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In this work, the nonparametric kernel prediction will be considered for stochastic processes,
when a random design is assumed for the spatial locations. We will check that, under rather
general conditions, the mean-squared prediction error tends to be negligible, as the sample
size increases. However, the use of the optimal bandwidth demands the estimation of unknown
quantities, whose approximation in an accurate way often turns out to be difficult in practice.
Hence, alternative cross-validation approaches will be provided for the selection of both local
and global bandwidths. Numerical studies were carried out in order to analyse the performance
of the nonparametric predictor for both simulated and real data.
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1. Introduction

A fundamental problem in spatial statistics is that of reconstructing a phenomenon
over its domain from a discrete set of observed values. The kriging techniques are
typically used for the latter purpose, providing us with predictors that are optimal
in some sense. In fact, the referred approaches are derived by minimizing the mean-
squared prediction error, subject to some constraints that are dependent on the
hypotheses assumed from the random process.

Stationarity is a typical requirement and, under this condition, linear techniques
have been developed to provide us with spatial predictors (e.g. [1, 2]). However,
the results of the kriging equations rely on the validity of the conditions required,
so that a failure in the hypotheses may have a significant effect. For instance, the
misspecification of the distribution, of the mean or of the second-order structure
may lead to poor predictions.

Taking the above in mind, we propose an alternative that may be obtained via a
nonparametric approach. On this occasion, the kernel method has been considered,
as it has been extensively used in the statistics literature, due to its simplicity and
applicability to a wide range of problems, such as problems on density or regression
estimation (see e.g. [11, 13, 14]).

In the spatial setting, kernel approaches have been suggested for the estimation
of the dependence structure, in terms of the covariance function (e.g. [8]) or of
the semivariogram (e.g. [6]). The aim of this work is to introduce a nonparametric
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kernel predictor, which proves to be valid under rather general conditions. In par-
ticular, we will check that the mean-squared prediction error tends to be negligible,
as the sample size increases.

The implementation of the kernel method requires specification of a bandwidth
parameter. Although it might be chosen subjectively by eye, the selection of the
bandwidth is typically recommended to be derived from data. Possible options,
such as that involving sample splitting, are described in [7]. The most common
approach is based on the minimization of the corresponding error, providing us
with a consistent bandwidth, and use plug-in estimates for approximation of the
unknown terms [9, 12].

Proceeding in this way, we have derived the optimal bandwidth for kernel pre-
diction, which demands the estimation of quantities dependent on the first and on
the second order moments of the random process. Approximation of the referred
terms in an accurate way often turns out to be difficult. Hence, cross-validation
approaches are more easily attainable for a given data set, as explained in [10] and
references therein, which are also suggested in this work for the selection of the
bandwidth.

Finally, we will describe some numerical studies carried out in order to analyse
the performance of the nonparametric predictor, when adopting different selections
of the bandwidth, which will be compared with the results achieved by kriging
predictors, for gaussian and non-gaussian data. An application of the proposed
predictor to a real data set is also included.

This paper is organized as follows. Section 2 introduces the main hypotheses to
be assumed. In section 3, the kernel prediction is developed, where the dominant
terms of the mean squared prediction error are established and bandwidth selection
is discussed. The simulation studies and the application to real data are detailed
in sections 4 and 5, respectively.

2. Hypotheses

In this section, we will introduce the main conditions to be required so as to
guarantee the validity of our results. Firstly, the hypotheses assumed from the
spatial random process Z(x) will be detailed, focussed on the type of stationarity
imposed.

(H1) {Z(x) : x ∈ D ⊂ IRd} is a second-order stationary process with covariance
function C, namely that it satisfies the following conditions:

(i) E[Z(x)] = µ, for all x ∈ D and some µ ∈ IR.
(ii) Cov[Z(x), Z(y)] = C(x − y), for all x, y ∈ D and some function C.

(H2) C is three-times continuously differentiable in a neighbourhood of 0.
(H3) D is a bounded region with positive d-dimensional volume.

