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Abstract. We prove an inequality relating the
number of nontrivial invariant factors of n×n ma-
trices A and B, with those of AB, and get some
results on the cases of equality. In particular, we
characterize the similarity classes, A and B, with
all eigenvalues in the base field, such that AB is
nilpotent for some A ∈ A and B ∈ B.
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1 Introduction

This paper is about matrices over an arbitrary field F. We denote by F̄
its algebraic closure, and by F∗ the set of nonzero elements of F. We shall

consider polynomials from the polynomial ring F[x]. The script letters A and

B represent n×n similarity classes. So, if A ∈ A, then A is an n×n matrix

over F and A is the set of all matrices over F similar to A. The invariant

factors, eigenvalues, rank, etc, ofA are defined as the corresponding concepts

of any A ∈ A . There exists a matrix in A of the form A1 ⊕N , where A1 is

nonsingular and N is nilpotent; the similarity classes of A1 and N are well

defined and called the nonsingular and nilpotent parts of A . Define

R(A) := min{rank [λI − A] : λ ∈ F̄}.

R∗(A) := min{rank [λI − A] : λ ∈ F̄∗}.
As R∗ is invariant under similarity, we define R∗(A), for any class A, in the

obvious way.

In recent literature, the problem of relating the similarity classes of two ma-

trices with the similarity class of their product has received some attention.

Those problems are, in general, of a very high degree of difficulty. In our

references, we indicate some papers on that subject; for more information

and related problems we send the reader to the references in [?].

In [?], the following theorem has been proved in the case A and B are non-

singular.

Theorem 1.1 For any A ∈ A and B ∈ B, we have:

R∗(AB) 6 min{n, R∗(A) + R∗(B)} . (1)
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Proof. We give the following sketch of proof with no further ado:

R∗(AB) = min
λ 6=0

rank (λI − AB)

= min
µ6=0

min
λ 6=0

rank (λI − AB + µB − µB)

6 min
µ6=0

min
λ 6=0

[
rank [(µI − A)B] + rank (λI − µB)

]

6 min
µ6=0

min
λ 6=0

[
rank (µI − A) + rank (λI − µB)

]

=R∗(A) + R∗(B) . ¤

The theorem may be obtained as a corollary of Theorem 4 of [?], but the

argument given above is easier.

We shall denote by α1, . . . , αn the invariant factors of A; the α’s are monic

polynomials ordered so that α1| . . . |αn. If we eliminate those α’s equal to

1, we obtain the chain f1| . . . |fr, of the nontrivial invariant factors of A;

in the sequel, the number r will be denoted by i(A), and i∗(A) denotes the

number of invariant factors of A with at least one nonzero root in F̄. It is

not difficult to prove that i∗(A) = n− R∗(A), and i∗(A) = i(A1), where A1

is the nonsingular part of A. With this notation, (??) reads

i∗(AB) > max{0, i∗(A) + i∗(B)− n}. (2)

An interesting problem is the characterization of the similarity classes for

which we have equality in (??)-(??) for some A ∈ A and B ∈ B. This

problem naturally splits into two subproblems:

Problem I. Characterize the classes A and B, for which there

exist A ∈ A and B ∈ B such that i∗(AB) = 0.

Problem II. Characterize the classes A and B, for which there

exist A ∈ A and B ∈ B such that i∗(AB) = i∗(A) + i∗(B)− n.
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We obtain partial results on these problems. In particular, we solve Prob-

lem I when all eigenvalues of A and B lie in F, and solve Problem II over

algebraically closed fields.

2 Results on Problem I

As i∗(X) = 0 iff X is nilpotent, Problem II consists in the characterization

of A and B, for which there exist A ∈ A and B ∈ B such that AB is

nilpotent. Clearly, if AB is nilpotent, then either A or B is singular, and

i∗(A) + i∗(B) 6 n , by inequality (??). We conjecture that the converse is

true with a tiny exception. More precisely, we state

Conjecture 2.1 Given two n × n similarity classes A and B over F, there

exist A ∈ A and B ∈ B such that AB is nilpotent, if and only if one of A,B
is singular, i∗(A) + i∗(B) 6 n, and A,B do not fall in the following

Exceptional Case. n = 2, the classes A and B are both

nonzero, one of them is nilpotent and the characteristic polyno-

mial of the other is irreducible over F.

We shall prove the conjecture in several cases, namely:

Theorem 2.2 Conjecture ?? holds if one of the following conditions holds:

(a) One of the classes, A or B, has a zero Jordan block;

(b) i∗(A) + i∗(B) = n;

(c) All eigenvalues of A and B lie in F.
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3 Results on Problem II

We consider two cases: (i) when A and B are both nonsingular; (ii) either A
or B is singular. The first of the following results is a consequence of a result

of [?].

