − q) > n − q + n − p, the geometric
multiplicity constraint now applies to a1 and b2, whose product must be c2 (if it
were c1, we would conclude that b2 = b1, contradicting distinctness). We may
then apply equivalence p− q times to arrive at the semi-balanced case:

A B C
a1(n− p) b1(n− p) c1(n+ r − (p+ q))
a2(n− p) b2(n− p) c2(n+ q − (p+ r)).

Application of lemma 18 in this case now requires that n + q − (p + r)(> n +
r − (p + q)) is even, that a2 = −a1, b2 = −b1, and c2 = −c1. We already have
a1b1 = c1 (and a1b2 = c2, which is implied) and n+ r ≥ p+ q.

One the other hand, if a1b1 = c2, the original diagram similarly reduces to
the semi-balanced one:
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A B C
a1(n− p) b1(n− p) c1(r − p+ q)
a2(n− p) b2(n− p) c2(2n− r − p− q).

The accumulated conditions are: c2 = a1b1, c1 = a1b2 and 2n ≥ p + q + r. From
lemma 18, we obtain that r − p + q(> 2n − r − p − q) must be even and that
a2 = −a1, b2 = −b1, and c2 = −c1, and we already have c2 = a1b1 (and c1 = a1b2,
which is implied) and 2n ≥ p+q+r. Note that the parity requirements in the two
cases are the same if and only if n is even, and note that the second inequality
requirement is more stringent than the first.

The two cases may be combined to give the general result in this situation.

Theorem 21. If p > q > r ≥ n− r and

Ã =

[
a1Ip 0

0 a2In−p

]
, B̃ =

[
b1Iq 0

0 b2In−q

]
, and C̃ =

[
c1Ir 0

0 c2In−r

]
,

then there are matrices A similar to Ã, B similar to B̃ and C similar to C̃ such
that AB = C if and only if a2 = −a1, b2 = −b1, c2 = −c1 and either

i) n+ q − (p+ r) is even, n+ r ≥ p+ q and c1 = a1b1 or

ii) r − p+ q is even, 2n ≥ p+ q + r and c2 = a1b1.

7 Some Indicative Examples

It is clear that in some balanced cases, the matrices A,B and C cannot all be
diagonal (of course, one can be, as simultaneous similarity leaves our problem
unchanged). For example, when n = 4, the numbers a1 = 1, a2 = 2, b1 = 2,
b2 = 4, and c1 = 1, c2 = 16 satisfy theorem 15. Thus, there is a solution, A is
similar to Ã and B is similar to B̃ such that

A =


3/5 0 −7/5 0
0 3/5 0 −7/5

2/5 0 12/5 0
0 2/5 0 12/5

 , B =


6/5 0 56/5 0
0 6/5 0 56/5
−1/5 0 24/5 0

0 −1/5 0 24/5

 ,

and AB = C̃, but in no solution can all three matrices be diagonal, as there is
no pairing of the ai and bi to give the ci as products.
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However, all non-balanced cases that are feasible face more stringent re-
quirements than balanced cases. These requirements mean that a solution may
be taken to be such that all matrices are diagonal. The inequality constraints on
p, q, r and n that occur insure that there will be sufficiently many ai and bi to
match the c1 and c2 that are present. For example, a modification of the situ-
ation above leaves it feasible, but, satisfaction of the requirements is sufficiently
more demanding (theorem 21) that a diagonal solution now exist when the con-
ditions of theorem 21 are met. Suppose n = 17, p = 12, q = 10, r = 9. Then
n + q − (p + r) = 6 is even and n + r > p + q. Without loss of generality, we
may suppose a1 = b1 = 1, and then c1 = 1 and a2 = b2 = c2 = −1, according to
theorem 21. Thus, we may suppose that

Ã =

[
I12 0
0 −I5

]
, B̃ =

[
I10 0
0 −I7

]
, and C̃ =

[
I9 0
0 −I8

]
.

But, then A =


I7 0 0 0
0 −I2 0 0
0 0 I5 0
0 0 0 −I3

 is similar to Ã, B =


I7 0 0 0
0 −I2 0 0
0 0 −I5 0
0 0 0 I3


is similar to B̃, and they satisfy AB = C̃.
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