As regards the spatial locations, a random design will be assumed in order to
achieve consistent estimation. Then, let f be a density function considered on D.
We will denote by (X1, ...,Xn) a random sample of size n drawn from f and by
(x1, ..., xn) a realization of it. The density will be required to satisfy:

(H4) f is bounded and f(x) > 0 for all x∈D.
(H5) f is three-times continuously differentiable in a neighbourhood of x, for all x ∈ D.

The following hypotheses will be related to the kernel function as well as to the
convergence rates required from the bandwidth parameter h.
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(H6) Kd is a d-variate, compactly supported, symmetric and bounded density func-
tion, satisfying that Kd(0) > 0.

(H7) {h + n−1h2−d}
n→∞
−→ 0.

3. Main results

As remarked in the previous section, we will address our attention to the second-
order stationary processes. Let {Z(x) : x ∈ D ⊂ IRd} be a random process, with
constant mean µ and covariance function C.

Suppose that n data, Z = {Z(x1), ..., Z(xn))}, are collected, at known spatial
locations x1, ..., xn. If our aim is that of predicting the value of the random process
at any given x ∈ D, we suggest to use the following nonparametric predictor:

Ẑ(x;h) =

∑n
i=1 wiZ (xi)∑n

i=1 wi

which will be referred to as predictor NP, where wi = Kd

(
x−xi

h

)
, Kd represents a

d-dimensional kernel function and h is the bandwidth parameter.
One advantage when applying the above predictor is that implementation of

Ẑ(x;h) does not require estimation of the second order structure of the random
process, unlike that of kriging approaches.

Next, we will establish the dominant terms in the mean-squared prediction error
of the NP predictor.

Theorem 3.1 : Assume that {Z(x) : x∈D⊂IRd} is a stationary random process

and that conditions H1-H7 are satisfied. Then, for x ∈ D, one has:

E

[(
Z(x) − Ẑ(x;h)

)2
]

= 2n−1h2−df(x)−2
d∑

i=1

d∑

j=1

m2,i,jA1,i,j(x)−

−4h2f(x)−2
d∑

i=1

d∑

j=1

m1,i,jA2,i,j(x) + o
(
n−1h2−d + h2

)

where A1,i,j(x) = ∂C
∂z(i)

∣∣
0

∂f
∂z(j)

∣∣∣
x
− f(x)

2
∂2C

∂z(i)∂z(j)

∣∣∣
0
, A2,i,j(x) = ∂C

∂z(i)

∣∣
0

∂f
∂z(j)

∣∣∣
x

and

mp,i,j =
∫

z(i)z(j)Kd(z)pdz with p = 1, 2.

Proof : Take into account that the stochastic process is second-order stationary
over the observation region D, under H1, and that the spatial locations have been
assumed to be generated at random from a density f on D. Then, one has:

E[(Z(x) − Ẑ(x;h))2] = E[E[(Z(x) − Ẑ(x;h))2/X1, ...,Xn]] =

= 2E

[
a2(x) + a3(x)

a1(x)2

]
(1)
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where:

a1(x) =
∑n

k=1 Wk

a2(x) =
∑n

k=1 W 2
k (C(0) − C (x − Xk)) ,

a3(x) =
∑

k 6=l WkWl (C (Xl − Xk) − C (x − Xk) − C (x − Xl) + C(0))

with Wk = Kd

(
x−Xk

h

)
.

At the end of this proof, we will state the following orders for x ∈ D:

α1(x) = E
[
Kd

(
x−Xk

h

)
/X1, ...,Xn

]
= hdf(x) + o

(
hd
)

α2(x) = E
[
Kd

(
x−Xk

h

)2
(C(0) − C (x − Xk)) /X1, ...,Xn

]
=

= hd+2
∑d

i=1

∑d
j=1 m2,i,jA1,i,j(x) + o

(
hd+2

)

α3(x) = E
[
Kd

(
x−Xk

h

)
(C (Xl − Xk) − C (x − Xk) − C (x − Xl) + C(0)) /X1, ...,Xn

]
=

= −2h2d+2
∑d

i=1

∑d
j=1 m1,i,jA2,i,j(x) + o

(
h2d+2

)

Now, by applying similar arguments as those used in the proofs of Theorems 3.1
and 3.2 in [6] and conditions H3-H4, the following orders hold:

a1(x) = nhdf(x) + o
(
nhd

)
a.s.,

a2(x) = nhd+2
∑d

i=1

∑d
j=1 m2,i,jA1,i,j(x) + o

(
nhd+2

)
a.s.,

a3(x) = −2n2h2d+2
∑d

i=1

∑d
j=1 m1,i,jA2,i,j(x) + o

(
n2h2d+2

)
a.s.