Theorem 3.1 [?] Assume A and B are nonsingular, i∗(A) + i∗(B) > n,

and F is algebraically closed. Then there exist A ∈ A and B ∈ B such that

i∗(AB) = i∗(A) + i∗(B)− n. ¤

Theorem 3.2 Assume either A or B is singular, and i∗(A) + i∗(B) > n.

Then there exist A ∈ A and B ∈ B such that i∗(AB) = i∗(A) + i∗(B)− n.

4 Proofs

First we check the ‘exceptional case’ of Conjecture ??. If, say, B is the

nilpotent class, all products AB, with A ∈ A and B ∈ B, are similar to
[

a b
c d

] [
0 1
0 0

]
,

where the first factor has an irreducible characteristic polynomial. As c is

nonzero, AB is not nilpotent.

Proof of Theorem ??. The result clearly holds for n 6 2, or if one of the

classes is scalar. So we may assume n > 3, and A and B are non-scalar.

Proof of (a). We argue by induction on n. We assume B has a zero Jordan

block; this means we may pick B ∈ B of the form

B =

[
B′ 0
0 0

]
,

where B′ is square of order n− 1. Partition the matrices A ∈ A as

A =

[
CA ∗
∗ ∗

]
,
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with CA a square block of order n − 1. Let α1| . . . |αn and γ1| . . . |γn−1 be

the invariant factors of A and CA. According to the interlacing inequalities

for similarity invariant factors [?, ?], for a given class A the possible γ’s are

characterized by

deg(γ1 · · · γn−1) = n− 1 , and αi|γi|αi+2 , (3)

for 1 6 i 6 n− 1 (with the convention αn+1 := 0). Note that α1 = 1 and the

degree of αn, call it a, satisfies a > 2, because A is nonscalar. Now let z be

the largest i < n such that αi is not a multiple of x (recall: our polynomials

are taken from F[x]).

If z < n − 1, define γz := xαz, γn−1 := xa−2αn−1, and γi := αi for all i ∈
{1, . . . , n− 2}, i 6= z. If z = n− 1, define γn−2 := xαn−2, γn−1 := xa−2αn−1,

and γi := αi for i ∈ {1, . . . , n− 3}.
In either case, the γ’s satisfy (??), and any CA having them as invariant

factors satisfies the properties: CA is nilpotent if A is nilpotent; i∗(CA) =

i∗(A) − 1, if A is not nilpotent; CA has a zero Jordan block (because 0 is

a simple root of one of the γ’s). So we have i∗(CA) + i∗(B′) 6 n − 1; by

induction on n, we may choose CA such that CAB′ is nilpotent. Therefore

AB is nilpotent as well.

Proof of (b). We may assume A and B have no zero Jordan block, and A
is singular. Note that i∗(A) + i∗(B) = n implies A, B do not fall in the

exceptional case. The proof is by induction on n.

Case 1: when B has an invariant factor of degree one. Assume B has x− b

as invariant factor. We consider matrices A ∈ A and B ∈ B of the form

A =

[
A1 ∗
0 0

]
and B =

[
B1 0
0 b

]
,

where A1 and B1 are square matrices of order n−1. As A and B have no zero

Jordan block, b is nonzero and A1 is singular. Clearly, i∗(A1)+i∗(B1) = n−1.
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By induction we may select A1 and B1 such that A1B1 is nilpotent, and

therefore get a nilpotent AB.

Case 2: B has no invariant factor of degree one. As A is non-scalar, i∗(A) <

n; therefore B in non-nilpotent. So B has an invariant factor with a nonzero

root over F̄; let β be such an invariant factor of lowest positive degree, and let

d be the degree of β. The companion matrix Cβ is of order d, and i∗(Cβ) = 1.

Note that i∗(A) 6 n− 2, because A has eigenvalue 0 with multiplicity > 2;

so we have i∗(B) > 2, and n > 4.

Now, from i∗(B)d 6 n, we obtain d 6 n/2, and i∗(A) > n − n/d. Let u be

the number of invariant factors of the nonsingular part of A with degree one;

these u invariant factors are all equal to, say, x−a. We have u+2[i∗(A)−u] 6
n−2 (the ‘n−2’ comes from the fact thatA has at least two zero eigenvalues).

Therefore u > n + 2 − 2n/d. For n > 3, the function f(x) := n + 2 − 2n/x

is strictly concave for x > 0, and satifies f(2) = 2, f(n) = n; we thus have

f(x) > x in the interval ]2, n[. Therefore

n + 2− 2n/d > d, with equality iff d ∈ {2, n}. (4)

From this we get u > d. So the invariant factor x− a occurs in A at least d

times. Accordingly, we choose A ∈ A and B ∈ B of the form

A =




A1

1

Da




and B =




B1

Cβ




(5)

where A1 and B1 are square matrices of order n−d, and Da is a d×d diagonal

matrix with diagonal entries 0, a . . . , a (with a repeated d− 1 times).

