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Abstract

For a gas system of four constituents which experiences the bimolecular chemical reaction
Ai1+As= A3+Ay4, and in a regime close to the chemical equilibrium, the BGK-type model
proposed by the authors in a previous paper is here considered with the aim of studying plane
harmonic wave solutions to the system of the reactive field equations. The Chapman-Enskog
method has been used to determine a first-order approximate solution to the BGK equations,
which includes the transport features of shear viscosity, diffusion and thermal conductivity. Such
approach leads to the constitutive equations and permits to close the reactive field equations
at the Navier-Stokes, Fourier and Fick level. The propagation of plane harmonic waves in
a reactive mixture where the transport effects are relevant can then be studied by a normal
mode analysis. Numerical results are provided for two different mixtures of the Hydrogen-
Chlorine system where the elementary reaction Ho+Cl = HCI+H takes place. The behavior
of diffusion, shear viscosity and thermal conductivity coefficients, as well as the one of phase
velocity and attenuation coefficient, is described focusing the influence of the chemical reaction
on the transport properties and harmonic wave solutions.

1 Introduction and preliminaries

The relaxation kinetic model proposed by the authors in [1] extends the BGK-type model, derived
by Garz6, Santos & Brey for an inert gas mixture in [2], to a quaternary reacting gas mixture
undergoing a reversible reaction of type A;+As+= As+Ay. The model equations are
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where the repeated index i denotes a summation over ¢ = 1,2,3 for the space components, and
(a,7)=1(1,2),(2,1),(3,4), (4,3). The gas constituents have molecular mass m,, molecular velocity
Cq, and chemical binding energy ¢,,. In the model Egs. (1), f, denotes the one-particle distribution
function, ¢ fﬂ, f,y are elastic and reactive collision frequencies which are expressed in terms of cross
sections of rigid spheres [3] for elastic collisions, and in terms of line-of-centers energy model [4]
for encounters with chemical reactions. Moreover ffﬁ, folf% are the elastic and reactive reference
distribution functions which have been determined in paper [1] so that the consistency with respect

to balance equations and mixture conservation laws is assured.



More in detail, the reference distributions have been determined by imposing that the production
terms of mass, momentum and total energy are the same for the BGK-type model and for the exact
reactive Boltzmann equation (BE), that is
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Here Qfﬁ and Qgﬁ are the elastic and reactive collision terms of the exact reactive BE, whose
explicit expressions are well known (see for instance reference[5]). The explicit computation of the
integrals is performed by assuming that all constituents have the same temperature 7" and by taking
an input function f, defined by
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where £ = ¢ —v; and uf* = v{* — v; are the peculiar velocity and the diffusion velocity of each
constituent, respectively. Detailed computations of the production terms (2) lead to the following
expressions for the elastic and reactive reference distributions,
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where Mo=mq/(mq+m,) is a mass ratio, e;=e,/kT is the activation energy of the forward (o=1)
and of the backward (c=—1) reaction in units of kT, A=kT In (%) is the affinity of the

n3nan
forward reaction and v, are the stoichiometric coefficients such that 11 = vy = —v3 = —py = —1.

The kinetic Egs. (1) with reference distributions (4) and (5) define the relaxation model and
constitute the basis of the present analysis. Observe that in Egs. (1) the elastic and reactive collision
terms are approximated separately, so that both the inert mechanism and the chemical interaction
preserve their own role. The model is then appropriate to investigate the deviation of the mixture
from the equilibrium induced by the chemical reaction, in a hydrodynamic regime for which the
diffusion velocities are assumed to be small (Ju$| < 1).

The work is organized as follows. The transport properties of diffusion, shear viscosity and
thermal conductivity are detailed in section 2. The plane harmonic wave propagation in the reacting
mixture is studied in section 3, starting from the system of the field equations closed at the Navier-
Stokes, Fourier and Fick level. At last, numerical results for transport coeflicients and harmonic
wave solutions are provided in section 4 for the chemical reaction Ho+Cl = HCI+H.

2 'Transport properties

In a flow regime where the chemical reaction is in its final stage and the affinity is a small parameter,
|A] < 1, the elastic and reactive frequencies are of the same order of magnitude and the mixture is
near chemical equilibrium.