The above relations together with (1) would allow to conclude the validity of
Theorem 3.1.

Then, it only remains to check the orders established for αi(x), i = 1, 2, 3. To do
the latter, we will bear in mind that:

α1(x) =
∫

Kd

(
x−u

h

)
f(u) du = hd

∫
Kd (z) f(x − hz) dz = hdf(x) + o

(
hd
)

by using the change of variable z = x−u
h , the fact that f is the density of the spatial

locations as well as hypotheses H5-H7.
On the other hand:

α2(x) =
∫

Kd

(
x−u

h

)2
(C(0) − C (x − u)) f(u) du =

= hd
∫

Kd (z)2 (C(0) − C (hz)) f(x − hz) dz =

= hd
∫

Kd (z)2 ·

·
(
−h
∑d

i=1 z(i) ∂C
∂z(i)

∣∣
0
− h2

2

∑d
i=1

∑d
j=1 z(i)z(j) ∂2C

∂z(i)∂z(j)

∣∣∣
0
+ ...

)
·

·
(
f (x) − h

∑d
i=1 z(i) ∂f

∂z(i)

∣∣∣
x

+ h2

2

∑d
i=1

∑d
j=1 z(i)z(j) ∂2f

∂z(i)∂z(j)

∣∣∣
x

+ ...
)

dz =

= hd+2
∑d

i=1

∑d
j=1 m2,i,jA1,i,j(x) + o

(
hd+2

)

on account of condition H2 together with H5-H7.
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Finally, it follows that:

α3(x) =
∫ ∫

Kd

(
x−u1

h

)
Kd

(
x−u2

h

)
·

· (C(u2 − u1) − C (x − u1) − C (x − u2) + C (0)) ·
·f (u1) f (u2) du1du2 =

= h2d
∫ ∫

Kd (z1) Kd (z2) (C(hz1 − hz2) − C (hz1) − C (hz2) + C (0)) ·
·f (x − hz1) f (x − hz2) dz1dz2 =

= h2d+1
∫ ∫

Kd (z1) Kd (z2) ·

·
(
2
∑d

i=1 z
(i)
2

∂C
∂z(i)

∣∣
0
− h

∑d
i=1

∑d
j=1 z

(i)
1 z

(j)
2

∂2C
∂z(i)∂z(j)

∣∣∣
0
+ ...

)
·

·
(
f (x) − h

∑d
i=1 z

(i)
1

∂f
∂z(i)

∣∣∣
x

+ ...
)(

f (x) − h
∑d

i=1 z
(i)
2

∂f
∂z(i)

∣∣∣
x
...
)

dz1dz2 =

= −2h2d+2
∑d

i=1

∑d
j=1 m1,i,jA2,i,j(x) + o

(
h2d+2

)

�

In view of Theorem 3.1, and having in mind the convergence rates established in
hypothesis H7, one might conclude that the mean-squared prediction error of the
proposed predictor is asymptotically zero.

Furthermore, the foregoing theorem allows us to derive an optimal bandwidth
h, which would be selected so as to minimize the mean-squared prediction error
above, which conveys that:

hopt(x) =

(
(2 − d)

∑
i,j m2,i,jA1,i,j(x)

4
∑

i,j m1,i,jA2,i,j(x)

)1/d

n−1/d (2)

Remark 1 : The optimal h given in (2) may not be useful in practice. On one
hand, hopt turns out to be zero for d = 2. On the other, for d 6= 2, the optimal
h is dependent on unknown quantities, whose estimation might be complex, such
as the derivatives of the density of the random locations as well as those of the
theoretical covariance function up to the first and second order, respectively.

