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Abstract. The structure and linear stability of the one-dimensioriabdy overdriven detonation wave supported by a
chemical reaction of typ& + A = B+ B are examined in the frame of the Boltzmann equation extenadeaemically
reacting gases. The structure of the steady wave solutaetésmined solving the system of the Rankine-Hugoniot itmms
supplemented with the rate law, in a chemical regime whichesponds to the early stage of the reaction process. Tperss

of such steady wave solution to one-dimensional disturesiginvestigated using a normal mode linear analysis whaits

to an initial value problem for the state variable disturtesin the reaction zone. Some results are obtained nurheiita
order to describe the stability spectra of the steady swilufThe emphasis of the present study is on the influence of the
reaction heat on the linear stability spectra.

Keywords: Boltzmann equation, Chemical reactions, Steady detamataves, Stability.
PACS: 51.10.+y 47.70.Pq 82.33.Vx 47.20.-k

INTRODUCTION

The one-dimensional steady detonation wave is commonlgrithesl in literature [1], [2] using the reactive hydro-
dynamic equations and related Rankine-Hugoniot jump ¢mmdi. The configuration of the steady wave solution is
qualitatively described by the ZND model [2] and consistaiplane non-reactive shock propagating with constant
velocity, followed by a finite reaction zone where the chahieaction takes place. This rather standard approach
has been used in classical fluid mechanics [3]-[6] more thcen the framework of the kinetic theory for chemi-
cally reactive system [7]-[10]. In particular, in the retpaper [9] by the present authors, the dynamics of the steady
detonation in a binary mixture undergoing a chemical reactif typeA-+ A = B+ B has been characterized with
the main purpose of analysing the effects of the reaction tve@he detonation wave solution. The structure of the
one-dimensional steady detonation wave solution has begracterized in that paper resorting to a different closure
procedure of the reactive hydrodynamic equations. In fastead of the usual equilibrium Maxwellian distribution
function, the hydrodynamic closure is based on the nonlibguim solution of the Boltzmann equation obtained in
paper [11] by means of the Chapmann-Enskog method in a chersgime proper of the early stage of the reaction
process, when the elastic time scale is smaller than théveane.

On the other hand, experimental studies [1], [2], [12] rétteat the ZND detonation solution tends to be structurally
unstable since a small rear perturbation of the wave front affect the steady character of the state variables
in the reaction zone and the detonation solution does noitatigmore a steady configuration. The stability of
detonation waves and subsequent evolution of the indiabiln the reaction zone constitutes a relevant reseapit to
in detonation theory, after the pioneering studies coretlioy Erpenbeck [13], based on a Laplace transform approach,
and many further contributions, see for example paperfgi]14] based on a normal mode analysis combined with
a numerical shooting technique. At the kinetic level, in fiz@ne of the Boltzmann equation extended to chemically
reacting gases, the linear stability of steady detonatiames has been formulated for the first time in paper [15],
where a rather complete stability picture is shown withnmetfiee to the Hydrogen-Oxygen system. Starting from this
kinetic approach, the linear stability of the steady detimmasolution characterized in paper [9] is here invesddat
integrating numerically the ODE'’s for the steady stateuttsinces, between the detonation shock and the reaction
equilibrium state. Some results on both the steady detmmatave structure and its linear stability are discussed and
the numerical technique used to perform the stability satioihs is described.