Now we apply induction to the two pairs of diagonal blocks. As Da is singular

and i∗(Da) + i∗(Cβ) = d, there exists C similar to Cβ such that DaC is

nilpotent. On the other hand, A1 is singular and i∗(A1) + i∗(B1) = n − d;
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so there exists B′
1 similar to B1 such that A1B

′
1 is nilpotent. Therefore,

A(B′
1 ⊕ C) is nilpotent, and we are done.

Proof of (c). We go by induction on n. The previously proved items leave us

with the case when i∗(A) + i∗(B) < n, and the classes have no zero Jordan

block. Without loss of generality we assume B is singular.

There exist A ∈ A and B ∈ B of the form

A =

[
A1 ∗
0 τ

]
and B =

[
B1 ∗
0 0

]
,

where A1 and B1 are square matrices of order n− 1. Clearly, B1 is singular,

and i∗(A1) + i∗(B1) ≤ n − 1; by induction we may choose A1 and B1 such

that A1B1 is nilpotent, and so AB is nilpotent as well. ¤

To prove Theorem ?? we need a lemma where the following notation is used.

Let f1|f2| · · · |fr and g1|g2| · · · |gas be the nontrivial invariant factors of A
and B, respectively. We consider A ∈ A and B ∈ B in companion normal

form:

A = C(f1)⊕ · · · ⊕ C(fr), B = C(g1)⊕ · · · ⊕ C(gs).

Here, C(ϕ) is any companion matrix of polynomial ϕ (in fact, we only need

C(ϕ) to be nonderogatory, with characteristic polynomial ϕ).

Lemma 4.1 Assume i∗(A)+ i∗(B) > n, i∗(A) > i∗(B), and A is not scalar.

There exists m such that the direct sum decompositions of the above matrices

A and B, as A = A1 ⊕A2, and B = B1 ⊕B2, where A2 and B2 are m×m,

satisfy i∗(A2) + i∗(B2) = m, and the block A1 is scalar.

Proof. We go by induction on n. As i∗(A) > n/2, f1 must have degree 1,

and f1 = x−a, for a nonzero a. Let d be the degree of g1, the first nontrivial

invariant factor of B. We have i∗(B) 6 n/d , and i∗(A) > n − n/d + 1. We
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may argue as in the proof of (??), to prove that the number of invariant

factors of A of degree 1 is at least d. So fd = f1.

We now partition A = (aId) ⊕ A′, and B = C(g1) ⊕ B′, where A′ and B′

are square of order n′ := n − d. Clearly, i∗(A′) = i∗(A) − d , and i∗(B′) ∈
{i∗(B), i∗(B) − 1}; we thus have i∗(A′) + i∗(B′) > n′. If we have equality,

the proof is done. Now assume that i∗(A′)+ i∗(B′) > n′. To apply induction

to A′, B′, we need to show

i∗(A′) > i∗(B′). (6)

If d = 1 and i∗(A) > i∗(B), then (??) trivially holds; if d = 1 and i∗(A) =

i∗(B), then i∗(B′) = i∗(B) − 1, and (??) holds as well. In case d > 2, we

may take (??) into account, and get

i∗(A′) > n + 1− i∗(B)− d > n + 1− n/d− d > n/d− 1 > i∗(B)− 1. (7)

If one of the inequalities is strict, we have (??). If i∗(A′) = i∗(B) − 1 then

all 4 inequalities in (??) are equalities; this implies d = 2, and i∗(B) = n/2,

i.e., all invariant factors of B are equal, of degree 2; as B is not nilpotent, we

have i∗(B′) = i∗(B)− 1, and we again get (??).

So, arguing by induction, we may apply the lemma to the submatrices A′, B′,

and thus obtain the result for the initial matrices A,B. ¤

Proof of Theorem ??. The result is trivial if one of the classes is scalar; so

we assume that both are nonscalar. Without loss of generality, we assume

i∗(A) > i∗(B).

We apply Lemma ?? to get A1⊕A2 ∈ A, and B1⊕B2 ∈ B. One of the blocks

A2, B2 is singular. So, by Theorem ??(b), there exist A′
2 and B′

2 similar to

A2 and B2, respectively, such that A′
2B

′
2 is nilpotent, i.e., i∗(A′

2B
′
2) = 0. In

this way, we get A′ := A′
1 ⊕ A2 and B′ := B′

1 ⊕B2, satisfying

i∗(A′B′) = i∗(A1B1) = i∗(B1) = i∗(B)− i∗(B2)

= i∗(B) + i∗(A2)−m = i∗(B) + i∗(A)− n . ¤
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