Taking into account Remark 1, two different approaches will be suggested for
the selection of h which are intended to be easily applicable to real situations. The
first one provides us with a global bandwidth, a fair compromise shared among all
candidates to prediction locations all over the observation region. Its main advan-
tage is that it can be achieved with small effort. Alternatively, we suggest some
parametric bootstrap approach for the estimation of a local bandwidth, aiming to
offer an optimal value depending on the location of each specific prediction point.

Our proposal to obtain an optimal global bandwidth is based on a classic cross-
validation method. The fundamental idea behind this method, also called “the
leave-one-out method”, is to estimate Z(x) at each sample point xi from neigh-
bouring data Z(xj), j 6= i, as if Z(xi) were unknown. In this way at every sample
point xi we get a prediction estimate, and the optimal value hglo is the one which
globally minimizes all prediction errors. So, given a data set Z, the optimal global
bandwidth is determined as follows:

hglo = argminh∈H

{
1

n

n∑

i=1

∣∣∣Z(xi) − Ẑ−i(xi;h)
∣∣∣

}
(3)

where Ẑ−i(xi;h) represents the result of predictor NP at location xi when removing
Z(xi) and H is an adequate set of positive numbers when taking into account the
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spatial distribution of the sample locations. Proceeding in this way, hglo provides
us with a bandwidth selector that may be applied for prediction at any given point
x.

Our second proposal, designated for acquiring an optimal local bandwidth as a
function of the prediction location x, will be based on a numerical Monte Carlo
method. First, a satisfactory model for the sample data Z has to be chosen and,
then, model parameters θ have to be estimated, for instance by some least squares
criterium. Then, a large number of Monte Carlo simulated data sets should be
generated, given θ̂, on the sample locations x1, ..., xn, as well as, on the new location
x. Thus, suppose that we have a total of r replicas of Z denoted by Z1, ...,Zr. Then,
the optimal local bandwidth can be computed as:

hloc(x) = argminh∈H

{
1

r

r∑

i=1

∣∣∣Zi(x) − Ẑi(x;h)
∣∣∣

}
(4)

where Ẑ i(x;h) represents the result of predictor NP at location x when data Zi

are considered. As before, the optimal value hloc(x) given in (4) can then be used
for predicting the value of Z at the given point x.

Remark 2 : In practice, H may be taken as a discrete set of positive equispaced
values, depending on the minimum and maximum of the observed distances; the
latter criterium will provide a global option for H. An alternative could be that
of considering an upper bound for H given by the maximum distance from the
selected location x, either to the boundary or to the spatial locations xi. Moreover,
H must be constructed so as to satisfy that a percentage of locations xi are used
in the implementation of Ẑi(x;h), for each x.

4. Simulation studies

We now describe some simulation studies done in order to analyse the performance
of the prediction method suggested when adopting the optimal bandwidths given
in (3) and (4). The results of these predictors were compared with those achieved
with the ordinary kriging predictor (see e.g. [2]), under the assumptions of isotropy
and second order stationarity, for both Gaussian and non-Gaussian data. In the
latter case, we consider three distinct geostatistical processes: the chi-squared, the
Poisson log-linear and the binomial logistic-linear.

A chi-squared process is easily obtained as {(S(x))2 : x ∈ D}, where S(x) is a
Gaussian process with mean zero [2]. In this case, the covariance function of the
new process will be given by 2C2

S(u), where CS(u) = σ2ρ(u) with σ2 representing
the variance of S(x) and ρ(.) its correlation function (Appendix A).

The other two geostatistical processes, which were considered in our simulation
studies, correspond to the generalized linear geostatistical models presented in [4]
and briefly described next.