The model Egs. (1), adopting a first-order Chapman-Enskog expansion for the distribution

function of type f, = ((10) + fél), transform to
£ f 0 s R0, p)  pR
Ot Zg f()+f() ozB) ’y(f(gz)+f(gz)_ a'y)' (6)

Proceeding with the usual steps of the Chapman-Enskog method, one obtains
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where d denotes the generalized diffusion force defined by d¥ = 1—1) [% — e g—p} with the condition
Zi 1 d¥ = 0. The expansion of f,, together with expressions (7) and (8) for (9 and £V, is then
introduced in the kinetic definitions of the constituent diffusion velocities uf", mlxture pressure tensor

p;j and heat flux g¢;,
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Therefore the actual computation of the involved integrals permits to obtain
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Equations (11) and (12) represent the generalized laws of Fick and Fourier, respectively, while Eq.
(13) expresses the constitutive law of a Newtonian fluid which, in kinetic theory, is also called Navier-
Stokes law. Furthermore, 2¢2=n%/n®? denotes the equilibrium concentration of the constituent .
The above laws give the link between the transport fluxes u, p;;, ¢; and the diffusion forces, mixture
velocity gradient, temperature gradient, respectively, through the transport coefficients of diffusion



Dus (Dop = Dga), shear viscosity p and thermal conductivity A. Such transport coefficients are
given by the expressions
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Equations (14-16) clearly show the dependence of transport coefficients on the chemical process
through the presence of the reactive collision frequencies fv and activation energies e} and e*,
related to the forward and backward reaction.

3 Plane harmonic waves

The model Egs. (1) with reference distributions (4) and (5) lead to the following balance equations
for the number density of each constituent and to the conservation laws for momentum and total
energy of the mixture, namely
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The form of the system (17-19) is the same as in the case of the exact reactive BE, due to the
requirement (2) of equal production terms for both the BGK-type model and reactive BE. The
closure of the above system at the Navier-Stokes, Fourier and Fick level is assured by the constitutive
Egs. (11-12), which guarantee that u%, p;; and ¢; are expressed in terms of the basic fields nq, v;
and T

The closed system of the reactive field Eqs. (17-19) and constitutive Eqgs. (11-12) will now be
solved by searching sound wave solutions through a normal mode analysis. At this end, a linearization
around an equilibrium state of the mixture, characterized by constant individual number densities
ned, mixture temperature 7y and vanishing mean velocity, is introduced in the closed system. The

basic fields are expanded in the form
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where n,, v; and T represent small perturbations of the corresponding equilibrium state fields. By
introducing the expansions (20) into the field Egs. (17-19) and referring them to one space dimension
(v1 =v), one obtains the linearized one-dimensional equations in the form
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where & is the first approximation to the forward (0 =1) and backward (o0 = —1) rate constants

[1], and @q, P11, ¢ are the first-order perturbations of w,, p11, ¢, respectively. The explicit form
of such perturbations states their dependence on the transport coefficients D,g, p, A, besides the
field perturbations n, v, f, since the closure of the reactive field equations has been performed
at the Navier-Sokes, Fourier and Fick level. Longitudinal harmonic waves propagating along the
z-axis are characterized by assuming that the perturbations n,, v, T are given by small complex
amplitudes 7, 7, T multiplied by exponential factors depending on the complex wave number &
and real angular frequency w of the wave, that is
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The phase velocity v,, and the attenuation coefficient v of the wave are defined by v, = w/Rek,
«a = Im k, and the affinity A can be written in terms of the perturbation amplitudes of the particle
number densities in the form A = —kTy Za 1 Vala /NS

After inserting the constitutive Eqs. (11-12) together with the perturbations (24) and the ex-
pression for the affinity, the linearized field Eqs. (21-23) transform into the following linear algebraic
system for the amplitudes
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where A = [A;;] is a six-order square matrix whose elements depend on the equilibrium state of the
reactive mixture, transport coefficients and wave parameters. The explicit expressions of the matrix
elements are here omitted for brevity.