PRELIMINARIES ON THE REACTIVE KINETIC MODEL

Consider a binary mixture of constitue#t&indB, with the same masaand binding energieS, andEg, respectively,
undergoing binary elastic collisions and inelastic inttians with chemical reaction of type+ A = B+ B. At the
kinetic level, the mixture is described by the reactive Bolann equations of paper [11], namely
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WhereQEﬁ and QR are the elastic and reactive collision terms, respectiwvefypse explicit expressions are omitted
here for sake of brevity. In the above cited paper [11], a equiibrium solution of the previous Egs. (1) has been
explicitly obtained as a small perturbation of Maxwelligstdbution f}!, using the asymptotic expansion procedure
of Chapman-Enskog in a chemical regime for which the reagiiocess is close to its initial stage,
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wherek the Boltzmann constant,andT the mean velocity and temperature of the mixture, and given by
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Above,xa=na/n is the concentration of th&-constituentd andd, are the elastic and reactive diametezsand
A* = A/KT the activation energy and the affinity of the forward reactio units ofkT, andQg = Qr/KT is the
reaction heat in units &{T. Moreover,Qr=2(Eg — Ep), so thatQr > 0 when the forward reaction is endothermic
wherea®Qr < 0 when it is exothermic. The solution given by Egs. (2-3) bitan appreciable influence of the reaction
heat as well as a small contribution of the affinity, and hanlmbtained adopting elastic cross sections of hard-sphere
type and reactive step cross sections with activation griédg.

At the macroscopic level, the mixture is described by theegoing balance equations for the number densities
of the constituents, mean velocityand temperatur@ of the mixture,

. 1 B .
no=[fadca,  w=>Y [cifodcs,  T=or- z/ V)2 fadcy, (@)
- d=n

whose time-space evolution, in one-space dimension, inetkhy
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Above,uf, n, p, pij, i define the diffusion velocity of the-constituent, the number density, mass density, pressure
tensor and heat flux of the mixture. Moreover, the teghon ther.h.s.of Eqg. (5) is the reaction rate, given by
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which has been obtained through the closure process of therdeEgs. (5-6), using the non-equilibrium distribution

fé,o) given by expressions (2-3).

STEADY DETONATION SOLUTION

The main aspects of the steady detonation modelling prapmgéhe authors in paper [9] are recalled here with the
aim of investigating the linear stability of the one-dimems steady detonation solution characterized in thaepap



With reference to the ZND idealized description of the datam wave [2], the steady detonation wave consists in
a plane non-reactive shock followed by a finite reaction ashere the chemical reaction takes place. The shock is
located atx=Xp, and the reaction zone remains frogito xg. The state just behind the shock is the Von Neumann
state, where the chemical reaction is triggered, and thdéomaged akr is the final state, where the chemical reaction
reaches the equilibrium. Ahead of the shock front, that isxfo- xg, the gas is in its initial state and the chemical
reaction is not yet initiated. Assuming that the shock wangppgates from left to the right with constant velodity
along thex-direction, one first introduces the normalized steadyaldeixs = (x — Dt)/Dtc, tc= , /W/(4n+d2),
where the superscript refers to the initial state. For sake of simplicity, the nailized steady variablgs is still
denoted with the plane symbxlThe structure of the steady detonation solution of the dgginamic equations (5-6)
can be determined using the following jump Rankine Hugotheiditions
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together with the rate equation describing the advanceoféhe chemical reaction in the reaction zone, namely

dw __ Dleta (10)
dx v-D+ NAGAe

Equations (8-10), witlD as parameter, characterize any arbitrary staigx), ng(x),v(x), T(x)) within the reaction
zone, say fox € [xo,Xe], in dependence of the initial state,,ng,0,T"). In particular, the von Neumann state just
ahead the shock, where the chemical reaction is not yettaitj can be characterized by Eqgs. (8-9) together with a
further jump condition of Rankine Hugoniot type, obtainszhi Eq. (10) by integration acrossing the shock wave. This
problem has been numerically solved in paper [9] for bothfesanic and endothermic chemical reactions, in the case
of an overdriven detonation wave, that is a detonation waet propagates with velocity greater than the Chapman-
Jouguet one and thus, once initiated, does not need anynak®rpport to sustain its further evolution. Figure 1
shows some representative steady detonation profiles éomtkture pressure, assuming the following kinetic and
thermodynamical input parametdds= 1700ms ™2, n; = 0.35mol/I, nj = Omol/l, m= 0.01Kg/mol, T+ = 298 15K,

Ea = 240K ande, = 6. The pictures show that the steady detonation solutiorrésetive rarefaction wave for an
exothermic reaction and a reactive compression wave fondateermic reaction.
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FIGURE 1. Left: Pressure profile for an exothermic chemical reaction Wigh= —1 (solid line) andQg = —2 (dashed line).
Right: Pressure profile for an endothermic chemical reaction @gk= 1 (solid line) andQg = 2 (dashed line).