4.1. Generalized linear geostatistical models

Suppose that our sample data are (xi, Zi), with Zi = Z(xi) for i = 1, ..., n, and that
our basic aim is to predict the realized values of an underlying spatial process S(x).
Moreover, note that S(x) is a stationary Gaussian process with mean zero, variance
σ2 and correlation function ρ. If the random variables Z1, ..., Zn are Gaussian, then
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conditional on S(x), they are mutually independent with conditional distributions:

[Zi/S(x)] ∼ N(µ(xi), τ
2)

where µ(x) = α + S(x), for some real-valued α, and τ2 represents an unexplained
non-spatial variation in Z, most likely some measurement error .

In our case, we wish to extend this conditional formulation of the Gaussian linear
model to wider settings, more precisely we want to admit non-Gaussian probability
distribution for each measurement Zi conditional on S(x). This class of models are
usually referred to as generalized linear geostatistical models (GLGM). The GLGM
generalize, and also include, the linear Gaussian model. The generic conditional
expectations should now be represented as:

E[Zi/S(x)] = µ(xi) = g(α + S(xi))

where g(.) is the analytic inverse of the link function h(.) and α is some real value.
In our numerical studies, we consider the following GLGMs:

• The Gaussian model in which the link function simplifies to the identity function.

• The Poisson model in which the link function is the logarithm and the conditional
ditribution of each Zi is Poisson; so, one has

[Zi/S(x)] ∼ Poisson(exp(α + S(xi))).

This is a natural candidate model for spatially referenced count data. For exam-
ple, suppose that S(x) measures the surface of pollution in a given area, then
Zi could represent the concentration in ppm for a certain heavy metal. This
example will be analysed in Section 4.2.

The covariance function of the Poisson log-linear process may be approximated
to exp(2α)CS(u), as checked in Appendix A.

• The binomial model in which the link function is the logit, and the measurements
Zi represent the outcomes of conditionally independent Bernoulli trials with
Prob[Zi = 1/S(x)] = p(xi). Therefore:

E[Zi/S(x)] = µ(xi) = p(xi) =
exp(α + S(xi))

1 + exp(α + S(xi))
.

In practice, this model is more useful if the binary Zi are replaced by condi-
tionally binomial counts with large denominators ni. An example is given in [3]
where the aim was to analyse the spatial variation in the risk of a certain bacteria
infection relative to other infections in a given region. The data was then treated
as binomial counts at unit postcode locations, conditionally on an unobserved
relative risk surface previously estimated.

The binomial logistic-linear process has an approximate covariance function

given by exp(2α)
(1+exp(α))4 CS(u), as we will show in Appendix A.

4.2. Comparison of results

In our studies, we took the symmetric Epanechnikov kernel, the observation region
D = [0, 4]2 ⊂ IR2 and sample size n = 100. The data Z1, ..., Z100, Gaussian and
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Table 1. Comparison of predictors P and NP through the means and standard deviations

of the APE, derived from 100 simulated data sets of size 100.

Data Method MAPE sd(APE) h θS

Gaussian

P

NP
hglo

hloc

1.0183

1.2544
0.9982

0.8776

0.8208
0.8102

0.69
0.48

µS = 8
σS = 4
φS = 2

r = 10000

Chi-squared

P

NP
hglo

hloc

0.4502

0.4847
0.4424

0.4983

0.5033
0.4764

0.67
0.43

µS = 0
σS = 1
φS = 2

r = 10000

Poisson

P

NP
hglo

hloc

3.0984

3.0206
2.9807

2.9543

2.8825
2.9416

0.97
0.87

µS = 2
σS = 0.6
φS = 2
r = 50

Binomial (N = 20)

P

NP
hglo

hloc

2.4441

2.3008
2.2855

1.7983

1.791
1.7560

1.13
1.05

µS = 0
σS = 0.6
φS = 2
r = 50

non-Gaussian, were always generated from some underlying Gaussian process S(x),
with a covariance function given by an exponential model.

In a preliminary study, the impact of model misspecification of the covariance
function was analysed. In this context, the NP predictor was compared with the
parametric ordinary kriging predictor (from now on denoted as P), when consid-
ering for estimation two distinct covariance models: the matérn and the spherical
ones. We have concluded that the effects of a wrong covariance model specification
were present, but not that much significant. Consequently, the following studies
did not consider the misspecification issue.