The algebraic system (25) has a non-trivial solution if the determinant of the matrix A vanishes.
This condition leads to the dispersion relation for the normal modes (24), namely, Z? 0 aj (k)w)™ =
0, where the coefficients a; depend on the equilibrium number densities ntl, equilibrium mixture

temperature Tp, molecular masses m,, transport coefficients p, A, Dqg, rate constant k§0)7 as well
as angular frequency w and wave number k.

4 Results

Two mixtures of the Ho-Cl system undergoing the bimolecular chemical reaction Hy+Cl = HCI+H
with different equilibrium constituent concentrations and at the same equilibrium temperature Ty =
1500 K are considered in two cases, namely:

Case (a) z{"=0.1, x5 =0.618, 251 =0.082, z3? =0.2;
Case (b) 2] =0.2, z5% =0.424, 25" =0.076, 2" =0.3.



In both cases the concentrations z]? and z3? of the constituents Ho and H were chosen, while the
concentrations z5? and 257 of Cl and HC1 were obtained from the constraint {7 +z5? + 25+ 237 = 1
and from the mass action law,
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where E = 3.98 kJ/mol represents the reaction heat of the reaction Ho+Cl = HCI+H.

w(10=°Pas) AXW/mK) Di2(107* m?/s) D13(10~% m?/s)

reacting 3.388 0.139 2.375 1.251
non-reacting 3.431 0.141 2.553 1.529
D14(10_4 IHQ/S) D23(10_4 IHQ/S) D24(10_4 IHQ/S) D34(10_4 IHQ/S)
reacting 5.081 0.548 6.880 3.035
non-reacting 5.124 0.709 7.108 3.565

Table 1: Case (a). Influence of chemical reaction on the transport coeflicients.

The theoretical analysis of sections 2 and 3 is applied to the reacting mixtures of the above cases
(a) and (b), with the aim of studying the transport properties and characterizing the harmonic wave
solutions in the Hydrogen-Chlorine system. More in detail, the influence of the chemical reaction on
transport coefficients and wave solutions can be appreciated through the comparison of the reacting
mixtures of cases (a) and (b) with the non-reacting mixtures for which the same choice of constituent
concentrations is considered.

The transport coeflicients p, A and D,g of the reacting mixture are shown in comparison with
the non-reacting mixture in table 1 with reference to case (a), and in table 2 with reference to case
(b). The results in tables 1 and 2 show that: (i) the chemical reaction contributes to decrease
the transport coefficients with respect to the non-reacting mixtures and (ii) the chemical influence
is more appreciable in the diffusion coefficients. Such conclusion is in agreement with the results
obtained in paper [6] for the transport coefficients of an analogous mixture of the Hydrogen-Chlorine
system, starting from the exact reactive BE.

w(10=°Pas) AXW/mK) Di2(107* m?/s) D13(10~% m?/s)

reacting 1.965 0.182 2.375 1.313
non-reacting 2.000 0.185 2.553 1.529
D14(10_4 m2/s) D23(10_4 m2/s) D24(10_4 m2/s) D34(10_4 m2/s)
reacting 5.104 0.434 6.807 3.041
non-reacting 5.124 0.709 7.108 3.565

Table 2: Case (b). Influence of chemical reaction on the transport coefficients.

Moreover, figures 1 and 2 describe the behavior of the phase velocity and attenuation coefficient
as functions of the angular frequency of the wave, for a low frequency regime (w < 0.5). The two
cases (a) and (b) are considered in both figures and again, the comparison of the reacting mixtures
with the corresponding inert systems allows to appreciate the influence of the chemical reaction on
the harmonic solutions.
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Figure 1: Influence of the chemical reaction on phase velocity versus angular frequency.
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Figure 2: Influence of the chemical reaction on attenuation coefficient versus angular frequency.



The figures illustrate that: (i) the phase velocities and the attenuation coefficients for reacting
mixtures are smaller than the corresponding ones for non-reactive mixtures, because the transport
coefficients show also the same behavior; (ii) the chemical influence on the phase velocities and
attenuation coeflicients becomes negligible in the limit of low frequencies and (iii) by increasing the
concentrations of the lighter constituents (Hs, H), the phase velocity decreases and the attenuation
coefficient increases.
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