LINEAR STABILITY ANALYSIS

A normal mode linear stability analysis is developed hernetfie one-dimensional steady overdriven detonation
solution characterized in terms of Egs. (8-10), as desgiiin¢he previous section. The main purpose is to investigate
the response of the steady structure to small rear boundsityrpations which are instantaneousnly assigned and
induce a deviation on the planar shock wave. This distomgjioas rise to small perturbations on the state variables
which propagate in the reaction zone and can either grow caydm time. The stability of the steady solution is
determined by the evolution of those small perturbatiorth@reaction zone The mathematical analog is defined by
the stability equations derived from the one-space dinegradiversion of the hydrodynamic equations (5-6), through
a linearization around the steady solution assuming anrexgi@l time-dependence for the perturbations.



First, let introduce a more convenient coordinate systemyt.s—t/t;, y = x/Dtc, into the hydrodynamic equations

in one-space dimension. For sake of simplicity, relabelrtee time coordinaté, with the previous symbadl. The
following step consists in transforming the resulting eopres to the perturbed shock attached frame. At this end, let
introduce the shock front displacement from the unperuigasition,{i(t), so that the perturbed shock is located at
Y(t) =Dt + @(t) and its velocity isD(t) = D+ (' (t). Let consider then the wave coordinates y — (t), which
measures the distance from the perturbed shock and obsatvihé instantaneous position of the perturbed shock
wave isx = 0 in the new shock-attached coordinate system. The comegpg transformed equations are omitted
here. The next step consists in the linearization of thesttamed hydrodynamic equations around the steady state,
assuming a normal mode expansion for the state varialess, v and p. Intoducing the state vectardefined by
z=[na ng v p|", the expansions are assumed in the form

Z(xt) =7 (x)+€ez(x), Yt)=Te", aPeC, (11)

wherez*(x) represents the steady solution aty) the unknown space disturbances, with C. Moreover, is a
perturbation parameter ared= a + i3, with o being the perturbation growth rate afdhe perturbation frequency.
The linearization of the transformed governing equatiorthé perturbed shock frame leads to the stability equations
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In these equation¥a andTg = —Ta denote the linearized reaction rates whose form reads
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wherell = 3 (% Qk (1+ Qk+ Qrea+ ex — 2652) (4€:3 — 8ex2 — g4 — 1) e %A, Equations (12-14) govern the dy-
namics of the perturbatiorz$x) in the reaction zone and have to be integrated from the frertishock positior =0

to the equilibrium final state = x¢. The initial conditions to be joined to these ordinary diffietial equations connect
the value of the disturbances at the von Neuman state tozhieivalue ahead the perturbed shock. They are provided
by the Rankine-Hugoniot relations (8-9) together with tivetfer jump condition for the von Neuman state obtained as
explained in the previous section. After applying the camaite transformations and related normalizations intcedu
above to the jump conditions at the von Neuman state, theedBsiitial conditions are obtained in the form
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The stability equations (12-14), as well as the relatedainitonditions (16-18), have been deduced introducing the
normalizationw = z/{ of the state variables, which avoids the dependence of tnedmplex parametap. They
constitute a set of eight real equations in the eight unkrsoRRew and Imw, which is not closed since the parameter
ais involved. The necessary closure condition, which githesdispersion relation for the normal modes (11), is the
radiation condition usually adopted in the literature & tfetonation stability [15], [16]. This condition stateattthe
inherent instability of the detonation wave solution réseixclusively from the interplay between the leading shock
and the reaction zone and can not be affected by furthertestees traveling towards the shock from a great distance
from the reaction zone. Thus the closure condition is assigit the equilibrium final state in the form

\_/(XF) +a= ﬁ(XF), (29)



wherey is the ratio of specific heatsg, andpg, the isentropic sound speed and gas density at equilibrium.