Table 1 summarizes the main results obtained on the comparison of P and NP
predictors. In the latter case, results of a global and a local bandwidths, given in
(3) and (4) respectively, are also compared. The absolute prediction error (APE)
was adopted as a discrepancy measure between the true value and the predicted
value. This simulation study has involved 100 simulated sample data sets, so the
MAPE value identifies the mean of 104 APE, as each data set has sample size
equals to 100.

For each distribution of the sample data, bold identifies the minimum MAPE
value. In the case of the predictor NP, the mean value of the estimated band-
widths, denoted by h̄, was also included in Table 1, aiming to represent the order
of magnitude of the bandwidths, either local or global. Furthermore, note that the
derivation of hloc in (4) requires the simulation of new replicas for each dataset.
In Table 1, r identifies the number of these new Monte Carlo simulated data sets.
The parameters of S(x), used to simulate Zi, are given in the most right-handed
column.

When analyzing Table 1, the main conclusion is that, for all four data types, the
nonparametric method with a local bandwidth always produces the best results.
Additionally, bear in mind that its main advantage, when compared to the P ap-
proach, is being less restrictive and not requiring restrictive theoretical assumptions
which may queer the predictions. So, it should have a larger application field.

We can also observe that the chi-squared data presents the lowest means and
standard deviations of APE, which seems to contradict the idea that these are
typical Gaussian basic features. This is probably a side effect of a smaller σS being
used for the the generation of this data.

According to our experience, the total number r of Monte Carlo simulated data
sets, required by the nonparametric method in (4), should be as large as possible
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Figure 1. Spatial distribution of moss data in Galicia region.

depending on the computational cost one is prepared to pay. In the case of Gaus-
sian and chi-squared data, the choice of this number is more demanding, so we have
chosen r = 10000. This can be explained, taking in mind that it is very difficult
to compete with the P method when data are Gaussian. The chi-squared process
also shares this behaviour because its values are directly simulated from the Gaus-
sian process. On the other hand, Poisson and binomial processes, which are less
demanding, only depend on S(x) process through its generation parameters λ and
p, respectively. Moreover, note that we are applying the ordinary kriging directly
on these data, with no data transformation, so it becomes easier to compete with
the P method.

5. Application to real data

In this section, we present an application of the proposed predictors to a real data
set. The data were collected from Galicia region in Spain for the analysis of air pol-
lution intensities. Air quality can be monitored either by measuring the pollutants
directly, providing objective but expensive information, or by using biomonitors,
providing fast and inexpensive information. This last method is based on the high
bioconcentration of heavy metals in land mosses. The typical procedure is to plant
the moss and some time later to collect it to allow the concentration of heavy
metals to be measured. More detail on this Galicia project of air pollution analysis
can be found in [5].

The data set was collected in 1995 and it can be represented by (xi, Zi), where
Zi gives the concentrations of lead (Pb), measured in ppm, and collected in 63
locations xi. Figure 1 illustrates the spatial distribution of moss data, noting that
the bullets size is proportional to the corresponding Pb value. Some preliminary
data analysis supports the stationarity assumption and, as expected with Poisson
counts, the non-gaussianity of data.

First, we chose a random location x0, also represented in Figure 1, as a new target
of prediction. As in previous Section, the P and NP predictors, with a local and a
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Table 2. Optimal bandwidths and

predictions obtained at point x0, for

Galicia data set.

Method Ẑx0 h

P

NP
hglo

hloc

3.1610
4.6964
3.0374

37.7
22.2

Table 3. Means and standard deviations of APE

and optimal bandwidths obtained for Galicia data

set when applying a cross-validation method.

Method MAPE sd(APE) h

P

NP
hglo

hloc

3.5941
3.2541
2.9715

7.1156
6.9214
6.7782

37.7
22.1

global bandwidths, were used to obtain an estimate of the concentration of Pb on
x0. The results are summarized in Table 2. According to our simulation studies,
the best estimate should be given by the nonparametric method when adopting a
local bandwidth, which means that Z(x0) ≈ 3.0374ppm. Knowing that 50% of the
locations have a concentration of Pb smaller than 3.69ppm, one can conclude that
x0 is not one of the locations with higher intensities of air pollution.

We have then proceeded with the assessment of the P and NP performance by
applying the cross-validation method on Z(xi), i = 1, ..., 63. The cross-validation
results are presented in Table 3, which confirm that the nonparametric method
with an optimal local bandwidth continues to offer the best performance, with a
h mean equals to 22.1km. So, also with this real data set, we have shown that
nonparametric predictors can be preferable to the parametric predictor.

Appendix A. Covariograms of some non-Gaussian processes

This section presents the proofs of the relations between the covariogram of a
Gaussian process S(x) and the covariograms of non-Gaussian processes, generated
from some transformation of S(x).

A.1. Chi-Squared processes

If {S(x) : x ∈ D} is a second-order stationary random process with mean µ,
variance σ2 and covariance function CS(.), then Cov

[
(S(x1))

2, (S(x2))
2
]

=
2C2

S(x1 − x2) + 4µ2CS(x1 − x2), for x1, x2 ∈ D.

Proof : From the properties of a normal distribution, one has:

(1) E [S(x1) − µ] = 0

(2) E
[∏2

i=1(S(xi) − µ)
]

= CS(x1 − x2)

(3) E
[∏3

i=1(S(xi) − µ)
]

= 0

(4) E
[∏4

i=1(S(xi) − µ)
]

= CS(x1 − x2)CS(x3 − x4) +

+ CS(x1 − x3)CS(x2 − x4) + CS(x1 − x4)CS(x2 − x3)

where x1, x2, x3, x4 ∈ D.
In what follows, Si is a shorthand notation for S(xi). Taking the stated
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properties in mind and also that E
[
(S(x))2

]
= σ2 + µ2, ∀x ∈ D, one has:

Cov
[
S1

2, S2
2
]

= E[
(
S1

2 − (σ2 + µ2)
)(

S2
2 − (σ2 + µ2)

)
]

= E[
(
(S1 − µ + µ)2 − (σ2 + µ2)

)(
(S2 − µ + µ)2 − (σ2 + µ2)

)
]

= E[
(
(S1 − µ)2 + 2µ(S1 − µ) − σ2

)

×
(
(S2 − µ)2 + 2µ(S2 − µ) − σ2

)
]

= E[(S1 − µ)2(S2 − µ)2] − σ4 + 4µ2 CS(x1 − x2)
= 2 C2

S(x1 − x2) + 4µ2 CS(x1 − x2)
�

In the particular case of µ = 0, then Cov
[
(S(x1))

2, (S(x2))
2
]

= 2C2
S(x1 − x2)

where x1, x2 ∈ D.

A.2. Poisson and binomial processes

Suppose that {S(x) : x ∈ D} is a second-order stationary and isotropic Gaussian
random process with zero mean, variance σ2 and covariance function CS(.). Let
observations Zi = Z(xi), i = 1, . . . , n, conditional on S(x), be mutually indepen-
dent random variables with conditional expectations µi = g(α+Si) and conditional
variances vi = v(µi), where g is the analytic inverse of the link function L. So, for
u = ‖xi − xj‖ ∈ IR+ and for some real-valued α, the covariance function CZ(.) of
the observed process Z(x) can be approximated as follows.

(1) If Z|S is a Poisson process, then CZ(u) ≈ exp (2α)CS(u)

(2) If Z|S is a binomial process, then CZ(u) ≈ exp(2α)(
1+exp(α)

)4 CS(u)

Proof : First, note that:

• ZiZj = 1
2

(
Z2

i + Z2
j − (Zi − Zj)

2
)

• E[Zi|Si] = µi = g(α + Si) ≈ g(α) + Sig
′(α) (a first-order Taylor series approxi-

mation)

• ES

[
v
(
g(α + Si)

)]
= τ̄2, meaning that the average of the conditional variance

over the distribution of S is analogous to the nugget variance in the stationary
Gaussian model.