The linear stability problem of the steady detonation isrfolated in terms of the complex disturbanzés and
perturbation paramete, by means of the ordinary differential equations (12-14hvinitial conditions (16-18) and
closure condition (19). For a given set of thermodynamical ehemical parameters specifying the structure of the
steady detonation wave solution, the disturbarzesand perturbation parametarare determined numerically. To
do this, a trial value o& in a fixed bounded domaiR of the complex plane is considered and then Egs. (12-14) are
integrated in the reaction zof@ x¢]. For a given steady detonation solution, an arbitrary vafieedoes not satisfy
the closure condition (19) and thus it does not produce disalof the satbility problem. To overcome this difficulty,
the residual functioi (a), defined from the closure condition by

H(a) = |V(xe)+a+ Pxe)|, aeR, (20)

eCeq
is estimated at each trial value af and only those solutiongx) obtained for values oé for which the residual
function vanish within a given tolerance are accepted. bfeoto implement the numerical scheme to solve the
stability problem, it is convenient to approximate the kma of the zeros oH(a) and find a confidence domain
‘R in the complex plane containing, at least, one zero of thewasfunction. The search of such a domain requires a
rather sophisticated technique which is explained in Higtélne extended version of the present work [17]. When the
confidence domain is supplied and the zer&i¢d) is found in that domain, the numerical scheme provides tieeen
stability solution, that is the perturbation) and the perturbation parameter

Some simulations have been done using the numerical proeeelierred above, in order to describe the stability
spectra of the steady detonation solution. The resultshemgrsin the next section.

RESULTS AND DISCUSSION

The response of the steady detonation solution to the reamdaoy perturbations, as well as the influence of the
reaction heat on the stability spectra, is investigatedisglnumerically the stability problem formulated in terms
of the perturbation parametarand perturbationz by the Eqgs. (12-19). For the simulations, a rectangulaioregi
such that 0< Rea < 0.02 and 0001< Ima< 0.1 is considered in the right complex half-plane. For thedfelhg
kinetic and thermodynamical input parametérs= 1700ms %, n{ = 0.35mol/I, n§ = Omol/I, m = 0.01Kg/mol,
T+ =29815K, Ea = 240K ande; = 6. The results on the stability problem are in dimensiorfiess. The influence
of the reaction heat on the stability spectra is investdjhieconsidering the reaction heat varying in a given domain.
In the present paper the analysis is restricted to the rartfe<0Qg < 1, corresponding to endothermic chemical
reactions. When the reaction heat increases the numberad oéthe residual functiokl (a) in the right complex
half-plane decreases. In the left Frame of Figure 2, theatimr in the complex plane of the zero with lower imaginary
part, corresponding to that zero with lower perturbati@gtrency, is shown. The results shown in the other pictures
have been obtained f@y; = 1. A three-dimensional plot dfl (a) in a sub-region ofR is shown in the right Frame
of Figure 2, where the location of one zero is evidentiatgghidal unstable profiles are exhibited in Figure 3 for
Rea=10"°, Ima=6,0419x 102, where the real part of the pressure perturbatiom,Rerepresented in the reaction
zone. Frame 1 exhibits a complete profile whereas Frame 2sshaletailed profile in the vicinity of the von Neuman
state, As expected, the profile shows that the perturbatigreiater at the von Neuman state and tends to decay when
the distance from the perturbed shock increases. The ihistapectrum is complemented in Frames 3, 4 of Figure
3, where the time evolution of the real part of the total punesgerturbationp = €'p, at the von Neuman state, is
represented. Frame 3 evidentiates the increasing timevioeinaf the perturbation, and Frame 4 shows a detailed
representation.

The real parts of the other state variables perturbationels ag the corresponding imaginary parts, show an
analogous behaviour. See paper [9] for more detailed gesult
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FIGURE 2. Instability spectrumLeft: Migration in the complex plane of the zeeoof the residual functiorH (a) with lower
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