• The following expression gives the relation between the variogram of the observed
process Z(.) and the variogram of the process S(.).

γZ(u) = 1
2EZ[(Zi − Zj)

2] = 1
2ES

[
EZ[(Zi − Zj)

2|S]
]

= 1
2ES

[
E2[(Zi − Zj)|S] + Var[(Zi − Zj)|S]

]

= 1
2ES

[(
g(α + Si) − g(α + Sj)

)2
+ v
(
g(α + Si)

)
+ v
(
g(α + Sj)

)]

= 1
2ES

[(
g(α + Si) − g(α + Sj))

2
]
+ ES

[
v
(
g(α + Si)

)]

≈ 1
2E
[(

g(α) + Sig
′(α) − g(α) − Sjg

′(α)
)2]

+ ES[vi] = [g′(α)]2γS(u) + τ̄2

• ES[E[Zi|Si]] = ES[g(α + Si)] ≈ ES[g(α) + Sig
′(α)] = g(α) + g′(α)E[Si] = g(α)

• EZ[Z2
i ] = ES

[
E[Z2

i |Si]
]

= VarZ[Zi] +
(
ES[E[Zi|Si]]

)2

= ES[Var[Zi|Si]] + VarS
[
E[Zi|Si]

]
+
[
ES[E[Zi|Si]]

]2

≈ ES[vi] + VarS[g(α) + Sig
′(α)] + g2(α)

= τ̄2 + [g′(α)]2VarS[Si] + g2(α) = τ̄2 + [g′(α)]2σ2 + g2(α)
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Taking the above in mind, one has:

CZ(u) = CZ(‖xi − xj‖) = Cov [Zi, Zj ] = EZ[ZiZj] − EZ[Zi] EZ[Zj ]

= 1
2

[
EZ[Z2

i ] + EZ[Z2
j ] − EZ[(Zi − Zj)

2]
]
− ES

[
E[Zi|Si]

]
ES

[
E[Zj|Sj ]

]

≈ 2 × 1
2

[
τ̄2 + [g′(α)]2σ2 + g2(α)

]
− [g′(α)]2γS(u) − τ̄2 − g2(α)

= [g′(α)]2(σ2 − γS(u)) = [g′(α)]2CS(u)

For the Poisson processes, log(µi) = α + Si. So, the link function L is the lo-
garithm and the inverse of the link function is the exponential, i.e. g(α + Si) =
exp (α + Si). Given this, one has g′(α) = exp(α). Thus, for the Poisson processes,
the relation CZ(u) ≈ exp (2α) CS(u) immediately holds.

For the binomial processes, the link function L is the logit, and the responses
Zi|Si represent the outcomes of conditionally independent Bernoulli variables with
expectations µi = pi, where pi = P [Zi = 1|Si]. So, L(µi) = L(pi) = log( pi

1−pi
) =

α + Si and the inverse of the link function is g(α + Si) = µi = pi = exp (α+Si)
1+exp (α+Si)

.

Given this, one has g′(α) = exp(α)
(1+exp(α))2 . Thus, for the binomial processes, the

relation CZ(u) ≈ exp (2α)
(1+exp(α))4 CS(u) immediately holds.

�

References

[1] J. P. Chilés and P. Delfiner, Geostatistics. Modeling spatial uncertainty, Wiley Series in Probability
and Statistics, Wiley, New York, 1999.

[2] N. Cressie, Statistics for spatial data, Wiley Series in Probability and Statistics, Wiley, New York,
1993.

[3] P.J. Diggle, J.A. Tawn and R.A. Moyeed, Model-based Geostatistics, Journal of the Royal Statistical
Society, Series C, 47-3 (1998), pp. 299–350.

[4] P.J. Diggle and P.J. Ribeiro Jr., Model-based Geostatistics, Springer Series in Statistics, Springer,
New York, 2007.

[5] J.A. Fernández, A. Rey and A. Carballeira, An extended study of heavy metal deposition in Galicia
(NW Spain) based on moss analysis, Science of the Total Environment, 254 (2000), pp. 31–44.
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